Utilization of Wild Arachis Species at ICRISAT

Total Page:16

File Type:pdf, Size:1020Kb

Utilization of Wild Arachis Species at ICRISAT View metadata, citation and similar papers at core.ac.uk brought to you by CORE Utilization of Wild Arachis Speciesprovided at by ICRISAT ICRISAT Open Access Repository A. K. Singh, D. C. Sastri and J. P. Moss* One of the possibilities for increasing the yield leaf spots. These were A. cardenasii Krap. and of groundnut, particularly in the Semi-Arid Greg., nomen n u d u m , A. chacoense Krap. and Tropics, is breeding varieties w i t h resistance to Greg., nomen n u d u m , and Arachis species Coll. pests and diseases. S o me progress has been HLK 410 which were reported as i m m u n e to made in this field, but the improvements that Cercosporidium personatum, highly resistant can be made by breeders are limited by the to Cercospora arachidicola, and resistant to availability of genes within A. hypogaea. Collec- both (Abdou 1966; Sharief 1972; Abdou et al. tions of wild species f r o m South America have 1974; Hammons, personal communication). made available a wider range of genes, espe- The groundnut cytogenetics program at cially genes for disease resistance. The richness ICRISAT was initiated in April 1978 with the of Arachis germplasm collection offers a great object of making the fullest possible use of the opportunity for anyone interested in the im- genus Arachis. Cooperation with the Genetic provement of this crop (Bunting et al. 1974, Resources Unit, pathologists, entomologists, Simpson 1976; Smartt et a I. 1978a, b; Gregory and microbiologists has increased the number and Gregory 1979). of wild species at ICRISAT and our knowledge However the c y t o t a x o n o m y of the genus of the desirable genes which they contain. Arachis is such that it is difficult for a breeder to Cytogenetic analysis provides information to use wild species in groundnut improvement improve the efficiency of incorporation of wild (Gregory and Gregory 1979; Moss 1980; Stalker species genes into A. hypogaea. Thetechniques 1980). The t w o major constraints to utilization have been described by Singh et al. (1980). of w i l d species are differences in ploidy level In addition to A. hypogaea, section Arachis and incompatibility between some wild species contains one other tetraploid. A. monticola, and and A. hypogaea. The small size of chromo- several diploid species. All these species are somes of Arachis and the difficulty experienced cross compatible with A. hypogaea (Smartt and by some workers in making good cytological Gregory 1967; Stalker 1980). Nine diploid preparations has deterred many people from species and the two tetraploids have been attempting cytogenetic techniques in the im- studied in detail and a chromosome with a sec- provement of Arachis, despite their successful ondary constriction and a small satellite seen as application to many other crop plants, espe- chromosome 3 in A. villosa, A. correntina, A. cially w h e a t and t o b a c c o . The g r o u n d n u t chacoense, and Arachis species Coll. No. 10038, cytogenetics program at ICRISAT has attemp- and a chromosome with a secondary constric- ted to overcome these difficulties, and to pro- tion and a large satellite seen in A. batizocoi and duce interspecific hybrids and to manipulate in A. duranensis as chromosome 2, in Arachis the ploidy level to produce tetraploid lines in- species 338280 as chromosome 6 and in A corporating desirable characters which can cardenasii as chromosome 9. Chromosomes then be utilized by breeders in the improvement with secondary constrictions had only been of groundnut. reported previously in A. batizocoi. The small The program on utilization of wild species in pair of chromosomes in A. cardenasii are larger Arachis was initiated at Reading University than in the remaining species but still smaller (U.K.) w i t h three species which were known to than the smallest chromosomes of A. batizocoi. cross w i t h A. hypogaea and were resistant to A. monticola and A. hypogaea are close karyomorphologically, though A. monticola has t w o pairs of chromosomes w i t h secondary constrictions whereas A. hypogaea has only * Cytogeneticists, Groundnut Improvement Pro- g r a m , ICRISAT. one, and the chromosome with a secondary 82 constriction in A. cardenasii is comparable to These basic studies are designed to assist us one of those of A. monticola and that of A. in the main objective of the cytogenetics unit, hypogaea. i.e., the utilization of the wild species for the 2 Mahalanobis D analysis and canonical improvement of groundnuts. The two go hand