Metallurgical Coal

Total Page:16

File Type:pdf, Size:1020Kb

Metallurgical Coal Metallurgical Coal Building the Future 1 Metallurgical Coals What Is Coal? s racite Co inou Coal th al m An u Coal is a fossil fuel. it B It is a mineral substance formed from the Fossil Fuel (coal, remains of land-based plants buried in swamps and bogs hundreds of millions gas, oil) is a of years ago. Coal formation began hydrocarbon during the Carboniferous Period – the deposit and a first coal age – which spanned 290 natural fuel created million to 360 million years ago. The Coal is the world’s most plentiful fossil fuel and by build-up of silt and other sediments, in geological together with movements in the earth’s formations over far Canada’s most abundant fossil fuel, with over crust – tectonic movements – buried long periods of time 6.6 billion tonnes of recoverable coal reserves. swamps and bogs, often to great depths. Canada has both Metallurgical coal (anthracite and The buried plant material was subjected from the remains of to high temperatures and pressures. living organisms. bituminous) and Thermal coal (sub-bituminous and This caused physical and chemical lignite) deposits. changes in the vegetation, transforming it into peat and then into different types Coal is used mainly for two purposes, for of coal. steel making and power generation. Only the Metallurgical, or higher-ranking hard coal (metallurgical) with Ten feet of specific coking properties can be used to often referred to as prehistoric plant make steel, although in theory, all coals from Steelmaking coal has lignite to anthracite can be used as thermal debris was needed coal to generate electricity. the most intrinsic value to make one foot Formation of Coal Metallurgical coal is more scarce and and right chemical of coal. (Source DOE) valuable than thermal coal, so in practice make up and physical metallurgical coal is rarely used to generate electricity. Metallurgical coal is also common- properties to be used ly referred to as coking coal. Coking coal has in the process of physical properties that when heated cause it to soften, liquefy and then resolidify into a making steel. Time harder substance known as coke. Coal is not a homogenous commodity. In ad- The degree of change undergone by a dition to ranks, coal can be split into dozens deposit as it matures is known as coalifi- Heat and of blends and products. Coal is classified Pressure cation. This change in coal’s physical according to the degree of transformation and chemical properties is referred to as of the original plant material into carbon, the “rank” of the coal. Ranking is deter- moisture content and composition. The qual- mined by the degree of transformation ity of each coal deposit is determined by the of the original plant material to carbon. varying types of vegetation from which the Vegetation The ranks of coals, from those with Peat coal originated, depths of burial tempera- Lignite Sub-Bituminous the least carbon to those with the most (Thermal coal) Bituminous tures and pressures at those depths, and the Anthracite carbon, are lignite, sub-bituminous, (Metallurgical coal) length of time the coal has been forming in bituminous and anthracite. the deposit. 2 3 Where Coal Is Found Total world coal production reached a record level of 7,822.8Mt in 2013. Primary Coal Basins (Canada is among the top 10 metallurgical coal producers) Top Ten Metallurgical Coal Producers Total 976Mt Kazakhstan Poland 12Mt 12Mt China 527Mt Ukraine 20Mt Mongolia 20Mt Canada India 34Mt 42Mt Russia 73Mt Australia USA 158Mt Relative to other fossil fuels, coal re- 78Mt serves are relatively evenly dispersed geographically. Top Ten Thermal Coal Producers Total 7,083Mt Kazakhstan Distribution of proven coal reserves 120Mt China Poland 3,561Mt 143Mt South & Central America Europe & Eurasia Germany 1.5% 35.4% 191Mt South Africa Middle East & Africa 256Mt 3.8% Russia 347Mt Total 892 Billion Australia 459Mt Indonesia USA North America 489Mt India 904Mt 28.5% 613Mt Asia Pacific (includes Australia) 30.9% Source 2013 BP Statistical Review (www.bp.com) 4 5 Who Uses Coal? Coal has many important uses worldwide. The most significant uses of coal are in steel production, electricity generation, cement manufacturing and as a liquid fuel. Since Other important users of coal include alumina refineries, paper manufacturers, and the chemical and pharmaceutical industries. Several chemical products can be 2000, global coal consumption has grown produced from the by-products of coal. Refined coal tar is used in the manufacture of chemicals, such as creosote oil, naphthalene, phenol and benzene. Ammonia gas faster than any other commodity. recovered from coke ovens is used to manufacture ammonia salts, nitric acid and agricultural fertilisers. Thousands of different