The Mathematics of Nonlinear Optics

Total Page:16

File Type:pdf, Size:1020Kb

The Mathematics of Nonlinear Optics The Mathematics of Nonlinear Optics Guy Metivier´ ∗ March 7, 2009 Contents 1 Introduction 4 2 Examples of equations arising in nonlinear optics 11 3 The framework of hyperbolic systems 18 3.1 Equations . 18 3.2 The dispersion relation & polarization conditions . 20 3.3 Existence and stability . 23 3.4 Continuation of solutions . 26 3.5 Global existence . 27 3.6 Local results . 29 4 Equations with parameters 32 4.1 Singular equations . 32 4.1.1 The weakly non linear case . 33 4.1.2 The case of prepared data . 34 4.1.3 Remarks on the commutation method . 38 4.1.4 Application 1 . 40 4.1.5 Application 2 . 41 4.2 Equations with rapidly varying coefficients . 45 ∗Universit´eBordeaux 1, IMB UMR 5251, 351 Cours de la Lib´eration,33405 Talence cedex, [email protected] 1 5 Geometrical Optics 49 5.1 Linear geometric optics . 49 5.1.1 An example using Fourier synthesis . 49 5.1.2 The BKW method and formal solutions . 51 5.1.3 The dispersion relation and phases . 52 5.1.4 The propagator of amplitudes . 53 5.1.5 Construction of WKB solutions . 60 5.1.6 Approximate solutions . 62 5.1.7 Exact solutions . 63 5.2 Weakly nonlinear geometric optics . 64 5.2.1 Asymptotic equations . 65 5.2.2 The structure of the profile equations I: the dispersive case . 67 5.2.3 The structure of the profile equation II : the nondispersive case; the generic Burger's eqation . 70 5.2.4 Approximate and exact solutions . 72 5.3 Strongly nonlinear expansions . 74 5.3.1 An example: two levels Maxwell-Bloch equations . 75 5.3.2 A class of semilinear systems. 77 5.3.3 Field equations and relativity . 79 5.3.4 Linearly degenerate oscillations . 79 5.3.5 Fully nonlinear geometric optics . 83 5.4 Caustics . 88 5.4.1 Example : spherical waves . 88 5.4.2 Focusing before caustics . 91 5.4.3 Oscillations past caustics . 92 6 Diffractive optics 96 6.1 The origin of Schr¨odingerequation . 96 6.1.1 A linear example . 96 6.1.2 Formulating the ansatz. 98 6.1.3 First equations for the profiles. 99 6.1.4 The operator S as a Sh¨odingeroperator . 101 6.2 Construction of solutions . 103 6.2.1 The nondispersive case with odd nonlinearities and odd profiles.103 6.2.2 Dispersive equations; the Schr¨odingerequation as a generic model for diffractive optics . 107 6.2.3 Rectification . 108 6.3 Other diffractive regimes . 112 7 Wave interaction and multi-phase expansions 113 7.1 Examples of phase generation . 113 7.1.1 Generation of harmonics . 113 7.1.2 Resonance and phase matching ; weak vs strong coherence . 114 7.1.3 Strong coherence and small divisors . 115 7.1.4 Periodic initial data may lead to almost periodic solutions . 116 2 7.1.5 A single initial phase can generate a space of phases of infinite dimension over R . 117 7.1.6 Multidimensional effects . 117 7.2 Description of oscillations . 118 7.2.1 Group of phases, group of frequencies . 118 7.2.2 The fast variables . 119 7.2.3 Profiles and oscillations . 120 7.2.4 Profiles in Lp and associated oscillating families . 121 7.2.5 Multiscale weak convergence, weak profiles . 122 7.3 Formal multi-phases expansions . 122 7.3.1 Phases and profiles. Weak coherence . 123 7.3.2 Phases and profiles for the Cauchy problem . 125 7.3.3 Formal BKW expansions . 126 7.3.4 Determination of the main profiles . 128 7.3.5 Main profiles for the Cauchy problem . 129 7.3.6 Approximate solutions at order o(1) in L2 . 132 7.3.7 Strong coherence . 134 7.3.8 Higher order profiles, approximate solutions at all order . 134 7.4 Exact oscillating solutions . 136 7.4.1 Oscillating solutions with complete expansions . 136 7.4.2 Prepared data, continuation of solutions . 136 7.4.3 Construction of solutions. General oscillating data. 138 7.4.4 The case of constant coefficients and planar phases . 141 7.5 Asymptotics of exact solutions . 143 7.5.1 The method of simultaneous approximations . 143 7.5.2 The filtering method . 145 7.6 Further examples . 148 7.6.1 One dimensional resonant expansions. 148 7.6.2 Generic phase interaction for dispersive equations . 153 7.6.3 A model for Raman interaction . 155 7.6.4 Maximal dissipative equations . 