analysis, using the arm ratio of each of the ten in hand because m a n y of t h e plants pro- chromosomes of the diploid taxa investigated, duced in the course of utilization of wild species resulted in t w o clusters within these. A. are analyzed in detail, and plants which are batizocoi is the only species in one of these analyzed are then used in crossing programs. clusters; there are eight taxa in the other cluster, The t w o main thrusts of the subprogram are the which can be further subdivided (Fig. 1). use of compatible species to transfer currently All the species of the section Arachis are available genes, and the study of the barriers to cross-compatible, and differences in crossabi- hybridization and the means of breaking them lity are too small to be satistically significant. All to make the whole gene pool within Arachis the available nine diploid taxa have been cros- available to breeders in the future. sed in all possible combinations and a large n u m b e r of F1 hybrids have been analysed B r e e d i n g i n C o m p a t i b l e S p e c i e s cytologically. Results from these studies sub- stantiate our grouping of the diploid species. The incorporation of genes from wild species The F1 hybrids resulting f r o m the cross of t w o involves t h e transfer of one or m o r e w i l d species belonging to the t w o different clusters species genomes to a hybrid where they can show a high frequency of univalents and a high undergo recombination with A. hypogaea pollen sterility, while F1 hybrids between t w o genomes, and subsequent transfer of the de- species of the same cluster show a low fre- sired gene or genes into A. hypogaea with the quency of univalents and a low pollen sterility. elimination of all undesirable characters from the wild species. Five routes have been adopted to achieve these objectives (Fig. 2). D2 distances among species of section Arachis Triploid Route A. villosa Smartt and Gregory (1967), Moss and Spielman (1976), Raman (1976), and Moss (1977) have all produced hexaploids by chromosome doubling A. correntina in a triploid hybrid. As early as 1976, ICRISAT received hexaploids from the program at Read- A. chacoense ing University. These hexaploids combined the genomes of A. cardenasii, A. chacoense and A. sp 263133 Arachis species No. 338280 with A. hypogaea, (SL) and were screened for leaf spot resistance at 2 ICRISAT, which is mainly infested by late leaf A. sp 263133 D =0.99 A. batizocoi (LL) spot (C. personatum). Resistant plants were selected from each type of hexaploid, and have A. sp 338280 been backcrossed to different cultivars of A. hypogaea (Moss 1980). These progenies are A. duranensis n o w in the fourth generation of backcrossing and tetraploid and near tetraploid plants are 2 D = 0 . 3 7 9 - 0 . 8 8 3 being screened for disease resistance. Many hexaploids were also resistant to rust. There is A. cardenasii no correlation between leaf spot or rust resis- tance and defoliation in hexaploids derived Cluster I Cluster II from resistant wild species, as some hexaploids Average intracluster D2 = 0.335 susceptible to disease do not defoliate. Con- versely, some hexaploids with few small le- Figure 1. Cluster diagram. sions suffer severe defoliation (Moss et al. 83 GENOME TRANSFER GENE TRANSFER (1a) 4X Cult. 3X C h r o m o s o m e 6X doubling 2X Wild (1b) 4 X Cult. 3X 5 X - 6 X 2X Wild (2) 2X Wild C h r o m o s o m e 4X Reciprocal doubling 4X backcrossing 4X Cult. with (3) 2 x W i l d A. hypogaea 2X Chromosome. 4X doubling 2X Wild (4) 4X Wild 4X Cult. 4X 4X Cult. Figure 2. Utilization of diploid and tetraploid wild species. 1979). The fertility of t h e h e x a p l o i d s and Autotetraploid Route backcrosses ranges f r o m nil, in some sterile but vegetatively vigorous plants, to highly produc- The production of an autotetraploid from a dip- tive. Some plants produce many pegs per node loid wild species enables all hybridization and and pegs per plant, but few pods, whilst others genome transfer to be done at the tetraploid have good reproductive efficiency. level, and increases the dosage of wild species Crosses between A. hypogaea and five dip- genes. Autotetraploids have been produced in loid species have produced 92 pods (Table 1). seven taxa (Table 2). Of these only A. batizocoi Five triploids have been established f r o m spr- (4x) has produced seed; many plants of the outs and the remaining seed will be used to others remained sterile and eventually died. produce hexaploids. However, three autotetraploids were success- The artificial induction of polyploidy in a trip- fully used as male parents in crosses with A.