products have coal or coal by-products Consumption by region (2013) as components: soap, aspirins, solvents, dyes, plastics and fibres, such as rayon The biggest market for coal is Asia, Asia Pacific 4,000 and nylon. which accounts for over 70% of global Africa Middle East 3,500 Coal is also an essential ingredient in the production of specialist products: coal consumption, China is responsible Europe & Eurasia for a significant part of this. Many coun- S. & Cent. America 3,000 Activated carbon – used in filters for water and air purification and in kidney dialy- tries do not have the natural resources North America sis machines. sufficient to cover their resource needs, 2,500 and therefore need to import coal to Carbon fibre – an extremely strong but light weight reinforcement material used in 2,000 help meet their requirements. Japan, construction, aircrafts, boats, bicycles and rackets. Taiwan and Korea, for example, import 1,500 significant quantities of metallurgical coal Silicon metal – used to produce silicones and silanes, which are in turn used to for steel production and thermal coal for 1,000 make lubricants, water repellents, resins, cosmetics, hair shampoos and tooth- pastes. electricity generation. 500 88 93 98 03 08 13 0 6 7 Metallurgical Coal vs Thermal Coal World Coal Trade Mt Different types of coal have different uses. 1,200 Top Coal Importers Thermal Metallurgical Metallurgical coal – also known as coking coal, is a key ingredient for the produc- Met Ther. Total tion of steel by creating the coke necessary during the reduction process of making 1,000 Lignite China 77Mt 250Mt 327Mt iron and steel. Coke is a porous, hard black rock of concentrated carbon that is created by heating bituminous coal without air to extremely high temperatures. 800 Japan 54Mt 142Mt 196Mt India 38Mt 142Mt 180Mt Thermal coal – also known as steam coal, is mainly used in power generation. It 600 is burned to generate steam which drives turbines to generate electricity for either South Korea 31Mt 95Mt 126Mt public electricity grids or industries that consume electrical power. 400 Chinese Tapei 7Mt 61Mt 68Mt Germany 8Mt 43Mt 51Mt 200 Canada is currently the 3rd largest exporter UK 6Mt 44Mt 50Mt 0 of metallurgical coal. Almost all of Canada’s 2011 2012 2013 metallurgical coal production is exported. Top Coal Exporters Met Ther. Total Australia 154Mt 182Mt 336Mt USA 60Mt 47Mt 107Mt Canada 34Mt 4Mt 37Mt Russia 22Mt 118Mt 141Mt Indonesia 3Mt 423Mt 426Mt Colombia 1Mt 73Mt 74Mt South Africa 0Mt 72Mt 72Mt 8 (ranked by Met coal exports) 9 Metallurgical Coal and Steel Without coal, there is no steel. Metallurgical coal and steel are vital components of our modern way of life and critical to economic growth. The intrinsic benefits of steel make it a sustainable Steel production is a measurement of choice in a growing number of applications. Almost everything that we use is development and economic growth. either made from, or manufactured with, steel. It is a uniquely versatile material and is widely regarded as a high performance, contemporary engineering mate- rial continuously being improved to meet new market demands. In 2014, world crude steel production was 1.7 billion tonnes, a new record for global crude steel Production of crude steel has risen from 28 million production. tonnes per year at the beginning of the last century Steelmaking Process to over 1.7 billion tonnes. Asia accounts for almost Key raw materials needed in the steel-making process include metallurgical coal, 40% of global steel production, with Europe and iron ore, limestone and recycled steel. There are two main steel production pro- cesses and their related components are: Russia producing 36% and North America 14.5%. The integrated steel-making process, based on the blast furnace (BF) and basic oxygen furnace (BOF), which uses raw materials including iron ore, metallurgi- cal coal, limestone and recycled steel. On average, this process uses 1,400 kg of iron ore, 800 kg of coal, 300 kg of limestone, and 120 kg of recycled steel to produce 1,000 kg of crude steel. The electric arc furnace (EAF) process uses primarily recycled steels and direct reduced iron (DRI) or hot metal and electricity. On average, the recycled steel-EAF process uses 880 kg of recycled steel, 160 kg of coal and 64 kg of limestone to produce 1,000 kg of crude steel. World Steel Demand M tonnes 2,400 2,300 2,200 2,100 2,000 1,900 1,800 1,700 1,600 1,500 1,400 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 Year and Demand of interest... Source: Statista, 2015 Around 800 kg of met coal is 1 MW of wind turbine capacity Long term steel demand fundamentals remain needed to make 1,000 kg of requires 230 tons of met coal robust based on urbanization of developing steel for the steel requirements countries such as China and India.
