Unraveling the Dark Universe with the Large Hadron Collider Shih-Chieh Hsu University of Washington Seattle

Total Page:16

File Type:pdf, Size:1020Kb

Unraveling the Dark Universe with the Large Hadron Collider Shih-Chieh Hsu University of Washington Seattle PHYS 248 A: Unraveling the Dark Universe with the Large Hadron Collider Shih-Chieh Hsu University of Washington Seattle PHYS 248A - Lecture 3 Relativity I PAA A110 Tue/Wed/Thu/Fri: 9:30am-12:00pm 1 CENPA Tour Center for Experimental Nuclear Physics and Astrophysics CENPA Conference room NPL-178 9:45am tomorrow Pak Kau Lim 206 660 9811 2 www.npl.washington.edu/ Weak Interaction Studies with 6He Precision test of Electroweak interaction: solar fusion, neutrino interactions, or muon interactions 5He 6He Alejandro Garcia Measuring angular distribution of decay ∼1010 atoms/s 3 Tandem Van de Graaff accelerator Electrostatic accelerator Produce high intensity beams of • Continuous transfer of positive hydrogen and helium isotopes at static charges from a moving belt to the surface. energies from 100 keV to 7.5 MeV • Ions are accelerated from the source (high-voltage supply) to the target (ground) http://www2.lbl.gov/abc/wallchart/chapters/11/2.html UW Seattle 4 The Axion Dark Matter Axion eXperiment (ADMX) • a hypothetical elementary particle postulated by the Peccei–Quinn theory in 1977 to resolve the strong CP problem (naturally preserve charge-parity) in quantum chromodynamics (QCD). • a low mass axion is a possible component of cold dark matter. Facility: 8 tesla magnet and a cryogenically cooled high- Q tunable microwave cavity Principle: cavity refequenncy tuned to axion mass can enhance interaction with axion which decays to two photons and deposit tiny energy into the cavity. Detection: Superconducting QUantum Interference Device (SQUID) amplifier and lower temperatures from a 3He refrigerator (noise level 0.15K ) Gray Rybka 5 Torsion-Balance Exp. The Eöt-Wash Group 6 Krishna Venkateswara Relativity I • Reference from Tipler chapter 39-1 to 39-3 • Historical Remark • Newtonian relativity • Einstein’s postulates • Lorentz transformation • Time dilation • Length contraction • The relativistic Doppler effect 7 Relativity Einstein was far from being the only person who contributed to the development of the theory of special relativity. However, he was the one who put everything together. Some important years: 1904 Lorentz transformation/Poincaré 1905 Special Relativity - inertial frame 1915 General Relativity - non-inertial frame (acceleration frame) The Nobel Prize Jules Henri Poincaré The Nobel Prize in in Physics 1902 - Physics 1921 - Albert Hendrik Antoon Einstein Lorentz 8 Wave theory of light Is light a wave or a particle? Huygens first proposed wave theory of light. (1678) What is a wave? an oscillation accompanied by a transfer of energy that travels through space or mass. Propagation in media. Interference frequency = 1 / T Unit: [s-1] Wave velocity Diffraction = λ / T = λ f Unit: [m/s] 9 Particle theory of light Refraction Phenomenon 1660 Hypothesis: Huygen’s wave theory explains refraction due to white light corruptions in glass. -> Experiment: The more glasses the more corruption. Result: decomposed light depends on the refraction angle but not amount of materials passing through. Conclusion: wave theory is wrong. New theory: white light is composed of different colored particle Newton's sketch of his crucial experiment. Image credit: Warden and Fellows. 10 Wave theory returns Young’s Double-slit experiment Fresnel’s single-slit experiment 1801 1816 Interference Diffraction 11 Electromagnetic theory 12 Electric Field Electric field’s SI units are newtons per coulomb (N⋅C−1) or, equivalently, volts per metre (V⋅m−1) 13 Magnetic field B is measured in teslas (symbol:T) and newtons per meter per ampere (symbol: N·m−1·A−1 or N/(m·A)) in the SI. 14 Electromagnetic theory Gauss’s Law Gauss’s Law for magnetism 1835 Absence of free magnetic poles Faraday’s Law of Induction Ampère's Circuital Law 1831 1826 15 Maxwell’s equation (Integral form) Gauss’s Law Gauss’s Law for magnetism 1861 Absence of free magnetic poles Faraday’s Law of Induction Ampère's Circuital Law 16 Maxwell’s equation (Differential form) Gauss’s Law Gauss’s Law for magnetism 1861 Absence of free magnetic poles Faraday’s Law of Induction Ampère's Circuital Law 17 Maxwell’s EM wave equation 1861 c =299792458 m/s =3x108m/s 18 Light is a Wave