158 3 1 Introduction Nonlinear optics is a very active field in physics, of primary importance and with an extremely wide range of applications. For an introduction to the physical approach, we can refer the reader to classical text books such as [NeMo, Boy, Blo, BoWo, PaPu, Fey, LaLi]. Optics is about the propagation of electromagnetic waves. Nonlinear optics is more about the study of how high intensity light interacts with and propagates through matter. As long as the amplitude of the field is moderate, the linear theory is well adapted, and complicated fields can be described as the superposition of noninteracting simpler solutions (e.g. plane waves). Nonlinear phenomena such as double refraction or Raman effect, which are examples of wave interaction, have been known for a long time, but the major motivation for a nonlinear theory came from the discovery of the laser which made available highly coherent radiations with extremely high local intensities. Clearly, interaction is a key word in nonlinear optics. Another funda- mental feature is that many different scales are present: the wavelength, the length and the width of the beam, the duration of the pulse, the intensity of the fields, but also internal scales of the medium such as the frequencies of electronic transitions etc. Concerning the mathematical set up, the primitive models are Maxwell's equations for the electric and magnetic intensity fields E and H and the electric and magnetic inductions D and B, coupled with constitutive rela- tions between these fields and/or equations which model the interaction of the fields with matter. Different models are presented in Section 2. All these equations fall into the category of nonlinear hyperbolic systems.A very important step in modeling is to put these equations in a dimensionless form, by a suitable choice of units, and deciding which phenomena, at which scale, one wants to study (see e.g. [Don]). However, even in dimensionless form, the equations may contain one or several small/large parameters. For example, one encounters singular systems of the form d X (1.1) A0(u)@tu + Aj(u)@xj u + λL0u = F (u) j=1 with λ 1. In addition to the parameters contained in the equation, there are other length scales typical to the solutions under study. In linear and nonlinear optics, one is specially interested in waves packets (1.2) u(t; x) = ei(k·x−!t)U(t; x) + cc 4 where k and ! are the central wave number and frequency respectively, and where the envelop U(t; x) has slow variations compared to the rapid oscillations of the exponential: j j j j (1.3) @t U ! U; @xU k U: 2π In dimensionless form, the wave length " := k is small ( 1). An impor- tant property is that k and ! must be linked by the dispersion relation (see Section 5). Interesting phenomena occur when " ≈ λ−1. With this scal- ing there may be resonant interactions between the electromagnetic wave and the medium, accounting for the dependence of optical indices on the frequency and thus for diffraction of light (see e.g. [LaLi]). More generally, several scales can be present in the envelop U, for instance t x (1.4) U = U(t; x; p ; p ) (speckles); " " U = U(t; x; "t) (long time propagation)(1.5) etc. The typical size of the envelop U (the intensity of the beam) is another very important parameter. Nonlinear systems is the appropriate framework to describe interaction of waves : wave packets with phases 'j = kj · x − !jt create by multiplication P of the exponentials the new phase ' = 'j which may or may not satisfy the dispersion relation. In the first case, the oscillation with phase ' is propagated (or persists) as time evolves : this is the situation of phase matching. In the second case, the oscillation is not propagated and only creates a lower order perturbation of the fields. These heuristic arguments are the base of the formal derivation of envelop equations that can be found in physics books. It is part of the mathematical analysis to make them rigorous. In particular, self interaction can create harmonics n' of a phase '. Reducing to a single small dimensionless parameter, this leads for instance to look for solutions of the form ' ' y ' (1.6) u(y) = "pU( ; y);"pU( ; p ; y);"pU( ; y; "y) " " " " where y = (t; x), ' = ('1;:::;'m) and U is periodic in the first set of variables. Summing up, we see that the mathematical setup concerns high frequency and mutliscale solutions of nonlinear hyperbolic problem. At this point we 5 merge with many other problems arising in physics or mechanics, in partic- ular in fluid mechanics, where this type of multiscale analysis is also of fun- damental importance. For instance, we mention the problems of low Mach number flows, or fast rotating fluids, which raise very similar questions. These notes are intended to serve as an introduction to the field. We do not even try to give a complete overview of the existing results, that would be impossible within a single book, and probably useless. We will tackle only a few basic problems, with the aim of giving methods and landmarks in the theory.
