Reaction of Germanium Tetrachloride with Oxygen Under MCVD Fiber Preform Fabrication Conditions M

Total Page:16

File Type:pdf, Size:1020Kb

Reaction of Germanium Tetrachloride with Oxygen Under MCVD Fiber Preform Fabrication Conditions M ISSN 0020-1685, Inorganic Materials, 2007, Vol. 43, No. 9, pp. 968–971. © Pleiades Publishing, Inc., 2007. Original Russian Text © M.M. Bubnov, A.N. Gur’yanov, M.Yu. Salganskii, V.F. Khopin, 2007, published in Neorganicheskie Materialy, 2007, Vol. 43, No. 9, pp. 1081–1085. Reaction of Germanium Tetrachloride with Oxygen under MCVD Fiber Preform Fabrication Conditions M. M. Bubnova, A. N. Gur’yanovb, M. Yu. Salganskiib, and V. F. Khopinb a Fiber Optics Research Center, Russian Academy of Sciences, ul. Vavilova 38, Moscow, 119333 Russia b Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, ul. Tropinina 49, Nizhni Novgorod, 603950 Russia e-mail: [email protected] Received December 18, 2006 Abstract—The GeO2 yield in the reaction between GeCl4 and oxygen has been determined as a function of the reaction time under typical MCVD fiber preform fabrication conditions. It is shown that the yield increases steadily over time and may attain 100%. In the case of the cooxidation of germanium and silicon tetrachlorides under the same conditions, there is an optimal reaction time corresponding to a maximum in GeO2 yield. The temperature profile along the reaction zone has been optimized in terms of germania yield. DOI: 10.1134/S0020168507090105 INTRODUCTION At the same time, when reactions (1) and (2) are run Chemical vapor deposition on the inside surface of concurrently, as is typical in the MCVD process, the GeO ~0.5 a silica glass substrate tube (MCVD process) is among 2 yield is even at reaction times close to 1 s the most widely used vapor-phase processes for the fab- [3], which seems to be associated with the small equi- rication of single-mode silica-based optical fiber pre- librium constant of reaction (2) [1, 3]. The considerable forms. Typically, the process utilizes high-temperature volume of additional molecular chlorine resulting from reactions of silicon tetrachloride and dopant halide reaction (1) must reduce the GeO2 yield, especially because, in the MCVD process, the silicon tetrachlo- (most frequently, GeCl4) vapors with oxygen. A gas mixture is passed through a rotating silica glass tube, ride concentration in the gas mixture, as a rule, notably and an oxygen–hydrogen flame slowly traveling along exceeds the germanium tetrachloride concentration. the tube (usually, in the gas flow direction) initiates the High-purity germanium tetrachloride is among the reactions most expensive starting chemicals in the MCVD pro- cess. Clearly, a detailed understanding of the processes SiCl4 + O2 SiO2 + 2Cl2, (1) underlying the deposition of fiber preform material is of GeCl + O GeO + 2Cl . (2) practical interest for the fabrication of both conven- 4 2 2 2 tional germanium-doped silica glass fiber preforms and The resulting oxide particles are deposited on the inside germania-glass-core preforms. tube surface under the action of thermophoretic forces and The purpose of this work was to study the effect of are fused by the flame to form a transparent glass layer. reaction time on the germania yield in the reaction of The effectiveness of the reactions in the gas flow can germanium tetrachloride with oxygen under typical be characterized by the reaction time τ and conversion MCVD fiber preform fabrication conditions. β. The latter is the ratio of the number of moles of a component in the reaction product to the initial number of moles of that component: EXPERIMENTAL AND RESULTS Optimization of the reaction temperature. Our N – N β = ------------------1 -2, (3) experiments were conducted in a standard MCVD N1 apparatus for fiber preform fabrication, equipped