Recommended publications
  • Peanut (Arachis Hypogaea, Fabaceae)L P
    Origins of Resistances to Rust and Late Leaf Spot in Peanut (Arachis hypogaea, Fabaceae)l P. SUBRAHMANYAM.V. RAMANATHARAO, D. MCDONALD. J. P. Moss, AND R. W. GIBBONS' 7'hcc~ulti~utedpc~a,r1~/(Arachis hypogaea. Fubaccac) is belic~vedto have orlginutcjd ulorrg I/?(,C~USIC~II slo/)c,s (?fihr ..lnrl(s in Bo111.iaund northerr1 Argentina. The crop 1s t~orcgroLt,tr thronghout iro~~ic~ulutid warm tonpiJralr regron.c. .4rnong diseases uttac.krn,q pc,ut~lrrs,rlitr cwlr.,c~/hjl Puccinia arachidis arid larr, Ieuf'spot cuuscd hj, Phaeoisariopsis personata urea flic r?io.sl rt?iportan/ and dcstrurttvc~on a ~,orld~,idr .\c,olc. noti? pa//iogc,tr~,rr,stric./cd rn host run@, to Arachis, prohahly originated and c,oc,vol\,ed irl .Siiut/r .,ltnrriiu alclt~y~i'ith thrir /~ost.s.In rcwnr years there has heen 1?11i(./r ~rtlphusr.\OIL .SC~(~CIIIII~c!f pcwn~rt gcrtnpla.\t?i fi?r rerlstuncp to thmr di,seases, :I/ tile It~tcrtiut~o~ldC~OIJX Rc,~eurc.h It~.sti/tttc~,J~r tho St7tni-.-lrrd Troprc,s IICRIS.4 T). Iticlra. .\ottrc7 10.000 i~cntt~tt,yc,rr)ipIa.s~~~ uc,c.c.~.sions u,crc .sc,rccnc,d fhr reslstuncc to rlrst and Iutcz I(,u/ .spot d~rrtn,y1977-1 4X.F u~idsourc,es (?fresi.vt~tii,(,inderiti/rcd,[i)r c,itltrr or both put1iogrtr.c. (If /lie t.r~.vistut~rg~~trotjpc:~, uboul 87% helon~erlto A. hypogaca rur. fastigiata utitl 1.?"0 lo vtrr.
    [Show full text]
  • (Arachis Hypogaea) and Its Most Closely Related Wild Species Using
    Annals of Botany 111: 113–126, 2013 doi:10.1093/aob/mcs237, available online at www.aob.oxfordjournals.org A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers Downloaded from https://academic.oup.com/aob/article-abstract/111/1/113/182224 by University of Georgia Libraries user on 29 November 2018 Ma´rcio C. Moretzsohn1,*, Ediene G. Gouvea1,2, Peter W. Inglis1, Soraya C. M. Leal-Bertioli1, Jose´ F. M. Valls1 and David J. Bertioli2 1Embrapa Recursos Gene´ticos e Biotecnologia, C.P. 02372, CEP 70.770-917, Brası´lia, DF, Brazil and 2Universidade de Brası´lia, Instituto de Cieˆncias Biolo´gicas, Campus Darcy Ribeiro, CEP 70.910-900, Brası´lia-DF, Brazil * For correspondence. E-mail [email protected] Received: 25 June 2012 Returned for revision: 17 August 2012 Accepted: 2 October 2012 Published electronically: 6 November 2012 † Background and Aims The genus Arachis contains 80 described species. Section Arachis is of particular interest because it includes cultivated peanut, an allotetraploid, and closely related wild species, most of which are diploids. This study aimed to analyse the genetic relationships of multiple accessions of section Arachis species using two complementary methods. Microsatellites allowed the analysis of inter- and intraspecific vari- ability. Intron sequences from single-copy genes allowed phylogenetic analysis including the separation of the allotetraploid genome components. † Methods Intron sequences and microsatellite markers were used to reconstruct phylogenetic relationships in section Arachis through maximum parsimony and genetic distance analyses. † Key Results Although high intraspecific variability was evident, there was good support for most species.