Recommended publications
  • Petrographic and Vitrinite Reflectance Analyses of a Suite of High Volatile Bituminous Coal Samples from the United States and Venezuela
    Petrographic and vitrinite reflectance analyses of a suite of high volatile bituminous coal samples from the United States and Venezuela Open-File Report 2008-1230 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Dirk A. Kempthorne, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Hackley, P.C., Kolak, J.J., 2008, Petrographic and vitrinite reflectance analyses of a suite of high volatile bituminous coal samples from the United States and Venezuela: U.S. Geological Survey Open-File Report 2008-1230, 36 p., http://pubs.usgs.gov/of/2008/1230. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. ii Contents Introduction ........................................................................................................................................................................1 Methods ..............................................................................................................................................................................1
    [Show full text]
  • Chemical and Physical Structural Studies on Two Inertinite-Rich Lump
    CHEMICAL AND PHYSICAL STRUCTURAL STUDIES ON TWO INERTINITE-RICH LUMP COALS. Nandi Malumbazo A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philoso- phy in the School of Chemical and Metallurgical Engineering at the University of the Witwatersrand. Johannesburg, 2011 DECLARATION I, Nandi Malumbazo, declare that the thesis entitled: “CHEMICAL AND PHYSICAL STRUCTURAL STUDIES ON TWO INER- TINITE-RICH LUMP COALS” is my own work and that all sources I have used or quoted have been indicated and ac- knowledged by means of references. Signature: ……………………………………………………………….. Date:………………………………………………………………………… Page i ABSTRACT ABSTRACT Two Highveld inertinite-rich lump coals were utilized as feed coal samples in order to study their physical, chemical structural and petrographic variations during heat treat- ment in a packed-bed reactor unit combustor. The two feed lump coals were selected as it is claimed that Coal B converts at a slower rate in a commercial coal conversion process when compared to Coal A. The reason for this requires detailed investigation. Chemical structural variations were determined by proximate and coal char CO2 reactiv- ity analysis. Physical structural variations were determined by FTIR, BET adsorption methods, XRD and 13C Solid state NMR analysis. Carbon particle type analysis was con- ducted to determine the petrographic constituents of the reactor generated samples, their maceral associations (microlithotype), and char morphology. This analysis was undertaken with the intention of tracking the carbon conversion and char formation and consumption behaviour of the two coal samples within the reactor. Proximate analysis revealed that Coal A released 10 % more of its volatile matter through the reactor compared to Coal B.