with a system for forced cooling of the tube in the thermo- where N1 and N2 are the numbers of moles of the start- phoretic deposition zone [4]. ing substance at the inlet and outlet of the reaction zone, First, we optimized the GeCl4 conversion tempera- respectively. ture. To this end, a gas mixture (table) was passed At typical MCVD temperatures, full SiCl4 conver- through the hot zone produced inside the tube by a sion to silica takes on the order of 0.01 s [1], whereas torch (the maximum temperature of the outer tube sur- the GeCl4 conversion is 0.31 at this reaction time [1] face was measured by an IR pyrometer with an accu- and takes 0.5 s to reach unity [2]. racy of ±15°ë). 968 REACTION OF GERMANIUM TETRACHLORIDE 969 In our experiments, germanium tetrachloride was Flow rates of gas-mixture components (normal conditions) oxidized at different temperatures of the outer tube sur- 3 face in the reaction zone, both individually (Fig. 1, Curve no. Flow rate, cm /min curve 1) and in the presence of silicon tetrachloride in Fig. 1 oxygen GeCl SiCl CCl (curve 2) or carbon tetrachloride (curve 3). The germa- 4 4 4 nium tetrachloride concentration in the gas mixture at 1 1325 11.9 – – the tube outlet end was determined by IR spectroscopy. 2 1325 11.9 39.7 – In all of the experiments, the germanium tetrachlo- 3 1325 11.9 – 16.9 ride conversion increased with increasing temperature in the reaction zone. The highest conversion was achieved when the temperature of the outer tube surface which reacts with oxygen at a considerably lower tem- in the reaction zone was ~2000–2050°C. At this tem- perature in comparison with germanium tetrachloride, perature, the GeCl4 conversion in reaction (2) attained must raise the excess chlorine concentration in each 80% (Fig. 1, curve 1). If reactions (1) and (2) were run section of the reaction zone compared to SiCl4, which concurrently, the GeCl4 conversion was 60% (curve 2). seems to be responsible for the lower germanium tetra- The use of carbon tetrachloride instead of silicon tetra- chloride conversion. chloride reduced the GeCl4 conversion to ~30% (the If the above reasoning is correct, increasing the initial carbon tetrachloride concentration in the gas reaction time for concurrent reactions (1) and (2) must mixture was lower than the SiCl4 concentration by reduce germanium tetrachloride conversion. more than a factor of 2). Effect of reaction time on GeCl4 conversion. The It follows from the kinetic curves of reactions (1) average reaction time in a flowing gas mixture can be and (2) [5] that the temperature range of reaction (1) is determined as ~100°ë wider than that of reaction (2). The tempera- Sl ture profile created by the traveling torch in the reaction τ = -----, (4) zone (Fig. 2) is asymmetric along the tube axis, with a W flat trailing edge and steep leading edge. Therefore, for a laminar gas-mixture flow and at moderate tempera- where S is the cross-sectional area of the channel, W is tures, the extent of reaction (2) in each section of a sig- the volumetric flow rate of the gas mixture, and l is the nificant part of the reaction zone is a factor of 3– effective length of the reaction zone (hot zone). How- 5 greater than that of reaction (1). For this reason, the ever, since only the temperature of the outer tube sur- excess chlorine concentration in the gas mixture in each face in the reaction zone was measured in our experi- section of the reaction zone must be substantially lower ments, the true size of the hot zone inside the tube was than might be expected. Replacing SiCl with CCl , difficult to determine. In connection with this, as a reac- 4 4 tion time criterion we used the flow speed along the tube, W/S. To assess the efficiency of germanium tetrachloride conversion in reaction (2) as a function of reaction time, 0.8 a layer of SiO2 particles was deposited on the inside tube surface by translating the flame in the direction opposite to the flow of a mixture of oxygen and silicon 1 3 0.6 tetrachloride (SiCl4 flow rate, 100 cm /min) (Fig. 3a). 