L1 Logistics. Intro To
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 5 Optical Properties of Materials
Chapter 5 Optical Properties of Materials Part I Introduction Classification of Optical Processes refractive index n() = c / v () Snell’s law absorption ~ resonance luminescence Optical medium ~ spontaneous emission a. Specular elastic and • Reflection b. Total internal Inelastic c. Diffused scattering • Propagation nonlinear-optics Optical medium • Transmission Propagation General Optical Process • Incident light is reflected, absorbed, scattered, and/or transmitted Absorbed: IA Reflected: IR Transmitted: IT Incident: I0 Scattered: IS I 0 IT IA IR IS Conservation of energy Optical Classification of Materials Transparent Translucent Opaque Optical Coefficients If neglecting the scattering process, one has I0 IT I A I R Coefficient of reflection (reflectivity) Coefficient of transmission (transmissivity) Coefficient of absorption (absorbance) Absorption – Beer’s Law dx I 0 I(x) Beer’s law x 0 l a is the absorption coefficient (dimensions are m-1). Types of Absorption • Atomic absorption: gas like materials The atoms can be treated as harmonic oscillators, there is a single resonance peak defined by the reduced mass and spring constant. v v0 Types of Absorption Paschen • Electronic absorption Due to excitation or relaxation of the electrons in the atoms Molecular Materials Organic (carbon containing) solids or liquids consist of molecules which are relatively weakly connected to other molecules. Hence, the absorption spectrum is dominated by absorptions due to the molecules themselves. Molecular Materials Absorption Spectrum of Water -
Quantum Metamaterials in the Microwave and Optical Ranges Alexandre M Zagoskin1,2* , Didier Felbacq3 and Emmanuel Rousseau3
Zagoskin et al. EPJ Quantum Technology (2016)3:2 DOI 10.1140/epjqt/s40507-016-0040-x R E V I E W Open Access Quantum metamaterials in the microwave and optical ranges Alexandre M Zagoskin1,2* , Didier Felbacq3 and Emmanuel Rousseau3 *Correspondence: [email protected] Abstract 1Department of Physics, Loughborough University, Quantum metamaterials generalize the concept of metamaterials (artificial optical Loughborough, LE11 3TU, United media) to the case when their optical properties are determined by the interplay of Kingdom quantum effects in the constituent ‘artificial atoms’ with the electromagnetic field 2Theoretical Physics and Quantum Technologies Department, Moscow modes in the system. The theoretical investigation of these structures demonstrated Institute for Steel and Alloys, that a number of new effects (such as quantum birefringence, strongly nonclassical Moscow, 119049, Russia states of light, etc.) are to be expected, prompting the efforts on their fabrication and Full list of author information is available at the end of the article experimental investigation. Here we provide a summary of the principal features of quantum metamaterials and review the current state of research in this quickly developing field, which bridges quantum optics, quantum condensed matter theory and quantum information processing. 1 Introduction The turn of the century saw two remarkable developments in physics. First, several types of scalable solid state quantum bits were developed, which demonstrated controlled quan- tum coherence in artificial mesoscopic structures [–] and eventually led to the devel- opment of structures, which contain hundreds of qubits and show signatures of global quantum coherence (see [, ] and references therein). In parallel, it was realized that the interaction of superconducting qubits with quantized electromagnetic field modes re- produces, in the microwave range, a plethora of effects known from quantum optics (in particular, cavity QED) with qubits playing the role of atoms (‘circuit QED’, [–]). -
Negative Refractive Index in Artificial Metamaterials