    [Show full text]
  • Coal Characteristics
    CCTR Indiana Center for Coal Technology Research COAL CHARACTERISTICS CCTR Basic Facts File # 8 Brian H. Bowen, Marty W. Irwin The Energy Center at Discovery Park Purdue University CCTR, Potter Center, 500 Central Drive West Lafayette, IN 47907-2022 http://www.purdue.edu/dp/energy/CCTR/ Email: [email protected] October 2008 1 Indiana Center for Coal Technology Research CCTR COAL FORMATION As geological processes apply pressure to peat over time, it is transformed successively into different types of coal Source: Kentucky Geological Survey http://images.google.com/imgres?imgurl=http://www.uky.edu/KGS/coal/images/peatcoal.gif&imgrefurl=http://www.uky.edu/KGS/coal/coalform.htm&h=354&w=579&sz= 20&hl=en&start=5&um=1&tbnid=NavOy9_5HD07pM:&tbnh=82&tbnw=134&prev=/images%3Fq%3Dcoal%2Bphotos%26svnum%3D10%26um%3D1%26hl%3Den%26sa%3DX 2 Indiana Center for Coal Technology Research CCTR COAL ANALYSIS Elemental analysis of coal gives empirical formulas such as: C137H97O9NS for Bituminous Coal C240H90O4NS for high-grade Anthracite Coal is divided into 4 ranks: (1) Anthracite (2) Bituminous (3) Sub-bituminous (4) Lignite Source: http://cc.msnscache.com/cache.aspx?q=4929705428518&lang=en-US&mkt=en-US&FORM=CVRE8 3 Indiana Center for Coal Technology Research CCTR BITUMINOUS COAL Bituminous Coal: Great pressure results in the creation of bituminous, or “soft” coal. This is the type most commonly used for electric power generation in the U.S. It has a higher heating value than either lignite or sub-bituminous, but less than that of anthracite. Bituminous coal
    [Show full text]
  • Lecture 32: Coke Production
    NPTEL – Chemical – Chemical Technology II Lecture 32: Coke production 32.1 Introduction Coal is used as fuel for electric power generation, industrial heating and steam generation, domestic heating, rail roads and for coal processing. Coal composition is denoted by rank. Rank increases with the carbon content and decreases with increasing oxygen content. Many of the products made by hydrogenation, oxidation, hydrolysis or fluorination are important for industrial use. Stable, low cost, petroleum and natural gas supplies has arose interest in some of the coal products as upgraded fuels to reduce air pollution as well as to take advantage of greater ease of handling of the liquid or gaseous material and to utilize existing facilities such as pipelines and furnaces. 32.2 Coking of coal Raw material is Bituminous coal. It appears to have specific internal surfaces in the range of 30 to 100m2/g. Generally one ton of bituminous coal produces 1400 lb of coke. 10 gallons of tar. Chemical reaction:- 4(C3H4)n nC6H6 + 5nC + 3nH2 + nCH4 Coal Benzene Coke Lighter hydrocarbon Joint initiative of IITs and IISc – Funded by MHRD Page 1 of 9 NPTEL – Chemical – Chemical Technology II Process flow sheet: Illustrated in Figure. Figure 32.1 Flow sheet of coking of coal 32.3 Functional role of each unit (Figure 32.1): (a) Coal crusher and screening: At first Bituminous coal is crushed and screened to a certain size. Preheating of coal (at 150-250˚C) is done to reduce coking time without loss of coal quality. Briquetting increases strength of coke produced and to make non - coking or poorly coking coals to be used as metallurgical coke.
    [Show full text]
  • Proposal for Development of Dry Coking/Coal
    Development of Coking/Coal Gasification Concept to Use Indiana Coal for the Production of Metallurgical Coke, Liquid Transportation Fuels, Fertilizer, and Bulk Electric Power Phase II Final Report September 30, 2007 Submitted by Robert Kramer, Ph.D. Director, Energy Efficiency and Reliability Center Purdue University Calumet Table of Contents Page Executive Summary ………………………………………………..…………… 3 List of Figures …………………………………………………………………… 5 List of Tables ……………………………………………………………………. 6 Introduction ……………………………………………………………………… 7 Process Description ……………………………………………………………. 11 Importance to Indiana Coal Use ……………………………………………… 36 Relevance to Previous Studies ………………………………………………. 40 Policy, Scientific and Technical Barriers …………………………………….. 49 Conclusion ………………………………………………………………………. 50 Appendix ………………………………………………………………………… 52 2 Executive Summary Coke is a solid carbon fuel and carbon source produced from coal that is used to melt and reduce iron ore. Although coke is an absolutely essential part of iron making and foundry processes, currently there is a shortfall of 5.5 million tons of coke per year in the United States. The shortfall has resulted in increased imports and drastic increases in coke prices and market volatility. For example, coke delivered FOB to a Chinese port in January 2004 was priced at $60/ton, but rose to $420/ton in March 2004 and in September 2004 was $220/ton. This makes clear the likelihood that prices will remain high. This effort that is the subject of this report has considered the suitability of and potential processes for using Indiana coal for the production of coke in a mine mouth or local coking/gasification-liquefaction process. Such processes involve multiple value streams that reduce technical and economic risk. Initial results indicate that it is possible to use blended coal with up to 40% Indiana coal in a non recovery coke oven to produce pyrolysis gas that can be selectively extracted and used for various purposes including the production of electricity and liquid transportation fuels and possibly fertilizer and hydrogen.
