<<

Invited Talk International Conference ‘Nonlinear : East-West Reunion’ (NLO50 2011) Suzdal, Russia Friday 23 September, 2011

Nonlinear Optics of Vacuum

G. Mourou , Toshiki Tajima LMU and MPQ, Garching, Germany

Acknowledgments for Collaboration and advice: G. Mourou, F. Krausz, E. Goulielmakis, W. Leemans, K. NkjiNakajima, KHK. Homma, DHbD. Habs, PChP. Chomaz, HVidH. Videau, TEikT. Esirkepov, SBlS. Bulanov, MKM. Kan do, WSW. San dner, A. Suzuki, M. Teshima, R. Assmann, R. Heuer, S. Karsch, F. Gruener, W. Chou, F. Takasaki, M. Nozaki, A. Chao, P. Bolton, J.P. Koutchouk, K. Ueda, Y. Kato, X. Q. Yan, R. Li, A. Ringwald, H. Ruhl, T. Ostermayr, S. Petrovic,1 C. Klier, B. Altschul, Y. K. Kim, M. Spiro, A. Seryi, A. Sergeev, A. Livak, K. Iqbal, C. Robilliard, J. Taran 1. Suzuki’s challenge in high physics Higggyh energy frontier: TeV and beyond A collider? 2. Non-collider ppgaradigm Vacuum texture and synchrotron radiation in higggyh energy Energy frontier at PeV with attosceond metrology without luminosity 3. High Field explores low energy new fields: high field of (cf. high momentum ) Dark matter and dark energy fields in vacuum 2nd harmonic, degggenerate 4 wave mixing 4. zs streaking of vacuum by laser and γ 5. New initiative : IZEST = LIL compression, XCELS in

Russia, etc. 2 IZEST’s Mission: Responding to Suzuki’ s New Paradigm Challenge PeV

Leptogenesis SUSY breaking

Extra dimension Dark matter

TeV

Atsu to Suzu ki: Standard Model Quarks KEK Director General, Leptons ICFA Chair Accelerator Evolution of Accelerators and their Possibilities (Suzuki,2008)

Ultra‐High Voltage STEM E=40 MV/m with Superconducting RF cavity 2020s

ILC 2.5-5 GeV ERL

Superconducting L -band linac E=200 MV/m

2030s Decelerating structure mm waves EthEarth Two-beam LC Space debris

Earth-based space debris radar E=10 GV/m 10cm‐10GeV Plasma Channel Accelerator 2040s Table-top high energy Laser-plasma LC 09/3/9 accelerator 4 20th Century, the Electron Century Basic Research Dominated by Massive and Charged Particles

J.J. Thompson J. J. Thomson 21st Century; the Photon Century Could basic research be driven by the massless and chargeless particles; ?

C. Townes ToCCwnes Laser Wakefield (LWFA): nonliiiinear optics in plasma

Kelvin wake

Maldacena (string theory) method: QCD wake (Chesler/Yaffe 2008)

No wave breaks and wake peaks at v≈c Wave breaks at v<c Hokusai

← relativity

regularizes Maldacena

(Plasma physics vs. (The density cusps. String theory) Cusp singularity) PHENIX PRL 97, 052301 (2006) Horner (STAR) QM2006 Trigger Trigger Nuclear Wake? 2.5

• BNL (and CERN) heavy ion 0-12% collider: “monojet” Au+Au 0-5% PHENIX • Cou ld be cau sed by: – Large angle gluon radiation (Vitev and Polsa and Salgado).