    [Show full text]
  • Arachis Inflata: a New B Genome Species of Arachis (Fabaceae)
    Seijo, G. J., M. Atahuachi, C. E. Simpson & A. Krapovickas. 2021. Arachis G.inflata J. Seijo: A New et B al., Genome A new species B genome of Ara -species of Arachis chis (Fabaceae). Bonplandia 30(2): 169-174. Doi: http://dx.doi.org/10.30972/bon.3024942 Recibido 23 Febrero 2021. Aceptado 7 Abril 2021. Publicado en línea: 10 Junio 2021. Publicado impreso: 15 Agosto 2021. ISSN 0524-0476 impreso. ISSN 1853-8460 en línea. Arachis inflata: A New B Genome species of Arachis (Fabaceae) Arachis inflata: una nueva especie de Arachis (Fabaceae) del Genoma B Guillermo J. Seijo1,2 , Margoth Atahuachi3 , Charles E. Simpson4 & Antonio Krapovickas1 Summary: Great efforts have been done to collect germplasm of the Arachis genus in South America, however, many regions still remain underexplored. Under the hypothesis that these regions have new and diverse populations/species of Arachis, several expeditions were carried out since 2000 in Bolivia, to increase the documentation of the genus diversity. As a first result of these explorations, a new species of section Arachis with B genome is formally described. Arachis inflata is closely related to A. magna and A. ipaënsis, but it can be clearly distinguished from them, and from any other species of the genus, for having a type of fruit with a completely distinct morphology. The fruit has a smooth epicarp, but shows a bullated aspect, due to the presence of air chambers in the mesocarp. Key words: Germplasm, peanut, Planalto Chiquitano. Resumen: Se han realizado grandes esfuerzos para coleccionar germoplasma del género Arachis en Sudamérica, sin embargo, aún quedan muchas regiones subexploradas.
    [Show full text]
  • Taxonomy of the Genus Arachis (Leguminosae)
    BONPLANDIA16 (Supi): 1-205.2007 BONPLANDIA 16 (SUPL.): 1-205. 2007 TAXONOMY OF THE GENUS ARACHIS (LEGUMINOSAE) by AntonioKrapovickas1 and Walton C. Gregory2 Translatedby David E. Williams3and Charles E. Simpson4 director,Instituto de Botánicadel Nordeste, Casilla de Correo209, 3400 Corrientes, Argentina, deceased.Formerly WNR Professor ofCrop Science, Emeritus, North Carolina State University, USA. 'InternationalAffairs Specialist, USDA Foreign Agricultural Service, Washington, DC 20250,USA. 4ProfessorEmeritus, Texas Agrie. Exp. Stn., Texas A&M Univ.,Stephenville, TX 76401,USA. 7 This content downloaded from 195.221.60.18 on Tue, 24 Jun 2014 00:12:00 AM All use subject to JSTOR Terms and Conditions BONPLANDIA16 (Supi), 2007 Table of Contents Abstract 9 Resumen 10 Introduction 12 History of the Collections 15 Summary of Germplasm Explorations 18 The Fruit of Arachis and its Capabilities 20 "Sócias" or Twin Species 24 IntraspecificVariability 24 Reproductive Strategies and Speciation 25 Dispersion 27 The Sections of Arachis ; 27 Arachis L 28 Key for Identifyingthe Sections 33 I. Sect. Trierectoides Krapov. & W.C. Gregorynov. sect. 34 Key for distinguishingthe species 34 II. Sect. Erectoides Krapov. & W.C. Gregory nov. sect. 40 Key for distinguishingthe species 41 III. Sect. Extranervosae Krapov. & W.C. Gregory nov. sect. 67 Key for distinguishingthe species 67 IV. Sect. Triseminatae Krapov. & W.C. Gregory nov. sect. 83 V. Sect. Heteranthae Krapov. & W.C. Gregory nov. sect. 85 Key for distinguishingthe species 85 VI. Sect. Caulorrhizae Krapov. & W.C. Gregory nov. sect. 94 Key for distinguishingthe species 95 VII. Sect. Procumbentes Krapov. & W.C. Gregory nov. sect. 99 Key for distinguishingthe species 99 VIII. Sect.
    [Show full text]
  • Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
    Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S.