c = constant in vacuum 19 Newton 1687 Sir Isaac Newton published his book Philosophiae naturalis principia mathematica (or just Principia). In classical Newtonian mechanics, time was universal and absolute. Isaac Newton 20 Maxwell 1873 James Clerk Maxwell completed his theory of electromagnetism. This theory turned out to be compatible with special relativity, even though special relativity was not known at that time. James Clark Maxwell 21 Michelson-Morley 1887 The famous Michelson-Morley experiment was performed by Albert Abraham Michelson and Edward Williams Morley. In the same year, during studies of the Doppler effect, Woldemar Voigt wrote down what were later to be known as the Lorentz transformations. The Nobel Prize in Physics 1907 - Albert Abraham Michelson 22 Larmor and Lorentz 1898 The Lorentz transformations were also written down in 1898 by Joseph Larmor and in 1899 by Hendrik Antoon Lorentz. The Nobel Prize in Physics 1902 - Hendrik Antoon Lorentz 23 Poincaré 1898 Jules Henri Poincaré said that "... we have no direct intuition about the equality of two time intervals." 1904 Poincaré came very close to special relativity: "... as demanded by the relativity principle the observer cannot know whether he is at rest or in absolute motion." Jules Henri Poincaré 24 Special Relativity 1905 On June 5, Poincaré finished an article in which he stated that there seems to be a general law of Nature, that it is impossible to demonstrate absolute motion. On June 30, Einstein finished his famous article On the Electrodynamics of Moving Bodies, where he formulated the two postulates of special relativity. Furthermore, in September, Einstein published the short article Does the Inertia of a Body Depend upon Its Energy-Content? In which he derived the 2 formula E0=mc . 25 Planck 1908 Max Planck wrote an article on special relativity. He was the second person after Einstein who wrote an article about this theory. In the same year, Hermann Minkowski also published an important article about special relativity. The Nobel Prize in Physics 1918 - Max Karl Ernst Ludwig Planck » 26 General Relativity 1915 On November 25, nearly ten years after the foundation of special relativity, Einstein submitted his paper The Field Equations of Gravitation for publication, which gave the correct field equations for the theory of general relativity (or general relativity for short). Actually, the German mathematician David Hilbert submitted an article containing the correct field equations for general relativity five days before Einstein. Hilbert never claimed priority for this theory. The Nobel Prize in Physics 1921 - Albert Einstein » 27.
Recommended publications
  • Evolution of Mathematics: a Brief Sketch
    Open Access Journal of Mathematical and Theoretical Physics Mini Review Open Access Evolution of mathematics: a brief sketch Ancient beginnings: numbers and figures Volume 1 Issue 6 - 2018 It is no exaggeration that Mathematics is ubiquitously Sujit K Bose present in our everyday life, be it in our school, play ground, SN Bose National Center for Basic Sciences, Kolkata mobile number and so on. But was that the case in prehistoric times, before the dawn of civilization? Necessity is the mother Correspondence: Sujit K Bose, Professor of Mathematics (retired), SN Bose National Center for Basic Sciences, Kolkata, of invenp tion or discovery and evolution in this case. So India, Email mathematical concepts must have been seen through or created by those who could, and use that to derive benefit from the Received: October 12, 2018 | Published: December 18, 2018 discovery. The creative process of discovery and later putting that to use must have been arduous and slow. I try to look back from my limited Indian perspective, and reflect up on what might have been the course taken up by mathematics during 10, 11, 12, 13, etc., giving place value to each digit. The barrier the long journey, since ancient times. of writing very large numbers was thus broken. For instance, the numbers mentioned in Yajur Veda could easily be represented A very early method necessitated for counting of objects as Dasha 10, Shata (102), Sahsra (103), Ayuta (104), Niuta (enumeration) was the Tally Marks used in the late Stone Age. In (105), Prayuta (106), ArA bud (107), Nyarbud (108), Samudra some parts of Europe, Africa and Australia the system consisted (109), Madhya (1010), Anta (1011) and Parartha (1012).