2 0.4 conversion 4 2000 C GeCl ° 1500 0.2 3 1000 0 Temperature, Temperature, 500 Gas-mixture flow Torch travel 12001600 2000 Temperature, °C 0 10 20 30 40 Length, cm Fig. 1. Germanium tetrachloride conversion as a function of the outer-surface temperature in the reaction zone for differ- Fig. 2. Axial temperature profile produced by the traveling ent gas mixtures: (1–3) see the table. torch. INORGANIC MATERIALS Vol. 43 No. 9 2007 970 BUBNOV et al. Layer of SiO particles 2 Silica tube (a) SiCl4 O2 Torch Cooling Fused SiO2/GeO2 layer (b) GeCl4 O2 Fig. 3. Schematic illustrating the preparation of germanosilicate glass layers via successive oxide deposition from the vapor phase: (a) the flame is translated in the direction opposite to the flow of a mixture of oxygen and silicon tetrachloride; (b) the flame is trans- lated along the flow of a mixture of oxygen and germanium tetrachloride. The zone behind the flame, where particles were depos- The arrow in Fig. 4 marks the data point obtained at ited, was cooled in order to create conditions similar to the same flow speed as curve 1 in Fig. 1. Since this those produced by the flame traveling in the flow direc- point corresponds to 80% germanium tetrachloride tion. After deposition, the layer of SiO2 particles was conversion, further reduction in flow speed under such fused in a mixture of oxygen and germanium tetrachlo- deposition conditions makes it possible to achieve a ride at ~2050°ë by translating the flame in the flow near 100% GeO2 yield. direction to give a transparent glass layer (Fig. 3b). In In codepositing oxides by reactions (1) and (2), we our experiments, the flow speed of this mixture was used gas mixtures with a constant O2 : SiCl4 : GeCl4 varied by changing the inner tube diameter and oxygen volume ratio of 250 : 10 : 3.
Recommended publications
  • Physical and Chemical Properties of Germanium
    Physical And Chemical Properties Of Germanium Moneyed and amnesic Erasmus fertilise her fatuousness revitalise or burrow incommunicatively. Creditable Petr still climbs: regarding and lissome Lazarus bully-off quite punctiliously but slums her filoplume devotedly. Zane still defilade venomous while improvident Randell bloodiest that wonderers. Do you for this context of properties and physical explanation of Silicon is sincere to metals in its chemical behaviour. Arsenic is extremely toxic, RS, carbon is the tongue one considered a full nonmetal. In nature, which name a widely used azo dye. Basic physical and chemical properties of semiconductors are offset by the energy gap between valence conduction! Other metalloids on the periodic table are boron, Batis ZB, only Germanium and Antimony would be considered metals for the purposes of nomenclature. Storage temperature: no restrictions. At room temperature, the semiconducting elements are primarily nonmetallic in character. This application requires Javascript. It has also new found in stars and already the atmosphere of Jupiter. Wellings JS, it is used as an eyewash and insecticide. He has studied in Spain and Hungary and authored many research articles published in indexed journals and books. What are oral health benefits of pumpkins? The material on this site may not be reproduced, germanium, the radiation emitted from an active device makes it locatable. Classify each statement as an extensive property must an intensive property. In germanium and physical chemical properties of the border lines from the! The most electronegative elements are at the nod in the periodic table; these elements often react as oxidizing agents. Atomic Volume and Allotropy of the Elements.