Recommended publications
  • Tutorial on Nonlinear Optics
    Proceedings of the International School of Physics “Enrico Fermi” Course 190 “Frontiers in Modern Optics”, edited by D. Faccio, J. Dudley and M. Clerici (IOS, Amsterdam; SIF, Bologna) 2016 DOI 10.3254/978-1-61499-647-7-31 Tutorial on nonlinear optics S. Choudhary School of Electrical Engineering and Computer Science, University of Ottawa Ottawa, Ontario, K1N 6N5 Canada R. W. Boyd School of Electrical Engineering and Computer Science, University of Ottawa Ottawa, Ontario, K1N 6N5 Canada The Institute of Optics, University of Rochester Rochester, New York, 14627 USA Department of Physics, University of Ottawa Ottawa, Ontario, K1N 6N5 Canada Summary. — Nonlinear optics deals with phenomena that occur when a very intense light interacts with a material medium, modifying its optical properties. Shortly after the demonstration of first working laser in 1960 by Maiman (Nature, 187 (1960) 493), the field of nonlinear optics began with the observation of second harmonic by Franken et al. in 1961 (Phys. Rev. Lett., 7 (1961) 118). Since then, the interest in this field has grown and various nonlinear optical effects are utilized for purposes such as nonlinear microscopy, switching, harmonic generation, parametric downconversion, filamentation, etc. We present here a brief overview of the various aspects on nonlinear optics and some of the recent advances in the field. c Societ`a Italiana di Fisica 31 32 S. Choudhary and R. W. Boyd 1. – Introduction to nonlinear optics Accordingˇ¡proofsAuthor please note that we have written in full the reference quota- tions in the abstract and reordered those in the text accordingly, following the numerical sequence.
    [Show full text]
  • Nonlinear Optics (Wise 2018/19) Lecture 6: November 18, 2018 5.2 Electro-Optic Amplitude Modulator 5.3 Electro-Optic Phase Modulator 5.4 Microwave Modulator
    Nonlinear Optics (WiSe 2018/19) Lecture 6: November 18, 2018 5.2 Electro-optic amplitude modulator 5.3 Electro-optic phase modulator 5.4 Microwave modulator 6 Acousto-optic modulators 6.1 Acousto-optic interaction 6.2 The acousto-optic amplitude modulator Chapter 7: Third-order nonlinear effects 7.1 Third-harmonic generation (THG) 7.2 The nonlinear refractive index 7.3 Molecular orientation and refractive index 7.4 Self-phase modulation (SPM) 7.5 Self-focusing 1 5.2 Electro-optic amplitude modulator How is phase retardation converted into a amplitude modulation? 5.2. ELECTRO-OPTIC AMPLITUDE MODULATOR 93 0 direction input polarizer wave plate output polarizer Figure 5.7: Transversal electro-optic amplitude modulator from LiNbO3. Here, ∆φWP is the phase retardation due to the field-independent birefrin- 2 gence or due to an additional wave plate as shown in Fig. 5.7, and a is a co- efficient describing the relationship between field-dependent phase retardation and applied voltage. Usually we use β =45◦ to achieve 100 % transmission Iout 1 = 1 cos [∆φWP + aV (t)] (5.43) Iin 2 { − } 1 = 1 cos ∆φ cos [aV (t)] + sin ∆φ sin [aV (t)] . 2 { − WP WP } There are various applications for modulators. If the transmission through the modulator should be linearly dependent on the applied voltage, we use a bias ∆φ = π/2andobtainforaV 1 (see also Fig. 5.8) WP ≪ I 1 out = [1 + aV (t)] . (5.44) Iin 2 For a sinusoidal voltage V (t)=V0 sin ωmt (5.45) and constant input intensity, we obtain a sinusoidally varying output intensity Iout 1 = (1 + aV0 sin ωmt) .