1 Negative Refractive Index in Artificial Metamaterials A. N. Grigorenko Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK We discuss optical constants in artificial metamaterials showing negative magnetic permeability and electric permittivity and suggest a simple formula for the refractive index of a general optical medium. Using effective field theory, we calculate effective permeability and the refractive index of nanofabricated media composed of pairs of identical gold nano-pillars with magnetic response in the visible spectrum. PACS: 73.20.Mf, 41.20.Jb, 42.70.Qs 2 The refractive index of an optical medium, n, can be found from the relation n2 = εμ , where ε is medium’s electric permittivity and μ is magnetic permeability.1 There are two branches of the square root producing n of different signs, but only one of these branches is actually permitted by causality.2 It was conventionally assumed that this branch coincides with the principal square root n = εμ .1,3 However, in 1968 Veselago4 suggested that there are materials in which the causal refractive index may be given by another branch of the root n =− εμ . These materials, referred to as left- handed (LHM) or negative index materials, possess unique electromagnetic properties and promise novel optical devices, including a perfect lens.4-6 The interest in LHM moved from theory to practice and attracted a great deal of attention after the first experimental realization of LHM by Smith et al.7, which was based on artificial metallic structures -
Tutorial on Nonlinear Optics
Proceedings of the International School of Physics “Enrico Fermi” Course 190 “Frontiers in Modern Optics”, edited by D. Faccio, J. Dudley and M. Clerici (IOS, Amsterdam; SIF, Bologna) 2016 DOI 10.3254/978-1-61499-647-7-31 Tutorial on nonlinear optics S. Choudhary School of Electrical Engineering and Computer Science, University of Ottawa Ottawa, Ontario, K1N 6N5 Canada R. W. Boyd School of Electrical Engineering and Computer Science, University of Ottawa Ottawa, Ontario, K1N 6N5 Canada The Institute of Optics, University of Rochester Rochester, New York, 14627 USA Department of Physics, University of Ottawa Ottawa, Ontario, K1N 6N5 Canada Summary. — Nonlinear optics deals with phenomena that occur when a very intense light interacts with a material medium, modifying its optical properties. Shortly after the demonstration of first working laser in 1960 by Maiman (Nature, 187 (1960) 493), the field of nonlinear optics began with the observation of second harmonic by Franken et al. in 1961 (Phys. Rev. Lett., 7 (1961) 118). Since then, the interest in this field has grown and various nonlinear optical effects are utilized for purposes such as nonlinear microscopy, switching, harmonic generation, parametric downconversion, filamentation, etc. We present here a brief overview of the various aspects on nonlinear optics and some of the recent advances in the field. c Societ`a Italiana di Fisica 31 32 S. Choudhary and R. W. Boyd 1. – Introduction to nonlinear optics Accordingˇ¡proofsAuthor please note that we have written in full the reference quota- tions in the abstract and reordered those in the text accordingly, following the numerical sequence. -
Nonlinear Optics (Wise 2018/19) Lecture 6: November 18, 2018 5.2 Electro-Optic Amplitude Modulator 5.3 Electro-Optic Phase Modulator 5.4 Microwave Modulator
Nonlinear Optics (WiSe 2018/19) Lecture 6: November 18, 2018 5.2 Electro-optic amplitude modulator 5.3 Electro-optic phase modulator 5.4 Microwave modulator 6 Acousto-optic modulators 6.1 Acousto-optic interaction 6.2 The acousto-optic amplitude modulator Chapter 7: Third-order nonlinear effects 7.1 Third-harmonic generation (THG) 7.2 The nonlinear refractive index 7.3 Molecular orientation and refractive index 7.4 Self-phase modulation (SPM) 7.5 Self-focusing 1 5.2 Electro-optic amplitude modulator How is phase retardation converted into a amplitude modulation? 5.2. ELECTRO-OPTIC AMPLITUDE MODULATOR 93 0 direction input polarizer wave plate output polarizer Figure 5.7: Transversal electro-optic amplitude modulator from LiNbO3. Here, ∆φWP is the phase retardation due to the field-independent birefrin- 2 gence or due to an additional wave plate as shown in Fig. 5.7, and a is a co- efficient describing the relationship between field-dependent phase retardation and applied voltage. Usually we use β =45◦ to achieve 100 % transmission Iout 1 = 1 cos [∆φWP + aV (t)] (5.43) Iin 2 { − } 1 = 1 cos ∆φ cos [aV (t)] + sin ∆φ sin [aV (t)] . 2 { − WP WP } There are various applications for modulators. If the transmission through the modulator should be linearly dependent on the applied voltage, we use a bias ∆φ = π/2andobtainforaV 1 (see also Fig. 5.8) WP ≪ I 1 out = [1 + aV (t)] . (5.44) Iin 2 For a sinusoidal voltage V (t)=V0 sin ωmt (5.45) and constant input intensity, we obtain a sinusoidally varying output intensity Iout 1 = (1 + aV0 sin ωmt) . -