    [Show full text]
  • THE GUIDE to SOLID FUELS This Leaflet Will Tell You All You Need To
    THE GUIDE TO SOLID FUELS This leaflet will tell you all you need to know about: • The different solid fuels available and their suitability for the various types of appliances • Smoke control legislation • Buying solid fuel • Hints on getting the best from your fuel and appliance Choice of Fuel There are a great many different solid fuels for sale. Your choice will be based on a number of criteria, the most important of which will be the type of appliance you will be burning the fuel on and whether or not you live in a smoke control area (see page 4). Fuels for open fires Housecoal The most traditional fuel for open fires is housecoal. It is available in various sizes e.g. Large Cobbles, Cobbles, Trebles and Doubles. The larger sizes are usually a little more expensive than Doubles size. Housecoal comes from mines in Britain and other parts of the world, most notably Columbia and Indonesia. The coal may be sold by the name of the colliery it comes from e.g. Daw Mill, the port of entry e.g. Merseyport or a merchant’s own brand name, e.g. Stirling. Coal merchants also frequently sell the coal by grade – 1, 2 and 3 or A, B and C; 1 and A being the best quality. Wood Wood and logs can be burnt on open fires. They should be well-seasoned and preferably have a low resin content. You should not use any wood that has any kind of coating on the surface e.g. varnish or paint, as harmful gases may be emitted on burning.
    [Show full text]
  • Fuel Which May Not Be Burned in the Low Smoke Zone
    Cork Low Smoke Fuel Zone Fuel which may not be burned in the low smoke zone Bituminous (Smoky) coal Often labelled “Polish”, “Columbian”, “Texan”, “Russian” or “House” coal. This is sometimes labelled “Premium” coal, but many low smoke brands also carry the “Premium” tag. If it doesn’t say “Low smoke” on the bag, don’t burn it in the low smoke zone. “Singles”, “Doubles” and “slack” are usually bituminous, and may not be burned, except for low smoke singles. Bituminous coal when burned emits many toxic substances, which have been linked to heart attack, stroke, cancer, asthma and many other heart and lung ailments. Timber effect sheeting or treated timber Scrap Chipboard (particle board), plywood, Oriented Strand Board (OSB), Medium Density Fibreboard (MDF), or any other material that has been made using glues, resins, etc. Chipboard (particle board) Plywood In addition to being harmful to the environment, these can release harmful substances into your home when burned. You should not burn broken furniture, or any other timber which has been treated with preservative, paint, varnish, lacquer or polish. These may not be burned in any domestic fire, Oriented Strand Board Medium Density Fibre in or outside the low smoke zone. (OSB) Board (MDF) Household waste Plastics, Tetra-paks, Styrofoam cartons and wrappers, polythene, etc. Burning of household waste has a detrimental effect on the environment inside and outside the home. It releases carcinogenic substances called dioxins. These may not be burned in any domestic fire, inside or outside the low smoke zone. Types of fuel which may be burned in the low smoke zone Anthracite A naturally low smoke, hard, shiny coal.