    [Show full text]
  • Nonlinear Optics: the Next Decade
    brought to you by View metadata, citation and similar papers at core.ac.uk CORE provided by The Australian National University Nonlinear optics: The next decade Yuri S. Kivshar Center for Ultra-high bandwidth Devices for Optical Systems (CUDOS), Nonlinear Physics Center, Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200, Australia Abstract: This paper concludes the Focus Serial assembled of invited papers in key areas of nonlinear optics (Editors: J.M. Dudley and R.W. Boyd), and it discusses new directions for future research in this field. © 2008 Optical Society of America OCIS codes: 190.0190 Nonlinear optics References and links 1. J.M. Dudley and R.W. Boyd, “Focus Series: Frontier of Nonlinear Optics. Introduction,” Optics Express 15, 5237-5237 (2007); http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-8-5237 Nonlinear optics describes the behavior of light in media with nonlinear response. Its tradi- tional topics cover different types of parametric processes, such as second-harmonic generation, as well as a variety of self-action effects, such as filamentation and solitons, typically observed at high light intensities delivered by pulsed lasers. While the study of nonlinear effects has a very long history going back to the physics of mechanical systems, the field of nonlinear op- tics is relatively young and, as a matter of fact, was born only after the invention of the laser. Soon after, the study of light-matter interaction emerged as an active direction of research and boosted the developments in material science and source technologies. Nowadays, nonlinear optics has evolved into many different branches, depending on the form of the material used for studying the nonlinear phenomena.
    [Show full text]
  • Rogue-Wave Solutions for an Inhomogeneous Nonlinear System in a Geophysical fluid Or Inhomogeneous Optical Medium
    Commun Nonlinear Sci Numer Simulat 36 (2016) 266–272 Contents lists available at ScienceDirect Commun Nonlinear Sci Numer Simulat journal homepage: www.elsevier.com/locate/cnsns Rogue-wave solutions for an inhomogeneous nonlinear system in a geophysical fluid or inhomogeneous optical medium Xi-Yang Xie a, Bo Tian a,∗, Yan Jiang a, Wen-Rong Sun a, Ya Sun a, Yi-Tian Gao b a State Key Laboratory of Information Photonics and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China b Ministry-of-Education Key Laboratory of Fluid Mechanics and National Laboratory for Computational Fluid Dynamics, Beijing University of Aeronautics and Astronautics, Beijing 100191, China article info abstract Article history: Under investigation in this paper is an inhomogeneous nonlinear system, which describes Received 23 September 2015 the marginally-unstable baroclinic wave packets in a geophysical fluid or ultra-short pulses Accepted 3 December 2015 in nonlinear optics with certain inhomogeneous medium existing. By virtue of a kind of the Availableonline12December2015 Darboux transformation, under the Painlevé integrable condition, the first- and second-order bright and dark rogue-wave solutions are derived. Properties of the first- and second-order Keywords: α β Inhomogeneous nonlinear system bright and dark rogue waves with (t), which measures the state of the basic flow, and (t), Baroclinic wave packets in geophysical fluids representing the interaction of the wave packet and mean flow, are graphically presented and Ultra-short pulses in nonlinear optics analyzed: α(t)andβ(t) have no influence on the wave packet, but affect the correction of the Rogue-wave solution basic flow.
    [Show full text]
  • Nonlinear Optics in Daily Life
    Nonlinear optics in daily life Elsa Garmire* Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA *[email protected] Abstract: An overview is presented of the impact of NLO on today’s daily life. While NLO researchers have promised many applications, only a few have changed our lives so far. This paper categorizes applications of NLO into three areas: improving lasers, interaction with materials, and information technology. NLO provides: coherent light of different wavelengths; multi-photon absorption for plasma-materials interaction; advanced spectroscopy and materials analysis; and applications to communications and sensors. Applications in information processing and storage seem less mature. © 2013 Optical Society of America OCIS codes: (190.0190) Nonlinear optics; (060.0060) Fiber optics and optical communications; (120.0120) Instrumentation, measurement, and metrology; (140.0140) Lasers and laser optics; (180.0180) Microscopy; (300.0300) Spectroscopy. References and Links 1. E. Garmire, “Overview of nonlinear optics,” open source, found at http://www.intechopen.com/books/nonlinear- optics/overview-of-nonlinear-optics. 2. E. Garmire, “Resource letter NO-1: nonlinear optics,” Am. J. Phys. 79(3), 245–255 (2011). 3. http://en.wikipedia.org/wiki/Laser_pointer. 4. http://www.coherent.com/products/?921/Mira-Family. 5. C. G. Durfee, T. Storz, J. Garlick, S. Hill, J. A. Squier, M. Kirchner, G. Taft, K. Shea, H. Kapteyn, M. Murnane, and S. Backus, “Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser,” Opt. Express 20(13), 13677– 13683 (2012). 6. http://www.continuumlasers.com/products/tunable_horizon_OPO.asp. 7. http://www.newport.com/Inspire-Automated-Ultrafast-OPOs/847655/1033/info.aspx.