– DfltdjtDeflected jets, due to flow (Armesto, near near Salgado and Wiedemann) and/or path length dependent energy loss (Chiu and Hwa). – Hydrodynamic conical flow from mach cone shock-waves (Stoecker, Medium Medium Casalderrey-Solanda, Shuryak and Teaney , Renk, awwyay away Ruppert and Muller). Deflected Jets Conical Emission – Cerenkov gluon radiation (Dremin, Koch). • Jet quenching: collective deceleration by wakefield? - LWFA method , or M ald acena me thod? 8 Aug 2007 ISMD Jason 8 Glyndwr Ulery 9 ______

Density scalings of LWFA for collider (Nakajima, 2011) PeV Accelerator

With conventional Technology The accelerator would Girdle the Earth: Fermi’s vision (1954)

1km laser plasma accelerator with LIL or LMJ (Vision 2011) Theory of wakefield toward extreme energy

n 22 2 22 cr (when 1D theory applies) E  22mca0 0 ph  mca0 0  , ne 107  

) 106 1 TeV VV In order to avoid wavebreak, 105 1/2 a0 < γph , 104 ergy (Me nn where 3 10 1 GeV ←theoretical 1/2 102 γph = (ncr / ne ) ←experimental lectron e 1 EE 10

100 1017 1018 1019 1020 Plasma density (-3cm) Adopt:

2 2 n LMJ laser (3MJ) cr 1 ncr Lad  p 0  , L   a ,  n p p 0    e  3 ne → 07PV0.7PeV dephasing length pump depletion length (with Kando, Teshima) γ-ray signal from primordial GRB (Abdo, et al,200 Energy-dependent photon speed ? 9) Observation of primordial

← Gamma Ray Bursts (GRB) lo

w (limit is pushed up er ener close to Planck mass) g y

Lab PeV γ (from e-) high can explore this with control e r → Feel vacuum texture: PeV energy γ

Laser acceleration → controlled laboratory test to see quantum gravity texture

on photon propagation (Special Theory of Relativity: c0)

Coarser, lower energy texture

c < c0

Finer, higggyher energy texture

← (0.1PeV) PeV γ (converted from e- ) 1km ←(1PeV : fs behind) Extreme High Energy and Synchrotron Radiation E > 30TeV: untested territory for Lorentz invariance

(B. Altschul, 2008)

Synchrotron radiation 14 ↑ Lorentz violating term ( >30TeV) radiation Attosecond Metrology of PeV γ Arrivals

(Tajima, Kando, PTP, 2011)

Narozhny, Nikisho, Ritus

High energy γ- induced Schwinger breakdown (Narozhny, 1968) CEP phase sensitive electron-positron acceleration Attosecond electron streaking γ- energy tagging possible

Goulielmakis(2008) The Conjecture (← physics: “Matter is nonlinear” “The more rigid nonlinearity, the more intense to manipulate it”; rigidity vs. pulse length) P ulse dura riiiigidityriiigi ) t ( ion Mourou / Tajima, s c ience, 2 0 11)

16 Pulse intensity → Streaking Vacuum (from to QED vacuum physics) vacuum Gamma photon ‘ionization’ Uiberacker et al. (2007) XUV streaking

aB →zeptosecond dynamics -3 -6 ↔ ES/EK = α ; Pc vac/Pc = α size

λC = α aB

↔ depth of potential -2 Φ = α WB

Nikishov(1964) Nonperturbative: XUV photon ionization Laser streaking → attosecond dynamics Multiphoton: atom γ-photon induced vacuum streaking by

Schwinger-Nikishov amplitude

SN 2 2 a0 =(mc /ħωL)(mc /ħωγ)

(We need to make the Schwinger invariant non-zero).

2 time resolution of streaking on the Nikishov frame (the Nikishov γN = ħωγ/mc )

2 2 2 1/3 ∆t′ = [2(ħ/mc )/(a0 ωL′ )] .