    [Show full text]
  • High Quality Graphite Electrode Products
    HIGH QUALITY GRAPHITE ELECTRODE PRODUCTS GrafTech International is a leading manufacturer of high quality graphite electrode products essential to the production of Electric Arc Furnace (or EAF) steel and other ferrous and non-ferrous metals. We have a broad portfolio of competitive graphite electrode manufacturing facilities, including three of the highest capacity facilities in the world. We are the only large scale graphite electrode producer that is substantially vertically integrated into petroleum needle coke, a key raw material for graphite electrode manufacturing. This unique position provides competitive advantages in product quality and cost. MAXIMIZING STEEL PRODUCTIVITY THROUGH TECHNOLOGY AND SERVICE LEADERSHIP Founded in 1886, we have over 130 years of experience in the research and development (or R&D) of graphite and carbon based solutions, and our intellectual property portfolio is extensive. We currently have graphite electrode manufacturing facilities in Calais, France, Pamplona, Spain, Monterrey, Mexico and St. Marys, Pennsylvania. Our customers include major steel producers and other ferrous and non ferrous metal producers in Europe, the Middle East and Africa (or EMEA), the Americas and Asia Pacific (or APAC), which sell their products into the automotive, construction, appliance, machinery, equipment and transportation industries. Our vision is to provide highly engineered graphite electrode services, solutions and products to EAF operators. Based on the high quality of our graphite electrodes, reliability of our petroleum needle coke supply and our excellent customer service, we believe that we are viewed as a preferred supplier by the global EAF steel producer market. GRAFTECH SERVICE AND SOLUTIONS We consider sustained customer satisfaction as a key measure of product and service performance.
    [Show full text]
  • Anthracite Anthracite – an Overview
    ANTHRACITE ANTHRACITE – AN OVERVIEW Anthracite is a high-rank coal, representing a coal that has been subjected to the highest grade of metamorphism. Anthracite is shiny black, hard and brittle and has the highest fixed-carbon content. Due to its low volatile matter, anthracite's combustion process is slow. Most anthracites have low-moisture content and their heating value is up to 8,200 kcal/kg. Anthracite combusts with hot, clean flame, containing low content of sulfur and volatiles. Due to these characteristics, anthracite is often used in specialized industrial uses that require smokeless fuels. 2 CLASSIFICATION OF COAL 3 ANTHRACITE – AN OVERVIEW Anthracite has a history of use A small amount of impurities in blast furnaces for iron smelting; and a high percentage of carbon however, it lacks the pore space of makes anthracite coal the most metallurgical coke, which advantageous for combustion, as eventually replaced anthracite. it gives the maximum amount of Nonetheless, anthracite is a unique energy. high-tech raw material characterized by the maximum carbon content. In various grades In its calorific value, UHQ of coal, this parameter can range anthracite surpasses all other from 50 pct in brown coal (lignite), grades of coal – 8,200 kcal/kg to 95 pct of ultra high quality compared to 7,000 kcal/kg of anthracite coal (UHQ). The higher natural gas. Coal Anthracite is the the carbon content in coal, the hardest of all coals and practically smaller the volume of various does not sinter. impurities, such as nitrogen, hydrogen, ash, and so on. 4 USES OF UHQ ANTHRACITE Anthracites can be used in various spheres of human activity, like industrial production (metal smelting, power generation, chemical – filtering sugar to make it white and as catalyst support, soda ash, and pharmaceutical industry as a material absorbents in the production of medicines, etc.).