    [Show full text]
  • IJCA 20A(5) 440-442.Pdf
    Indian Journal of Chemistry Vol. 20A, May 1981, pp. 440-44~ Synthesis & Properties of Some Metal s-Methalloxides S. C. GOEL & R. c. MEHROTRA*t Chemistry Department. University of Delhi. Delhi 110 007 Received 8 August 1980; revised and accepted 20 November 1980 Metal derivatives of [3-methallyl alcohol having the general formulae M[OCH2C(CH3)=CH.l.. (M = B and AI); M[OCH2C(CHs)=CH2]4, (M=Ge and Ti); M[OCH.C(CH3)=CH.ls, (M = Nb and Ta) and BunSn[OCH.C- (CH3)= CH2]4_n, (n = 1,2 and 3) have been synthesized by alcohol interchange technique. Germanium tetra-p-methal- loxide has been synthesized by the reaction of germanium tetrachloride with {3-methallylalcohol in the presence of dry ammonia as hydrogen chloride acceptor. These newly synthesized [3-methalloxides are colourless liquids which can be distilled under reduced pressure. These derivatives have been characterized by elemental analyses, molecular weight determinations and IR as well as PMR spectral data. ESPITE extensive work in alkoxid.e chemistry', passed slowly for 45 min. The precipitated ammoni- the alkenoxide derivatives derived from um chloride was filtered off and the solvent removed D unsaturated alcohols have received little from the filtrate under reduced pressure. The colour- attentionv". The presence of double bond may less liquid on distillation under reduced pressure affect the basic properties of alkoxides like volatility, gave germanium tetra-Bsmethalloxide; yield 74 %; molecular association and nature of metal coordi- b. p. 95°C/0.7 mm. nation. In the present paper, we report the synthesis Reaction of ~-methallyl alcohol with aluminium and properties of some metal aiken oxides derived isopropoxide ~ Aluminium isopropoxide (6.30 g), from ,B-methallyl alcohol.
    [Show full text]
  • The Chemistry of Germanium, Tin and Lead
    The Chemistry of Germanium, Tin and Lead Anil J Elias, IIT Delhi Relative natural abundance on the earths crust of group 14 elements are as follows which indicate the rareness of germanium Carbon 0.18% The major end uses for Silicon 27% germanium, worldwide, were Germanium 0.00014% estimated to be fiber-optic Tin 0.00022% systems, 30%; infrared optics, 25%; Lead 0.00099% polymerization catalysts, 25%; electronics and solar electric applications, 15%; and other (phosphors, metallurgy, and chemotherapy), 5%. The main compounds of commercial importance of germanium are germanium tetrachloride and germanium dioxide. Unlike silicon, germanium forms stable divalent compounds like GeCl2 and GeO. A major difference with silicon is the fact 2- - that it forms GeCl6 and GeCl3 . Zone-refined crystalline germanium typically is 99.9999 percent pure and impurities are typically less than 100 ppb, and electrically active impurities, less than 0.5 ppb. GeO2 is dissolved in concentrated HCl to make germanium tetrachloride (GeCl4) which is a fuming liquid similar to SiCl4 having a boiling point of 86.5 C. The GeCl4 is purified by fractional distillation in glass or fused quartz equipments. The purified GeCl4 is hydrolyzed with deionized water to yield GeO2. After drying, the GeO2 is reduced with hydrogen at 760° C to form germanium metal powder, which is then melted and cast into bars, known as first-reduction bars. These bars are then zone-refined to polycrystalline metal that typically contains less than 100 ppb total impurities and less than 0.5 ppb electrically active impurities. Six salient properties of germanium which differ from that of silicon makes the foundations for all its applications.