Course Description Learning Objectives/Outcomes Optical Theory
11/4/2019 Optical Theory Light Invisible Light Visible Light By Diane F. Drake, LDO, ABOM, NCLEM, FNAO 1 4 Course Description Understanding Light This course will introduce the basics of light. Included Clinically in discuss will be two light theories, the principles of How we see refraction (the bending of light) and the principles of Transports visual impressions reflection. Technically Form of radiant energy Essential for life on earth 2 5 Learning objectives/outcomes Understanding Light At the completion of this course, the participant Two theories of light should be able to: Corpuscular theory Electromagnetic wave theory Discuss the differences of the Corpuscular Theory and the Electromagnetic Wave Theory The Quantum Theory of Light Have a better understanding of wavelengths Explain refraction of light Explain reflection of light 3 6 1 11/4/2019 Corpuscular Theory of Light Put forth by Pythagoras and followed by Sir Isaac Newton Light consists of tiny particles of corpuscles, which are emitted by the light source and absorbed by the eye. Time for a Question Explains how light can be used to create electrical energy This theory is used to describe reflection Can explain primary and secondary rainbows 7 10 This illustration is explained by Understanding Light Corpuscular Theory which light theory? Explains shadows Light Object Shadow Light Object Shadow a) Quantum theory b) Particle theory c) Corpuscular theory d) Electromagnetic wave theory 8 11 This illustration is explained by Indistinct Shadow If light -
The Mathematics of Nonlinear Optics
The Mathematics of Nonlinear Optics Guy Metivier´ ∗ March 7, 2009 Contents 1 Introduction 4 2 Examples of equations arising in nonlinear optics 11 3 The framework of hyperbolic systems 18 3.1 Equations . 18 3.2 The dispersion relation & polarization conditions . 20 3.3 Existence and stability . 23 3.4 Continuation of solutions . 26 3.5 Global existence . 27 3.6 Local results . 29 4 Equations with parameters 32 4.1 Singular equations . 32 4.1.1 The weakly non linear case . 33 4.1.2 The case of prepared data . 34 4.1.3 Remarks on the commutation method . 38 4.1.4 Application 1 . 40 4.1.5 Application 2 . 41 4.2 Equations with rapidly varying coefficients . 45 ∗Universit´eBordeaux 1, IMB UMR 5251, 351 Cours de la Lib´eration,33405 Talence cedex, [email protected] 1 5 Geometrical Optics 49 5.1 Linear geometric optics . 49 5.1.1 An example using Fourier synthesis . 49 5.1.2 The BKW method and formal solutions . 51 5.1.3 The dispersion relation and phases . 52 5.1.4 The propagator of amplitudes . 53 5.1.5 Construction of WKB solutions . 60 5.1.6 Approximate solutions . 62 5.1.7 Exact solutions . 63 5.2 Weakly nonlinear geometric optics . 64 5.2.1 Asymptotic equations . 65 5.2.2 The structure of the profile equations I: the dispersive case . 67 5.2.3 The structure of the profile equation II : the nondispersive case; the generic Burger's eqation . 70 5.2.4 Approximate and exact solutions . -
Nonlinear Optics: the Next Decade
brought to you by View metadata, citation and similar papers at core.ac.uk CORE provided by The Australian National University Nonlinear optics: The next decade Yuri S. Kivshar Center for Ultra-high bandwidth Devices for Optical Systems (CUDOS), Nonlinear Physics Center, Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200, Australia Abstract: This paper concludes the Focus Serial assembled of invited papers in key areas of nonlinear optics (Editors: J.M. Dudley and R.W. Boyd), and it discusses new directions for future research in this field. © 2008 Optical Society of America OCIS codes: 190.0190 Nonlinear optics References and links 1. J.M. Dudley and R.W. Boyd, “Focus