    [Show full text]
  • Henry Andrews Bumstead 1870-1920
    NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA BIOGRAPHICAL MEMOIRS VOLUME XIII SECOND MEMOIR BIOGRAPHICAL MEMOIR OF HENRY ANDREWS BUMSTEAD 1870-1920 BY LEIGH PAGE PRESENTED TO THE ACADEMY AT THE ANNUAL MEETING, 1929 HENRY ANDREWS BUMSTEAD BY LIUGH PAGE Henry Andrews Bumstead was born in the small town of Pekin, Illinois, on March 12th, 1870, son of Samuel Josiah Bumstead and Sarah Ellen Seiwell. His father, who was a physician of considerable local prominence, had graduated from the medical school in Philadelphia and was one of the first American students of medicine to go to Vienna to complete his studies. While the family was in Vienna, Bumstead, then a child three years of age, learned to speak German as fluently as he spoke English, an accomplishment which was to prove valuable to him in his subsequent career. Bumstead was descended from an old New England family which traces its origin to Thomas Bumstead, a native of Eng- land, who settled in Boston, Massachusetts, about 1640. Many of his ancestors were engaged in the professions, his paternal grandfather, the Reverend Samuel Andrews Bumstead, being a graduate of Princeton Theological Seminary and a minister in active service. From them he inherited a keen mind and an unusually retentive memory. It is related that long before he had learned to read, his Sunday school teacher surprised his mother by complimenting her on the ease with which her son had rendered the Sunday lesson. It turned out that his mother made a habit of reading the lesson to Bumstead before he left for school, and the child's remarkable performance there was due to his ability to hold in his memory every word of the lesson after hearing it read to him a single time.
    [Show full text]
  • Is It Time for a New Paradigm in Physics?
    Vigier IOP Publishing IOP Conf. Series: Journal of Physics: Conf. Series 1251 (2019) 012024 doi:10.1088/1742-6596/1251/1/012024 Is it time for a new paradigm in physics? Shukri Klinaku University of Prishtina Sheshi Nëna Terezë, Prishtina, Kosovo [email protected] Abstract. The fact that the two main pillars of modern Physics are incompatible with each other; the fact that some unsolved problems have accumulated in Physics; and, in particular, the fact that Physics has been invaded by weird concepts (as if we were in the Middle Ages); these facts are quite sufficient to confirm the need for a new paradigm in Physics. But the conclusion that a new paradigm is needed is not sufficient, without an answer to the question: is there sufficient sources and resources to construct a new paradigm in Physics? I consider that the answer to this question is also yes. Today, Physics has sufficient material in experimental facts, theoretical achievements and human and technological potential. So, there is the need and opportunity for a new paradigm in Physics. The core of the new paradigm of Physics would be the nature of matter. According to this new paradigm, Physics should give up on wave-particle dualism, should redefine waves, and should end the mystery about light and its privilege in Physics. The consequences of this would make Physics more understandable, and - more importantly - would make it capable of solving current problems and opening up new perspectives in exploring nature and the universe. 1. Introduction Quantum Physics and the theory of relativity are the ‘two main pillars’ of modern Physics.