    [Show full text]
  • Light-Wave Mixing and Scattering with Quantum Gases
    23rd International Laser Physics Workshop (LPHYS’14) IOP Publishing Journal of Physics: Conference Series 594 (2015) 012011 doi:10.1088/1742-6596/594/1/012011 Light-wave mixing and scattering with quantum gases L. Deng and E.W. Hagley National Institute of Standards and Technology, Gaithersburg, Maryland 20899 USA C.J. Zhu School of Physical Science and Engineering, Tongji University, Shanghai 200092, China E-mail: [email protected] Abstract: We show that optical processes originating from elementary excitations with dominant collective atomic recoil motion in a quantum gas can profoundly change many nonlinear optical processes routinely observed in a normal gas. Not only multi-photon wave mixing processes all become stimulated Raman or hyper-Raman in nature but the usual forward wave-mixing process, which is the most efficient process in normal gases, is strongly reduced by the condensate structure factor. On the other hand, in the backward direction the Bogoliubov dispersion automatically compensates the optical- wave phase mismatch, resulting in efficient backward light field generation that usually is not supported in normal gases. 1. Introduction Since the invention of the laser in 1960, the field of nonlinear optics has exploded. In a typical nonlinear optical process, often referred to as coherent wave-mixing, several photons are absorbed simultaneously by an atomic or molecular medium, and a photon with a different frequency is produced. Under the right conditions, the generated radiation may be coherently amplified by the quantum mechanical mechanism of stimulated emission identified by Albert Einstein. Today, 95 years after Einstein’s prediction, we are surrounded by practical applications of nonlinear optics, from multi-channel telecom lasers to the common laser pointer.
    [Show full text]
  • Learning Dominant Physical Processes with Data-Driven Balance Models ✉ Jared L
    ARTICLE https://doi.org/10.1038/s41467-021-21331-z OPEN Learning dominant physical processes with data-driven balance models ✉ Jared L. Callaham 1 , James V. Koch2, Bingni W. Brunton 3, J. Nathan Kutz4 & Steven L. Brunton1 Throughout the history of science, physics-based modeling has relied on judiciously approximating observed dynamics as a balance between a few dominant processes. How- ever, this traditional approach is mathematically cumbersome and only applies in asymptotic 1234567890():,; regimes where there is a strict separation of scales in the physics. Here, we automate and generalize this approach to non-asymptotic regimes by introducing the idea of an equation space, in which different local balances appear as distinct subspace clusters. Unsupervised learning can then automatically identify regions where groups of terms may be neglected. We show that our data-driven balance models successfully delineate dominant balance physics in a much richer class of systems. In particular, this approach uncovers key mechanistic models in turbulence, combustion, nonlinear optics, geophysical fluids, and neuroscience. 1 Department of Mechanical Engineering, University of Washington, Seattle, WA, USA. 2 Oden Institute for Computational & Engineering Sciences, University of Texas, Austin, TX, USA. 3 Department of Biology, University of Washington, Seattle, WA, USA. 4 Department of Applied Mathematics, University of ✉ Washington, Seattle, WA, USA. email: [email protected] NATURE COMMUNICATIONS | (2021) 12:1016 | https://doi.org/10.1038/s41467-021-21331-z | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21331-z t is well known across the engineering and physical sciences such models is not always necessary to describe the local behavior Ithat persistent behaviors in complex systems are often deter- of a system.