Series: Frontier of Nonlinear Optics. Introduction,” Optics Express 15, 5237-5237 (2007); http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-8-5237 Nonlinear optics describes the behavior of light in media with nonlinear response. Its tradi- tional topics cover different types of parametric processes, such as second-harmonic generation, as well as a variety of self-action effects, such as filamentation and solitons, typically observed at high light intensities delivered by pulsed lasers. While the study of nonlinear effects has a very long history going back to the physics of mechanical systems, the field of nonlinear op- tics is relatively young and, as a matter of fact, was born only after the invention of the laser. Soon after, the study of light-matter interaction emerged as an active direction of research and boosted the developments in material science and source technologies. Nowadays, nonlinear optics has evolved into many different branches, depending on the form of the material used for studying the nonlinear phenomena. -
Rogue-Wave Solutions for an Inhomogeneous Nonlinear System in a Geophysical fluid Or Inhomogeneous Optical Medium
Commun Nonlinear Sci Numer Simulat 36 (2016) 266–272 Contents lists available at ScienceDirect Commun Nonlinear Sci Numer Simulat journal homepage: www.elsevier.com/locate/cnsns Rogue-wave solutions for an inhomogeneous nonlinear system in a geophysical fluid or inhomogeneous optical medium Xi-Yang Xie a, Bo Tian a,∗, Yan Jiang a, Wen-Rong Sun a, Ya Sun a, Yi-Tian Gao b a State Key Laboratory of Information Photonics and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China b Ministry-of-Education Key Laboratory of Fluid Mechanics and National Laboratory for Computational Fluid Dynamics, Beijing University of Aeronautics and Astronautics, Beijing 100191, China article info abstract Article history: Under investigation in this paper is an inhomogeneous nonlinear system, which describes Received 23 September 2015 the marginally-unstable baroclinic wave packets in a geophysical fluid or ultra-short pulses Accepted 3 December 2015 in nonlinear optics with certain inhomogeneous medium existing. By virtue of a kind of the Availableonline12December2015 Darboux transformation, under the Painlevé integrable condition, the first- and second-order bright and dark rogue-wave solutions are derived. Properties of the first- and second-order Keywords: α β Inhomogeneous nonlinear system bright and dark rogue waves with (t), which measures the state of the basic flow, and (t), Baroclinic wave packets in geophysical fluids representing the interaction of the wave packet and mean flow, are graphically presented and Ultra-short pulses in nonlinear optics analyzed: α(t)andβ(t) have no influence on the wave packet, but affect the correction of the Rogue-wave solution basic flow. -
Nonlinear Optics in Daily Life
Nonlinear optics in daily life Elsa Garmire* Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA *[email protected] Abstract: An overview is presented of the impact of NLO on today’s daily life. While NLO researchers have promised many applications, only a few have changed our lives so far. This paper categorizes applications of NLO into three areas: improving lasers, interaction with materials, and information technology. NLO provides: coherent light of different wavelengths; multi-photon absorption for plasma-materials interaction; advanced spectroscopy and materials analysis; and applications to communications and sensors. Applications in information processing and storage seem less mature. © 2013 Optical Society of America OCIS codes: (190.0190) Nonlinear optics; (060.0060) Fiber optics and optical communications; (120.0120) Instrumentation, measurement, and metrology; (140.0140) Lasers and laser optics; (180.0180) Microscopy; (300.0300) Spectroscopy. References and Links 1. E. Garmire, “Overview of nonlinear optics,” open source, found at http://www.intechopen.com/books/nonlinear- optics/overview-of-nonlinear-optics. 2. E. Garmire, “Resource letter NO-1: nonlinear optics,” Am. J. Phys. 79(3), 245–255 (2011). 3. http://en.wikipedia.org/wiki/Laser_pointer. 4. http://www.coherent.com/products/?921/Mira-Family. 5. C. G. Durfee, T. Storz, J. Garlick, S. Hill, J. A. Squier, M. Kirchner, G. Taft, K. Shea, H. Kapteyn, M. Murnane, and S. Backus, “Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser,” Opt. Express 20(13), 13677– 13683 (2012). 6. http://www.continuumlasers.com/products/tunable_horizon_OPO.asp. 7. http://www.newport.com/Inspire-Automated-Ultrafast-OPOs/847655/1033/info.aspx. -