    [Show full text]
  • On Frame-Invariance in Electrodynamics
    On Frame-Invariance in Electrodynamics Giovanni Romanoa aDepartment of Structural Engineering, University of Naples Federico II, via Claudio 21, 80125 - Naples, Italy e-mail: [email protected] Abstract The Faraday and Ampere` -Maxwell laws of electrodynamics in space- time manifold are formulated in terms of differential forms and exterior and Lie derivatives. Due to their natural behavior with respect to push-pull operations, these geometric objects are the suitable tools to deal with the space-time observer split of the events manifold and with frame-invariance properties. Frame-invariance is investigated in complete generality, referring to any automorphic transformation in space-time, in accord with the spirit of general relativity. A main result of the new geometric theory is the assess- ment of frame-invariance of space-time electromagnetic differential forms and induction laws and of their spatial counterparts under any change of frame. This target is reached by a suitable extension of the formula governing the correspondence between space-time and spatial differential forms in electro- dynamics to take relative motions in due account. The result modifies the statement made by Einstein in the 1905 paper on the relativity principle, and reproposed in the subsequent literature, and advocates the need for a revision of the theoretical framework of electrodynamics. Key words: Electrodynamics, frame-invariance, differential forms 1. Introduction arXiv:1209.5960v2 [physics.gen-ph] 10 Oct 2012 The history of electromagnetism is a really fascinating one, starting from the brilliant experimental discoveries by Romagnosi-Ørsted in 1800-1820 and by Zantedeschi-Henry-Faraday in 1829-30-31, and from the early beautiful theoretical abstractions that soon led to Faraday’s and Ampere` - Maxwell laws of electromagnetic inductions.
    [Show full text]
  • On the Origin of the Lorentz Transformation
    Human Journals Short Communication June 2018 Vol.:9, Issue:4 © All rights are reserved by W. Engelhardt On the Origin of the Lorentz Transformation Keywords: Special relativity, Voigt, Lorentz, Poincaré, Einstein ABSTRACT The Lorentz Transformation, which is considered as W. Engelhardt constitutive for the Special Relativity Theory, was invented Retired from: Max-Planck-Institut für Plasmaphysik, D- by Voigt in 1887, adopted by Lorentz in 1904, and baptized 85741 Garching, Germany by Poincaré in 1906. Einstein probably picked it up from Voigt directly. Submission: 19 May 2018 Accepted: 25 May 2018 Published: 30 June 2018 www.ijsrm.humanjournals.com www.ijsrm.humanjournals.com 1 INTRODUCTION: Maxwell’s wave equation Maxwell’s ether theory of light was developed from his first order equations and resulted in a homogeneous wave equation for the vector potential: 2 A cA2 t 2 The electromagnetic field could be calculated by differentiating this potential with respect to time and space: E A t, B rot A . For a wave polarized in y-direction, e.g., and travelling in x-direction one may write for the y-component of A : 22AA c2 (1) xt22 Formally this equation is the same as a wave equation for sound, e.g. 22pp c 2 (2) S xt22 Where cS is the sound velocity in air and p is the pressure perturbation. Maxwell took the propagation velocity in (1) as the velocity of light with respect to the ether that was perceived by him as a hypothetical medium in which light propagates like sound in air. From the formal similarity of (1) and (2) follow similar solutions, e.g.
    [Show full text]
  • December 4, 1954 NATURE 1037
    No. 4440 December 4, 1954 NATURE 1037 COPLEY MEDALLISTS, 1915-54 is that he never ventured far into interpretation or 1915 I. P. Pavlov 1934 Prof. J. S. Haldane prediction after his early studies in fungi. Here his 1916 Sir James Dewar 1935 Prof. C. T. R. Wilson interpretation was unfortunate in that he tied' the 1917 Emile Roux 1936 Sir Arthur Evans word sex to the property of incompatibility and 1918 H. A. Lorentz 1937 Sir Henry Dale thereby led his successors astray right down to the 1919 M. Bayliss W. 1938 Prof. Niels Bohr present day. In a sense the style of his work is best 1920 H. T. Brown 1939 Prof. T. H. Morgan 1921 Sir Joseph Larmor 1940 Prof. P. Langevin represented by his diagrams of Datura chromosomes 1922 Lord Rutherford 1941 Sir Thomas Lewis as packets. These diagrams were useful in a popular 1923 Sir Horace Lamb 1942 Sir Robert Robinson sense so long as one did not take them too seriously. 1924 Sir Edward Sharpey- 1943 Sir Joseph Bancroft Unfortunately, it seems that Blakeslee did take them Schafer 1944 Sir Geoffrey Taylor seriously. To him they were the real and final thing. 1925 A. Einstein 1945 Dr. 0. T. Avery By his alertness and ingenuity and his practical 1926 Sir Frederick Gow­ 1946 Dr. E. D. Adrian sense in organizing the Station for Experimental land Hopkins 1947 Prof. G. H. Hardy Evolution at Cold Spring Harbor (where he worked 1927 Sir Charles Sherring- 1948 . A. V. Hill Prof in 1942), ton 1949 Prof. G.