    [Show full text]
  • Kinetics of Germanium Tetrachloride Reduction with Hydrogen in the Presence of Pyrolytic Tungsten A
    ISSN 0020-1685, Inorganic Materials, 2016, Vol. 52, No. 9, pp. 919–924. © Pleiades Publishing, Ltd., 2016. Original Russian Text © A.V. Vorotyntsev, V.M. Vorotyntsev, A.N. Petukhov, A.V. Kadomtseva, I.Yu. Kopersak, M.M. Trubyanov, A.M. Ob’’edkov, I.V. Pikulin, V.S. Drozhzhin, A.A. Aushev, 2016, published in Neorganicheskie Materialy, 2016, Vol. 52, No. 9, pp. 985–990. Kinetics of Germanium Tetrachloride Reduction with Hydrogen in the Presence of Pyrolytic Tungsten A. V. Vorotyntseva, V. M. Vorotyntseva, A. N. Petukhova, A. V. Kadomtsevaa, I. Yu. Kopersaka, M. M. Trubyanova, A. M. Ob’’edkovb, I. V. Pikulinc, V. S. Drozhzhinc, and A. A. Aushevc aNizhny Novgorod State Technical University n.a. R.E. Alekseev, ul. Minina 24, Nizhny Novgorod, 603950 Russia bRazuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, ul. Tropinina 49, Nizhny Novgorod, 603950 Russia cAll-Russia Research Institute of Experimental Physics, Russian Federal Nuclear Center, pr. Mira 37, Sarov, Nizhny Novgorod oblast, 607188 Russia e-mail: [email protected] Received September 15, 2015; in final form, January 19, 2016 Abstract—Pyrolytic tungsten coatings have been produced on the surface of ash microspheres under steady- state conditions using tungsten hexacarbonyl as a precursor. The nanostructured composites thus obtained were characterized by X-ray diffraction and scanning electron microscopy. We have studied the kinetics of the catalytic reduction of germanium tetrachloride with hydrogen in the temperature range 423–973 K in the presence of the composites as catalysts and determined the reaction order and activation energy for the cata- lytic reduction of germanium tetrachloride with hydrogen.
    [Show full text]
  • Germanium Tetrachloride, 99.9+%
    GEG5600 - GERMANIUM TETRACHLORIDE, 99.9+% GERMANIUM TETRACHLORIDE, 99.9+% Safety Data Sheet GEG5600 Date of issue: 03/04/2015 Revision date: 08/31/2015 Version: 2.0 SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1. Product identifier Product form : Substance Physical state : Liquid Substance name : GERMANIUM TETRACHLORIDE, 99.9+% Product code : GEG5600 Formula : Cl4Ge Synonyms : TETRACHLOROGERMANIUM Chemical family : GERMANIUM CHLORIDE 1.2. Relevant identified uses of the substance or mixture and uses advised against Use of the substance/mixture : Chemical intermediate For research and industrial use only 1.3. Details of the supplier of the safety data sheet GELEST, INC. 11 East Steel Road Morrisville, PA 19067 USA T 215-547-1015 - F 215-547-2484 - (M-F): 8:00 AM - 5:30 PM EST [email protected] - www.gelest.com 1.4. Emergency telephone number Emergency number : CHEMTREC: 1-800-424-9300 (USA); +1 703-527-3887 (International) SECTION 2: Hazards identification 2.1. Classification of the substance or mixture Classification (GHS-US) Skin Corr. 1A H314 Eye Dam. 1 H318 STOT SE 3 H335 Full text of H-phrases: see section 16 2.2. Label elements GHS-US labeling Hazard pictograms (GHS-US) : GHS05 GHS07 Signal word (GHS-US) : Danger Hazard statements (GHS-US) : H314 - Causes severe skin burns and eye damage H318 - Causes serious eye damage H335 - May cause respiratory irritation Precautionary statements (GHS-US) : P280 - Wear protective gloves/protective clothing/eye protection/face protection P260 - Do not breathe vapors P264 - Wash hands thoroughly after handling P271 - Use only outdoors or in a well-ventilated area P301+P330+P331 - If swallowed: rinse mouth.