    [Show full text]
  • Nonlinear Optics and Nanophotonics November 25 - Decem Ber 6, 2013 Instituto De Física Teórica - UNESP - São Paulo, Brazil
    ICTP International Centre for Theoretical Physics SAIFR South American Institute for Fundamental Research São Paulo International Schools on Theoretical Physics Nonlinear Optics and Nanophotonics November 25 - Decem ber 6, 2013 Instituto de Física Teórica - UNESP - São Paulo, Brazil This school on Nonlinear Optics and Nanophotonics will cover the physics of nonlinear optical systems including photonic crystals and photonic lattices; Nonlinear optics at the nanoscale; Active optical media and laser dynamics; Nonlinear effects in optical communication systems; Metamaterials; Complex dynamics of quantum optical systems. ICTP-SAIFR Steering Committee: The school will end with a one day Workshop and precede the 6th Rio de la Plata Fernando Quevedo (chair) Workshop on Laser Dynamics and Nonlinear Photonics, which will be held in Montevideo, ICTP director Uruguay from December 9-12, 2013 (http://www.fisica.edu.uy/~cris/workshop.htm). Julio Cezar Durigan UNESP rector Carlos Brito Cruz Lecturers: FAPESP scientific director Thorsten Ackemann: Laser solitons, VCSEL, patterns and dynamics Jacob Palis University of Strathclyde, Scotland, UK Brasil Acad. of Sci. president Juan Maldacena Cid de Araujo: Nonlinear optical processes in condensed matter Representing South America Universidade Federal de Pernambuco, Brazil ICTP-SAIFR Marcel Clerc: Spatiotemporal chaotic localized states in optics Scientific Council: Universidad de Chile Peter Goddard (chair) Alexander Gaeta: Nonlinear interactions in optical waveguides IAS, Princeton Cornell University, USA S. Randjbar-Daemi (coord.) ICTP vice-director Dan Gauthier: Tailoring the group velocity and group velocity dispersion Juan Montero Duke University, USA IFT-UNESP director Marcela Carena Michal Lipson: Nanophotonic structures for extreme nonlinearities on-chip Fermilab, Batavia Cornell University, USA Marcel Clerc Univ.
    [Show full text]
  • Nonlinear Optics
    Nonlinear Optics Instructor: Mark G. Kuzyk Students: Benjamin R. Anderson Nathan J. Dawson Sheng-Ting Hung Wei Lu Shiva Ramini Jennifer L. Schei Shoresh Shafei Julian H. Smith Afsoon Soudi Szymon Steplewski Xianjun Ye August 4, 2010 2 Dedication We dedicate this book to everyone who is trying to learn nonlinear optics. i ii Preface This book grew out of lecture notes from the graduate course in Nonlinear Optics taught in spring 2010 at Washington State University. In its present form, this book is a first cut that is still in need of editing. The homework assignments and solutions are incomplete and will be added at a later time. Mark G. Kuzyk July, 2010 Pullman, WA iii iv Contents Dedication i Preface iii 1 Introduction to Nonlinear Optics 1 1.1 History . 1 1.1.1 Kerr Effect . 1 1.1.2 Two-Photon Absorption . 3 1.1.3 Second Harmonic Generation . 4 1.1.4 Optical Kerr Effect . 5 1.2 Units . 7 1.3 Example: Second Order Susceptibility . 8 1.4 Maxwell's Equations . 10 1.4.1 Electric displacement . 11 1.4.2 The Polarization . 13 1.5 Interaction of Light with Matter . 14 1.6 Goals . 19 2 Models of the NLO Response 21 2.1 Harmonic Oscillator . 21 2.1.1 Linear Harmonic Oscillator . 21 2.1.2 Nonlinear Harmonic Oscillator . 23 2.1.3 Non-Static Harmonic Oscillator . 26 2.2 Macroscopic Propagation . 30 2.3 Response Functions . 38 2.3.1 Time Invariance . 39 2.3.2 Fourier Transforms of Response Functions: Electric Susceptibilities .