Light-Wave Mixing and Scattering with Quantum Gases
23rd International Laser Physics Workshop (LPHYS’14) IOP Publishing Journal of Physics: Conference Series 594 (2015) 012011 doi:10.1088/1742-6596/594/1/012011 Light-wave mixing and scattering with quantum gases L. Deng and E.W. Hagley National Institute of Standards and Technology, Gaithersburg, Maryland 20899 USA C.J. Zhu School of Physical Science and Engineering, Tongji University, Shanghai 200092, China E-mail: [email protected] Abstract: We show that optical processes originating from elementary excitations with dominant collective atomic recoil motion in a quantum gas can profoundly change many nonlinear optical processes routinely observed in a normal gas. Not only multi-photon wave mixing processes all become stimulated Raman or hyper-Raman in nature but the usual forward wave-mixing process, which is the most efficient process in normal gases, is strongly reduced by the condensate structure factor. On the other hand, in the backward direction the Bogoliubov dispersion automatically compensates the optical- wave phase mismatch, resulting in efficient backward light field generation that usually is not supported in normal gases. 1. Introduction Since the invention of the laser in 1960, the field of nonlinear optics has exploded. In a typical nonlinear optical process, often referred to as coherent wave-mixing, several photons are absorbed simultaneously by an atomic or molecular medium, and a photon with a different frequency is produced. Under the right conditions, the generated radiation may be coherently amplified by the quantum mechanical mechanism of stimulated emission identified by Albert Einstein. Today, 95 years after Einstein’s prediction, we are surrounded by practical applications of nonlinear optics, from multi-channel telecom lasers to the common laser pointer. -
Learning Dominant Physical Processes with Data-Driven Balance Models ✉ Jared L
ARTICLE https://doi.org/10.1038/s41467-021-21331-z OPEN Learning dominant physical processes with data-driven balance models ✉ Jared L. Callaham 1 , James V. Koch2, Bingni W. Brunton 3, J. Nathan Kutz4 & Steven L. Brunton1 Throughout the history of science, physics-based modeling has relied on judiciously approximating observed dynamics as a balance between a few dominant processes. How- ever, this traditional approach is mathematically cumbersome and only applies in asymptotic 1234567890():,; regimes where there is a strict separation of scales in the physics. Here, we automate and generalize this approach to non-asymptotic regimes by introducing the idea of an equation space, in which different local balances appear as distinct subspace clusters. Unsupervised learning can then automatically identify regions where groups of terms may be neglected. We show that our data-driven balance models successfully delineate dominant balance physics in a much richer class of systems. In particular, this approach uncovers key mechanistic models in turbulence, combustion, nonlinear optics, geophysical fluids, and neuroscience. 1 Department of Mechanical Engineering, University of Washington, Seattle, WA, USA. 2 Oden Institute for Computational & Engineering Sciences, University of Texas, Austin, TX, USA. 3 Department of Biology, University of Washington, Seattle, WA, USA. 4 Department of Applied Mathematics, University of ✉ Washington, Seattle, WA, USA. email: [email protected] NATURE COMMUNICATIONS | (2021) 12:1016 | https://doi.org/10.1038/s41467-021-21331-z | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21331-z t is well known across the engineering and physical sciences such models is not always necessary to describe the local behavior Ithat persistent behaviors in complex systems are often deter- of a system.