    [Show full text]
  • Pinto Peanut (Arachis Pintoi) | Feedipedia
    Pinto peanut (Arachis pintoi) | Feedipedia Animal feed resources Feedipedia information system Home About Feedipedia Team Partners Get involved Contact us Pinto peanut (Arachis pintoi) Automatic translation Description Nutritional aspects Nutritional tables References Anglais ​▼ Click on the "Nutritional aspects" tab for recommendations for ruminants, pigs, poultry, rabbits, horses, fish and crustaceans Feed categories All feeds drilling plants Cereal and grass forages Legume forages Forage trees Aquatic plants Common names Other forage plants Plant products/by-products Pinto peanut [Inglés]; arachide Pinto [French]; perennial forage peanut, perennial peanut [Spanish]; amendoim forrageiro Cereal grains and by-products [Portuguese]; kacang pinto [Indonesian]; Cỏ đậu [Vietnamese]; ถวั่ ลสงิ เถา [Thai] Legume seeds and by-products Oil plants and by-products Species Fruits and by-products Roots, tubers and by-products Arachis pintoi Krapov. & W.C. Greg. [Fabaceae] Sugar processing by-products Plant oils and fats Feed categories Other plant by-products Feeds of animal origin Legume forages Oil plants and by-products drilling plants Animal by-products Dairy products/by-products Related feed(s) Animal fats and oils Insects Description Other feeds Minerals Pinto peanut (Arachis pintoi Krapov. & W.C. Greg.) is a perennial tropical legume useful for pasture, ground cover and as an Other products ornament. Pinto peanut is a valuable forage, easy to establish, persistent, and combines well in mixtures under a wide range of climate and soil conditions, including heavy grazing (Khamseekhiew et al., 2001). Latin names Morphology Plant and animal families Pinto peanut is a stoloniferous perennial creeping legume that can reach 20-50 cm in height and form dense swards.
    [Show full text]
  • Arachis Paraguariensis Scientific Name  Arachis Paraguariensis Chodat & Hassl
    Tropical Forages Arachis paraguariensis Scientific name Arachis paraguariensis Chodat & Hassl. Subordinate taxa: Subsp. paraguariensis: villous petiole Long-lived perennial herb with and rachis; leaflets with glabrous to Arachis paraguariensis Chodat & Hassl. subsp. numerous branches rising from the low sub-glabrous upper surface and loose Krapov. & W.C. Greg. crown (CQ 1780) silky hairs on the lower surface capibarensis (CQ1780) Arachis paraguariensis Chodat & Hassl. subsp. paraguariensis Synonyms None listed in GRIN. Krapovickas and Gregory (2007) list A. prostrata Benth. var. intermedia Chodat & Hassl. and A. Diogoi Hoehne forma submarginata Hoehne. Subsp. capibarensis: glabrous upper Fruit with single kernel surface of leaflet, and margins less conspicuously ciliate or hairy (CPI Family/tribe 91419) Family: Fabaceae (alt. Leguminosae) subfamily: Faboideae tribe: Dalbergieae section: Erectoides. Morphological description A long-lived perennial, with a deep, thick, somewhat fusiform taproot, to 12 mm in diameter, with thick, uniformly tapering branch roots. Multiple, ascendant stems and deep, subsp. paraguariensis: Main stem ±erect, 20‒85 cm thick, somewhat fusiform taproot (CQ 1780) tall; lateral branches ascendant/decumbent, internodes Fruit and kernel angular, to 7 cm long, short toward the apex of the branches, glabrous to villous, or with long silky hairs on the angles. Leaves tetrafoliolate with leaflets in pairs; stipule with surfaces pubescent to sub-glabrous, long silky hairs on the margins, sometimes with bristles on the fused
    [Show full text]
  • Stylosanthes As a Forage and Fallow Crop
    STYLOSANTHES AS A FORAGE AND FALLOW CROP Proceedings of the Regional Workshop on the Use of Stylosanthes in West Africa held in Kaduna, Nigeria, 26–31 October 1992 Edited by P.N. de Leeuw, M.A. Mohamed-Saleem and A.M. Nyamu International Livestock Centre for Africa P O Box 5689, Addis Ababa, Ethiopia ISBN 92–9053–279–3 Correct citation: de Leeuw P N, Mohamed-Saleem M A and Nyamu A M (eds). 1994. Stylosanthes as a forage and fallow crop. Proceedings of the Regional Workshop on the Use of Stylosanthes in West Africa, held in Kaduna, Nigeria, 26–31 October 1992. ILCA (International Livestock Centre for Africa), Addis Ababa, Ethiopia. 346 pp. Table of Contents Preface Keynote address Dr J. Maina SECTION 1: The biology of Stylosanthes and its importance in West Africa and Latin America Revue des travaux de recherche, de vulgarisation et d’utilisation effectués sur Stylosanthes en Afrique de l’Ouest B. Toutain, B. Peyre de Fabrègues, G. Roberge, A. Bigot et G. Rippstein Stylosanthes for pasture development: An overview of ILCA’s experience in Nigeria M.A. Mohamed-Saleem Evaluation of Stylosanthes for selected farming systems of tropical America J.W. Miles, R.J. Thomas, C.E. Lascano, M.J. Fisher, R. Vera and J.I. Sanz SECTION 2: The screening and evaluation of Stylosanthes germplasm Molecular analysis of genetic diversity and evolutionary relationships in Stylosanthes (Aubl.) Sw. A.C.M. Gillies and R.J. Abbott Genetic resources of Stylosanthes species J. Hanson and J.H. Heering Screening Stylosanthes in Latin America: The CIAT-RIEPT experience R.