    [Show full text]
  • Chapter 7: Search for New Fire Suppressant Chemicals
    Chapter 7: SEARCH FOR NEW FIRE J. Douglas Mather, Ph.D. SUPPRESSANT CHEMICALS Chemical Development Studies, Inc. Robert E. Tapscott, Ph.D. GlobeTech, Inc. TABLE OF CONTENTS 7.1 Fire Suppressant Replacement Knowledge Prior to the NGP .........................................612 7.1.1 Overview of Early Halon Replacement Efforts ....................................................612 7.1.2 Fire Suppressant Research – 1974 Through 1993.................................................613 7.1.3 DoD Technology Development Plan (1993 to 1997)............................................615 7.1.4 Advanced Agent Working Group (AAWG) .........................................................616 7.1.5 Summary: Alternative Agents and Selection Criteria Prior to the NGP ...............622 7.2 The NGP Approach to New Chemicals Screening..........................................................612 7.3 NGP Surveys of Inorganic Chemical Families................................................................612 7.3.1 Main Group Elements - Group I............................................................................626 7.3.2 Main Group Elements - Group II ..........................................................................627 7.3.3 Main Group Elements - Group III.........................................................................627 7.3.4 Main Group Elements - Group IV.........................................................................628 7.3.5 Main Group Elements - Group V..........................................................................634
    [Show full text]
  • Structural and Physical Investigations of Novel Germanium Compounds: Aryloxides, Nanomaterials, and Photolysis of Oligogermanes
    STRUCTURAL AND PHYSICAL INVESTIGATIONS OF NOVEL GERMANIUM COMPOUNDS: ARYLOXIDES, NANOMATERIALS, AND PHOTOLYSIS OF OLIGOGERMANES By AARON C. SCHRICK Bachelor of Science in Chemistry Midwestern State University Wichita Falls, Texas 2009 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY May, 2014 STRUCTURAL AND PHYSICAL INVESTIGATIONS OF NOVEL GERMANIUM COMPOUNDS: ARYLOXIDES, NANOMATERIALS, AND PHOTOLYSIS OF OLIGOGERMANES Dissertation Approved: Dr. Charles S. Weinert Dissertation Adviser Dr. Allen Apblett Dr. Nicholas Materer Dr. Richard A. Bunce Dr. John Veenstra ii Name: AARON C. SCHRICK Date of Degree: MAY, 2014 Title of Study: STRUCTURAL AND PHYSICAL INVESTIGATIONS OF NOVEL GERMANIUM COMPOUNDS: ARYLOXIDES, NANOMATERIALS, AND PHOTOLYSIS OF OLIGOGERMANES Major Field: CHEMISTRY Abstract: The work described in this dissertation will explore the synthesis and characterization of novel germanium containing compounds in order to gain a better understanding of the organometallic chemistry of germanium. These compounds include germanium bisamides, aryloxogermylenes, polyfunctional aryloxides such as calix[n]arenes and binaphthoxogermanium compounds, and oligogermanes containing up to four germanium atoms. We have found that the germanium bisamides can be trapped using the germylene trapping agent benzil and we have fully characterized those products. The germanium bisamides can also be used as starting materials to synthesize germanium aryloxides via protonolysis of a phenol that contains one or more phenolic groups. Using this method we have prepared the t germanium(IV) aryloxides [Ge(OC6H3Ph2-2,6)2(R)(I)] (R = Bu or Me) where the R = Me derivative was then converted to the triaryloxo species [Ge(OC6H3Ph2-2,6)3(Me)] upon reaction of the iodine containing compound with an extra equivalent of 2,6-diphenylphenol.
    [Show full text]
  • Germanium Tetrachloride Safety Data Sheet
    GERMANIUM TETRACHLORIDE SAFETY DATA SHEET SECTION 1. IDENTIFICATION Product Identity: Germanium Tetrachloride Trade Names and Synonyms: Germanium Chloride, Tetrachloro Germanium, GeCl4 Manufacturer: Supplier: Preparer: Teck Metals Ltd. In U.S.: Teck Metals Ltd. Trail Operations Teck American Metal Sales Suite 3300 – 550 Burrard Street Trail, British Columbia Incorporated Vancouver, British Columbia V1R 4L8 501 North Riverpoint Blvd, Suite 300 V6C 0B3 Emergency Telephone: 250-364-4214 Spokane, WA USA, 99202 Other than U.S.: Teck Metals Ltd. #1700 – 11 King Street West Toronto, Ontario M5H 4C7 Date of Last Review: July 7, 2015. Date of Last Edit: July 7, 2015. Product Use: Optical fibre production. SECTION 2. HAZARDS IDENTIFICATION CLASSIFICATION: Health Physical Environmental Acute Toxicity (Oral, Inhalation) – Does not meet criteria Corrosive to Metals - Aquatic Toxicity – Skin Corrosion/Irritation – Category 1A Category 1 Short Term/Long Term Eye Damage/Eye Irritation – Category 1 (Insufficient information Respiratory or Skin Sensitization – Does not meet criteria to classify) Mutagenicity – Does not meet criteria Carcinogenicity – Does not meet criteria Reproductive Toxicity – Does not meet criteria Specific Target Organ Toxicity Acute Exposure – Category 3 Chronic Exposure – Does not meet criteria July 7, 2015 Germanium Tetrachloride Page 1 of 6 LABEL: Symbols: Signal Word: DANGER Hazard Statements Precautionary Statements: DANGER! Causes severe skin burns and eye damage. Absorb spillage immediately. Store locked up in well May cause respiratory irritation. ventilated place. Keep in original container and tightly May be corrosive to metals. closed. Wear protective gloves/protective clothing/eye protection/face protection. Contact with water or moist air liberates white fumes and corrosive/irritating gas. Do not breathe these fumes.