    [Show full text]
  • L1 Logistics. Intro To
    OSE 6334 Nonlinear Optics Konstantin Vodopyanov 1 1 Lecture 1 Introduction to nonlinear optics. Logistics. 2 2 1 What this course is about This course gives a broad introduction to the field of Nonlinear Optics (NLO). The goal is to get you acquainted with the main effects of nonlinear optics and also introduce main equations that govern nonlinear-optical interactions. Beginning with a simple electron on a spring model—the course gives comprehensive explanations of second-order and third-order nonlinear effects and their physical origins. The corse covers nonlinear optics from a combined: physics, optics, materials science, and devices perspective. Examples will be given on solving practical problems such as design of nonlinear frequency converters, and also devices using ultrafast and high intensity lasers. 3 3 Newton’s superposition principle f(A+B) = f(A) + f(B) B Isaac Newton 1642 –1726 A Newton: Light cannot interact with light. Two beams of light can have no effect on each other. 4 4 2 Nonlinear optics f(A+B) ≠ f(A) + f(B) Beams A and B can create beam C Nicolaas Bloembergen B 1920–2017 Nobel Prize in Physics (1981) C A NLO: photons do interact 5 5 Linear Optics • The optical properties such as the refractive index and the absorption coefficient are independent of light intensity. • The Newton’s principle of superposition: light cannot interact with light. Two beams of light in the same region of a linear optical medium can have no effect on each other. Thus light cannot control light. • The frequency of light cannot be altered by its passage through the medium.
    [Show full text]
  • Entropic Thermodynamics of Nonlinear Photonic Chain Networks
    ARTICLE https://doi.org/10.1038/s42005-020-00484-1 OPEN Entropic thermodynamics of nonlinear photonic chain networks Fan O. Wu 1,4, Pawel S. Jung1,2,4, Midya Parto 1, Mercedeh Khajavikhan3 & ✉ Demetrios N. Christodoulides 1 1234567890():,; The convoluted nonlinear behaviors of heavily multimode photonic structures have been recently the focus of considerable attention. The sheer complexity associated with such multimode systems, allows them to display a host of phenomena that are otherwise impossible in few-mode settings. At the same time, however, it introduces a set of funda- mental challenges in terms of comprehending and harnessing their response. Here, we develop an optical thermodynamic approach capable of describing the thermalization dynamics in large scale nonlinear photonic tight-binding networks. For this specific system, an optical Sackur-Tetrode equation is obtained that explicitly provides the optical tempera- ture and chemical potential of the photon gas. Processes like isentropic expansion/com- pression, Joule expansion, as well as aspects associated with beam cleaning/cooling and thermal conduction effects in such chain networks are discussed. Our results can be used to describe in an effortless manner the exceedingly complex dynamics of highly multimoded nonlinear bosonic systems. 1 CREOL, College of Optics and Photonics, University of Central Florida, Orlando, FL 32816-2700, USA. 2 Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland. 3 Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, ✉ CA 9007, USA. 4These authors contributed equally: Fan O. Wu, Pawel S. Jung. email: [email protected] COMMUNICATIONS PHYSICS | (2020) 3:216 | https://doi.org/10.1038/s42005-020-00484-1 | www.nature.com/commsphys 1 ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-020-00484-1 n recent years, there has been considerable interest in available modes M, and the input optical power P.
    [Show full text]
  • Laboratory of Physics and Modeling of Condensed Matter – Institut Néel Phd Thesis Project
    Laboratory of Physics and Modeling of Condensed Matter – Institut Néel PhD thesis project Quantum and nonlinear optics of disordered media General context: Quantum communications and quantum information processing, including the rapidly developing field of quantum reservoir computing, often rely on optical qubits as information carriers. In this context, the robustness of the physical processes against decoherence induced by disordered media is of major importance at any steps: the photon production, propagation, processing, etc. especially in view of maintaining the quantum correlation properties of entangled photons. From a wider point of view, multiple light scattering in strongly disordered media (dense suspensions or powders of nanoparticles, clouds of cold atoms, etc.) is known to lead to numerous mesoscopic phenomena including Anderson localization, universal fluctuations of transmission (or “conductance”), long- and infinite-range correlation of scattered intensity, that strongly impact the quantum properties of light. Subject, available means: This project is a combined experimental and theoretical effort aimed at understanding quantum and nonlinear optical processes in the presence of disorder that induces strong multiple scattering of light. In a typical experiment, a powerful light pulse will be sent into a suspension or a powder of sub-micron-sized particles and the nonlinear signal generated by the medium (e.g., second harmonics or parametrically generated entangled photon pairs) will be measured and its quantum statistics will be studied. Another configuration to consider is that of an entangled photon pair is transmitted through a strongly scattering nonlinear medium for analyzing the persistence of entanglement with clear applications to information transfer through foggy air. Most of experimental means are already available (pulsed laser for SHG, Signac loop for entangled photons generation as well as the detection based on four photon correlation measurements).
    [Show full text]