    [Show full text]
  • Phosphorus Efficiency of Arachis Pintoi Genotypes and Possible Mechanisms for Tolerance to Low Soil P Supply
    Nelson Castañeda Ortiz Phosphorus efficiency of Arachis pintoi genotypes and possible mechanisms for tolerance to low soil P supply Phosphorus efficiency of Arachis pintoi genotypes and possible mechanisms for tolerance to low soil P supply Doctoral Dissertation Submitted for the degree of Doctor of Agricultural Science of the Faculty of Agricultural Science Georg-August-University of Göttingen by Nelson Castañeda Ortiz Göttingen, May 2006 D 7 1st examiner: Prof. Dr. N. Claassen 2nd examiner: Prof. Dr. H. Becker Day of oral examination: 13th of July 2006 To my wife Viviane and my sons Daniel and Raphael for their patience, support and encouragement throughout this study Table of contents 1 General introduction……………………………………………………………………... 1 1.1 Review of literature ……………………………………………………………………... 2 1.2 Objectives, hypothesis and outline of the thesis…………………………………………. 10 1.3 Statistical analysis……………………………………………………………………….. 11 2 Screening of promising Arachis pintoi genotypes for phosphorus efficiency in acidic soils of low P availability…………………………………………………………………. 12 2.1 Introduction……………………………………………………………………………… 12 2.2 Material and methods……………………………………………………………………. 14 2.2.1 Field experiment……………………………………………………………………….. 15 2.2.2 Pot experiment…………………………………………………………………………. 17 2.3 Results and Discussion…………………………………………………………………... 21 2.3.1 Field experiment……………………………………………………………………….. 21 2.3.1.1 Shoot biomass production and the influence of the germination……………………. 21 2.3.1.2 Shoot P concentration………………………………………………………………... 26 2.3.1.3 Extractable P-Bray II and pH of the soil samples after harvesting………………….. 27 2.3.2 Pot experiment…………………………………………………………………………. 30 2.3.2.1 Shoot biomass production…………………………………………………………… 30 2.3.2.2 Phosphorus concentration and P use efficiency……………………………………... 32 2.3.2.3 Phosphorus content and the root length-shoot ratio………………………………….
    [Show full text]
  • Guide to Using Rhizomal Perennial Peanut in the Urban Landscape1 Robert E
    HS960 Guide to Using Rhizomal Perennial Peanut in the Urban Landscape1 Robert E. Rouse, Elan M. Miavitz, and Fritz M. Roka2 Introduction 32o north latitude (Florida-Georgia state line) having a long, warm growing season. Common name: Perennial peanut (Figure 1) Perennial peanut was first introduced from Brazil in 1936 Scientific name: Arachis glabrata, Benth and since that time no insect, disease, or nematode pests have been identified that cause economic loss. Since its Origin: Tropical South America introduction, it has not spread into natural areas or become a nuisance plant in unimproved properties. Rhizomal perennial peanut does not reproduce by seed; therefore, it can’t be carried by birds or wildlife or transported in plant material to unintended areas. Perennial peanut has recently shown promise as an orna- mental groundcover due to its high resistance to drought, nematodes, and pathogens and its minimal fertilizer needs. This translates into savings in water, energy, dollars, and reduced impacts to the environment. It is not only benefi- cial to the environment since it requires no supplemental nitrogen or phosphorus fertilization or pest control, but it also is aesthetically pleasing, can be walked on, and has edible, peanut flavored flowers. Due to rapid urbanization, water has become a precious Figure 1. Perennial peanut canopy with yellow-gold flowers. commodity in Florida. Water management districts are encouraging the implementation of year-round water The perennial peanut evolved in tropical conditions and is restrictions and the use of drought tolerant plants, of which adapted to subtropical and warm temperate climates. In the perennial peanut is a good candidate.