    [Show full text]
  • Germanium Tetrachloride 98578 R0
    HojaPRODUC deT D DatosATA SHEE deT Producto Germanium Tetrachloride Introduction Germanium tetrachloride is a colorless liquid. It IR- Active Impurities Typical ppm Maximum is used as an intermediate in the production of ppm purified germanium dioxide and germanium metal, O-H (3610cm-1) < 1.0 2.0 but more predominantly used as a reagent in fiber C-Hx (2960 and 2930cm-1) < 0.5 2.0 optic production. H-Cl (2840cm-1) < 1.0 4.0 In fiber optics, germanium tetrachloride is converted into germanium dioxide and then deposited, along with silicon dioxide, using Metallic Impurities Typical ppb Maximum ppb vapor deposition techniques. Germanium dioxide Chromium (Cr) <1.0 10.0 provides a higher refractive index fiber core, which Copper (Cu) <1.0 10.0 prevents signal loss during transmission. Cobalt (Co) <1.0 10.0 Aluminum (Al) <1.0 10.0 Synonyms Germanium (IV) Chloride; GeCl4 Manganese (Mn) <1.0 10.0 CAS Number 10038-98-9 Vanadium (V) <1.0 10.0 EC Number 233-116-7 Iron (Fe) <2.0 10.0 RTECS Number LY5225000 Nickel (Ni) <1.0 10.0 Purity > 99.999% Lead (Pb) <1.0 10.0 Appearance/ Colorless fuming liquid Form Zinc (Zn) <1.0 10.0 Formula Weight 214.45 Total Combined <5.0 50.0 Metals Theoretical 33.873% Germanium Content Packaging (1) Stainless steel container with Swagelok valve Specific Gravity 1.875 at 20°C manifold arrangement with manual operation. Boiling Point 83°C (2) Glass bottle with Teflon manifold arrangement with manual operation packed in an overpack. Vapor Pressure 76mm Hg at 20°C (3) Other packaging and valve manifold options Solubility • Reacts with water releasing toxic fumes available on request.
    [Show full text]
  • Durham E-Theses
    Durham E-Theses Chemical and mass spectrometric studies on organogermanes Carrick, A. How to cite: Carrick, A. (1967) Chemical and mass spectrometric studies on organogermanes, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/9048/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk CHEMICAL and MASS SPECTROMETRIC STUDIES on ORGANOGERMANES A. CARRICK CHEMICAL AND MASS SPECTRQMETRIC STUDIES ON ORGANDGERMANES by A. CARRICK, B.Sc. Hatfield College A Thesis in candidature for the Degree of Doctor of Philosophy in the University of Durham, July,1967. for Patricia Plato The work described was carried out in the University of Durham between September 1964 and June 1967. It has not been submitted for any other degree and is the original work of the author except where acknowledged by reference. A portion of this work has been the subject of two publications with F.