Necessary laser amplitude:

res 2 a0 = 2 (mc / ħωL′). 18

Tajima, Goulielmakis, Krausz, et al (2011) oan of Domains Domains

Cosmological observation

Log10(System Size) [cm]

of Laser physical hscllaws physical of lawshere Evading detections Galaxy Horizon fits thegapinghole in searchofunknownfields: t/ k /d tt k d ar

laws k ma Sun ELI tt er E /d Schwinger ar proton Log k energy 10 (Energy Density) [g/cm RHIC LHC Homma , Habs LC 3 ] , Ta collider High energy j ima ( 2011 ) 19 by QED in eV range Euler-Heisenberg one-loop Lagrangian 2 1   2 ~  2 e- O(10-42b) LQED  4 [4(F F )  7(F F ) ] 360 m e+ depends on polarizations

1.42x106 J/m3

ELI(~ 200J per ~20fs) can reach n~10-9~10-10

( Homma, Habs, Tajima) 20 Phase contrast imaging of vacuum

Probe laser(phase contrasted) z0 z

fp fp  fp fp

 (x0 , y0 )  (x ,  y )

Phase Contrast  Target laser (warp vacuum)

21 K.Homma, D.Habs, T.Tajima (2011) Beyond QED photon-photon interaction 2 1   2 ~  2 LQED  4 [4(F F )  7(F F ) ] 360 m  ~   F F  F F Away from 4 : 7 = QCD , low-mass scalar  , or pseudoscalar 

Resonance in quasi-parallel collisions in low cms energy

If MM M~MPlanck , Dark Energy Quantum anomaly  gM1F F  arXiv:1006.1762 [gr-qc] √g √g  Y. Fujii and K.Homma M-1 M-1 √g g QCD-instanton, Dark Matter mass m √  1 ~ gM F F

22 K.Homma, D.Habs, T.Tajima (2011) Degenerate Four-Four-Wave Mixing (DFWM) Laser-induced in vacuum (cf. Nonlinear optics in crystal) Decay into 3ω can be induced by -mixing.  

   +z w0 3ω=2+2-1

.   Enhances signal by large amount

23 K.Homma, D.Habs, T.Tajima Appl. Phys. B (2011) HFS road to unknown fields: dark matter and dark energy SHG 200J 15fs GeV] //

/M [1 DFWM QCD axion (Dark matter)

gg 200J 15fs DFWM

Log 200J 200J 1.5ns 15fs(induce) 200J 1.5ns(induce)

K. Homma @ Bucharest in ELI-NP workshopp, on 11 Mar, 2011 Gravitational Coupling(Dark Energy)

log m [eV] 24 K.Homma, D.Habs, T.Tajima (2011) Latest Development: CERN getting into the game EuroNNAc Workshop on novel accelerators (May 3-6, 2011) IZEST International Center for ZZttetta-EEttSidThlxawatt Science and Technology

Under the Aegis of CEA, Ecole Polytechnique and Ministry of Research and Education 26 ELI (2010), now Mega Project on Extreme Laser (2011)

Ext reme Li ght I nf rast ruct ure: EU d ecid ed (2010) a t Czec h, Hungary, an d Roman ia Now, Russia announced July 5, 2011: 6 Mega Projects (3-4B Euro) include Extreme Laser

Beyond Exawatt Beyond 10kJ

ELI: serving Chair, Scientific Advisory Committee Extreme Laser Mega Project (in budget negotiation): Chief Scientific Advisor/ Mega Grant Honorary Director (suggested) International team being formed: IZEST (International Center for Zetawatt / Exawatt Science and Technology)

27 http://strf.ru/ XCELS (Russia) Conclusions • Optical approach: does it overtake the accelerator in high energy and fundamental physics? • Collider physics requirements: == low density operation, laser with large energy per stage • Energy f ronti er (beyon d Te V) with prec is ion w / a few shots possible = non-collider paradigm of fdfundamen tlital science e.g. Lorentz invariance test , quantum gravity • High field science approach: capability to explore new fields (dark matter; dark energy): SHG, DFWM, learning from NLO (in matter); zs metrology ・ JiJoin us a t IZEST; colla bora tion btw ISTC an d IZEST 29 The Cabin in Suzdal (a Waka poem)

「遥か来ぬ ロシアの大地 夏残照 芳しきかな 丸太屋の宿」

“The distance I‘ve come ftthldfRifar to the land of Russia at summer’s last cry What fragrance and comfort the logcabin lulls me in!”

Toshi Tajima Sept, 2011

Ϲпасибо! 30