    [Show full text]
  • Heats of Combustion of Anthracite Cokes and of Artificial and Natural Graphites 1
    1 U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS RESEARCH PAPER RP1139 Part of Journal of Research of the National Bureau of Standards, Volume 21 : October 1938 HEATS OF COMBUSTION OF ANTHRACITE COKES AND OF ARTIFICIAL AND NATURAL GRAPHITES 1 By Phillip H. Dewey 2 and D. Roberts Harper, 3d 3 ABSTRACT There have been determined the heats of combustion of 30 samples of anthracite coke of known different temperatures of preparation (900° to 1,300° C) , hydrogen contents (0.08 to 0.78 percent), and adsorptive capacities (0.13 t o 37.5 cma of gaseous CO2 pel' gram of solid carbon), in order to study the effect of these proper­ ties on the energy content of the material. Data were also obtained on the heats of combustion of two samples of pure ash-free artifi cial graphite and four different samples of natural graphite. The heats evolved, expressed in international kilojoul es, for the combustion of 1 mole of solid carbon to form CO2, at 25.0° C and a pressure of 1 atmosphere, without the production of external work, are as follows : Art ificial graphit.e No. 0, 393.39 ± 0.17; artificial graphite No. I, 393.25 ± 0.15; Ticonderoga natural graphite, 393.32 ± 0.1l; Buckingham nat ural graphite, 393.35 ±0.13; Baffin Island natural graphite, 393.37 ± 0.26; and hydrogen-free anthracite coke, 403.03 ±0.29 (obtained by linear extrapolation to zero hydrogen content of the data on the hydrogen-containing cokes). CONTENTS Page I. Introduction __ _________ ____ ______ ____ ______ __________________ _ 457 II.
    [Show full text]
  • Market Demand Study: Australian Metallurgical Coal
    Commodity Insights Final Report Market Demand Study: Australian Metallurgical Coal Report to the Minerals Council of Australia 12th October, 2018 Commodity Insights Disclaimer This report was commissioned by the Minerals Council of Australia on a fee-for-service basis according to Commodity Insight’s schedule of rates. Commodity Insight’s fee is not contingent on the outcome of this report. None of Commodity Insight’s partners, directors, substantial shareholders and their associates have (or had) a pecuniary or beneficial interest in/or association with any of the Minerals Council of Australia’s management or their directors, substantial shareholders, subsidiaries, advisors and their associates prior to or during the preparation of this report. In preparing this report, Commodity Insights relied, in whole or in part, on data and information provided by third parties, which information has not been independently verified by Commodity Insights and which Commodity Insights has assumed to be accurate, complete, reliable, and current. Therefore, although Commodity Insights has utilised its best efforts in preparing this Report, Commodity Insights does not warrant or guarantee the conclusions set forth in this Report which are dependent or based upon data, information, or statements supplied by third parties. This Report is intended for the Customer’s sole and exclusive use and is not for the benefit of any third party and may not be distributed to, disclosed in any form to, used by, or relied upon by, any third party without prior written consent of Commodity Insights, which consent may be withheld in its sole discretion. This report may contain or refer to forward-looking information based on current expectations, including, but not limited to coal prices.
    [Show full text]
  • High Calorific Value Coal Turkish and Global Outlook
    High calorific value coal Turkish and global outlook October 2014 2 Executive Summary Despite the fact that coal has notorious perception due to its impacts on the environment, it’s not possible to neglect its share in the global energy supply. Especially, in emerging markets with ever growing energy demand, cost and eligibility advantages bring coal into prominence. When a coal consumption analysis is conducted, it is evident that electricity and heat generation sector maintained its leadership with more than 3.8 billion tonnes in 2012. This situation can be seen in Turkey as well. Installed capacity of imported coal PPs in Turkish Uygar Yörük electricity market has passed 3.9 GW by the end Energy & Resources Industry Leader of the 2013. On account of increasing Turkish Partner electricity demand and economic advantages of imported coal, it wouldn’t be wrong to expect that imported coal PPs will show significant growth. In the first seven months of On the other side, all locations available to 2014, additional installed capacity of 950 MW imported coal power plants are already held connected to the grid. After the natural gas by investors and some of these projects will be investment boom in 2011, Turkish electricity naturally driven out of the competition. market has a new tendency to imported coal power plants. When global coal market is analysed, trends like China’s growing coal demand, shale gas Uncertainties related to natural gas power plants impact on coal prices and carbon policies and unexpected delays in lignite projects lead can be defined as major indicators that have investors to hard coal as a relatively more eligible determining role on coal pricing.
    [Show full text]