    [Show full text]
  • Germanium(IV) Chloride
    Germanium(IV) chloride sc-250053 Material Safety Data Sheet Hazard Alert Code Key: EXTREME HIGH MODERATE LOW Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION PRODUCT NAME Germanium(IV) chloride STATEMENT OF HAZARDOUS NATURE CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200. NFPA FLAMMABILITY0 HEALTH3 HAZARD INSTABILITY2 W SUPPLIER Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800 EMERGENCY: ChemWatch Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112 PRODUCT USE ! Intermediate. SYNONYMS Cl4-Ge, "germanium tetrachloride", "germanium, tetrachloro-", "germanium chloride", Extrema Section 2 - HAZARDS IDENTIFICATION CHEMWATCH HAZARD RATINGS Min Max Flammability: 0 Toxicity: 2 Body Contact: 3 Min/Nil=0 Low=1 Reactivity: 2 Moderate=2 High=3 Chronic: 2 Extreme=4 CANADIAN WHMIS SYMBOLS 1 of 16 EMERGENCY OVERVIEW RISK Reacts violently with water. Harmful if swallowed. Causes burns. Risk of serious damage to eyes. Harmful to aquatic organisms. POTENTIAL HEALTH EFFECTS ACUTE HEALTH EFFECTS SWALLOWED ! Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. ! The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion. ! Germanium exposure at high levels leads to dehydration, fall in blood pressure and severe drop in core body temperature. ! Ingestion of acidic corrosives may produce burns around and in the mouth. the throat and esophagus. Immediate pain and difficulties in swallowing and speaking may also be evident.
    [Show full text]
  • The Radiochemistry of Germanium COMMITTEE on NUCLEAR SCIENCE
    National Academy of Sciences NationalI Research council B NUCLEAR SCIENCE SERIES The Radiochemistry of Germanium COMMITTEE ON NUCLEAR SCIENCE L. F.CURTISS,Chairman ROBLEY D.EVANS,ViceChairman NationalBureauofStandards MassachusettsInstituteofTechnology J.A,DeJUREN, Secvetary WestinghouseElectricCorporation C.J.BORKOWSKI J.W. IRVINE,JR. Oak RidgeNationalLaboratory MassachusettsInstituteofTechnology ROBERT G. COCHRAN E.D.KLEMA TexasAgriculturalandMechanical NorthwesternUniversity College W. WAYNE MEINKE SAMUEL EPSTEIN UniversityofMichigan CaliforniaInstituteofTechnology J.J.NICKSON U. FANO MemorialHospital,New York NationalBureauofStandards ROBERT L.PLATZMAN HERBERT GOLDSTEIN Laboratoirede ChimiePhysique NuclearDevelopmentCorporationof D. M. VAN PATTER America BartolResearchFoundation LIAISON MEMBERS PAUL C.AEBERSOLD CHARLES K.REED AtomicEnergyCommission U.S.AirForce J.HOWARD McMILLEN WILLIAM E.WRIGHT NationalScienceFoundation OfficeofNavalResearch SUBCOMMITTEE ON RADIOCHEMISTRY W. WAYNE ME INKE,Chairman HAROLD KIRBY UniversityofMichigan Mound Laboratory GREGORY R. CHOPPIN GEORGE LEDDICOTTE FloridaStateUniversity Oak RidgeNationalLaboratory GEORGE A.COWAN JULIAN NIELSEN Los AlamosScientificLaboratory HanfordLaboratories ARTHUR W. FAIRHALL ELLIS P.STEINBERG UniversityofWashington ArgonneNationalLaboratory JEROME HUDIS PETER C. STEVENSON BrookhavenNationalLaboratory UniversityofCalifornia(Livermore) EARL HYDE LEO YAFFE UniversityofCalifornia(Berkeley) McGillUniversity CONSULTANTS NATHAN BALLOU JAMES DeVOE NavalRadiologicalDefenseLaboratory
    [Show full text]