    [Show full text]
  • FLORA of BEIJING Jinshuang Ma and Quanru Liu
    URBAN HABITATS, VOLUME 1, NUMBER 1 • ISSN 1541-7115 FLORA OF BEIJING http://www.urbanhabitats.org Jinshuang Ma and Quanru Liu Flora of Beijing: An Overview and Suggestions for Future Research* Jinshuang Ma and Quanru Liu Brooklyn Botanic Garden, 1000 Washington Avenue, Brooklyn, New York 11225; [email protected]; [email protected] nonnative, invasive, and weed species, as well as a lst Abstract This paper reviews Flora of Beijing (He, 1992), of relevant herbarium collections. We also make especially from the perspective of the standards of suggestions for future revisions of Flora of Beijing in modern urban floras of western countries. The the areas of description and taxonomy. We geography, land-use and population patterns, and recommend more detailed categorization of species vegetation of Beijing are discussed, as well as the by origin (from native to cultivated, including plants history of Flora of Beijing. The vegetation of Beijing, introduced, escaped, and naturalized from gardens which is situated in northern China, has been and parks); by scale and scope of distribution drastically altered by human activities; as a result, it (detailing from worldwide to special or unique local is no longer characterized by the pine-oak mixed distribution); by conservation ranking (using IUCN broad-leaved deciduous forests typical of the standards, for example); by habitat; and by utilization. northern temperate region. Of the native species that Finally, regarding plant treatments, we suggest remain, the following dominate: Pinus tabuliformis, improvements in the stability of nomenclature, Quercus spp., Acer spp., Koelreuteria paniculata, descriptions of taxa, and the quality and quantity of Vitex negundo var.
    [Show full text]
  • Reproductive Efficiency in Reciprocal Crosses of Arachis Monticoza with A
    Reproductive Efficiency in Reciprocal Crosses of Arachis monticoZa with A. hypogaea Subspecies' H. E. Pattee2*, H. T. Stake? and F. G. Giesbrecht4 ABSTRACT pattern of reproductive development of A. hypogaea cv. Wild species of Arachis encompass a large number of Argentine, which lends support to the theory that A. specieswhich can provide valuable genetic resources for monticola is a weedy derivative of the cultivated peanut. improving A. hypogaea L., the domesticated peanut. Arachis monticola Krapov. and Rig. is the only species Key Words: Interspecific hybridization, fertilization which is both cross compatible with A. hypogaea and at timing, abortion, peanut, groundnut. the same ploidy level. An evaluation of reproductive efficiency in crosses between A. hypogaeu and A. monticola was conducted to better understand the po- tential for utilization of this germplasm. This study documents the reproductive efficiency of A. munticola Both subspecies of Arachis hypogaea L. are cultivated in reciprocal crosses with A. hypogaea subsp. hypogaea in the western hemisphere, but within the U.S., the var. hypogaea cvs. Florunner and NC 6; A. hypogaea subsp. hypogaea var. hypogaea (Virginia and runner subsp. fastigiata var. vulgaris cv. Argentine; and A. market types) predominates. Cultivars of subsp.fastigiata hypogaea subsp.fmtigiata var.fmtigiata cv. New Mexico include Spanish (var.vulgaris) and valencia (var.fmtigiata) Valencia C by using selfs as controls. A significant market types which are grown in the Southwest on a maternal effect was observed among selfs and hybrids more limited land area. Although genetic resources within for timing of fertilization. Selfs of Florunner and New the domesticated species may be adequate to solve many Mexico Valencia C initiated fertilization by 1 d afker production problems, genetic resistance to many dis- pollination, whereas syngamy did not occur in selfs of eases and insect pests is not readily available.
    [Show full text]