    [Show full text]
  • Can Science Advance Effectively Through Philosophical Criticism and Reflection?
    Can science advance effectively through philosophical criticism and reflection? ROBERTO TORRETTI Universidad de Puerto Rico ABSTRACT Prompted by Hasok Chang’s conception of the history and philosophy of science (HPS) as the continuation of science by other means, I examine the possibility of obtaining scientific knowledge through philosophical criticism and reflection, in the light of four historical cases, concerning (i) the role of absolute space in Newtonian dynamics, (ii) the purported contraction of rods and retardation of clocks in Special Relativity, (iii) the reality of the electromagnetic ether, and (iv) the so-called problem of time’s arrow. In all four cases it is clear that a better understanding of such matters can be achieved —and has been achieved— through conceptual analysis. On the other hand, however, it would seem that this kind of advance has more to do with philosophical questions in science than with narrowly scientific questions. Hence, if HPS in effect continues the work of science by other means, it could well be doing it for other ends than those that working scientists ordinarily have in mind. Keywords: Absolute space – Inertial frames – Length contraction – Clock retardation – Special relativity – Ether – Time – Time directedness – Entropy – Boltzmann entropy Philosophical criticism and the advancement of science 2 The mind will not readily give up the attempt to apprehend the exact formal character of the latent connexions between different physical agencies: and the history of discovery may be held perhaps to supply the strongest reason for estimating effort towards clearness of thought as of not less importance in its own sphere than exploration of phenomena.
    [Show full text]
  • Voigt Transformations in Retrospect: Missed Opportunities?
    Voigt transformations in retrospect: missed opportunities? Olga Chashchina Ecole´ Polytechnique, Palaiseau, France∗ Natalya Dudisheva Novosibirsk State University, 630 090, Novosibirsk, Russia† Zurab K. Silagadze Novosibirsk State University and Budker Institute of Nuclear Physics, 630 090, Novosibirsk, Russia.‡ The teaching of modern physics often uses the history of physics as a didactic tool. However, as in this process the history of physics is not something studied but used, there is a danger that the history itself will be distorted in, as Butterfield calls it, a “Whiggish” way, when the present becomes the measure of the past. It is not surprising that reading today a paper written more than a hundred years ago, we can extract much more of it than was actually thought or dreamed by the author himself. We demonstrate this Whiggish approach on the example of Woldemar Voigt’s 1887 paper. From the modern perspective, it may appear that this paper opens a way to both the special relativity and to its anisotropic Finslerian generalization which came into the focus only recently, in relation with the Cohen and Glashow’s very special relativity proposal. With a little imagination, one can connect Voigt’s paper to the notorious Einstein-Poincar´epri- ority dispute, which we believe is a Whiggish late time artifact. We use the related historical circumstances to give a broader view on special relativity, than it is usually anticipated. PACS numbers: 03.30.+p; 1.65.+g Keywords: Special relativity, Very special relativity, Voigt transformations, Einstein-Poincar´epriority dispute I. INTRODUCTION Sometimes Woldemar Voigt, a German physicist, is considered as “Relativity’s forgotten figure” [1].
    [Show full text]
  • Ether and Electrons in Relativity Theory (1900-1911) Scott Walter
    Ether and electrons in relativity theory (1900-1911) Scott Walter To cite this version: Scott Walter. Ether and electrons in relativity theory (1900-1911). Jaume Navarro. Ether and Moder- nity: The Recalcitrance of an Epistemic Object in the Early Twentieth Century, Oxford University Press, 2018, 9780198797258. hal-01879022 HAL Id: hal-01879022 https://hal.archives-ouvertes.fr/hal-01879022 Submitted on 21 Sep 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ether and electrons in relativity theory (1900–1911) Scott A. Walter∗ To appear in J. Navarro, ed, Ether and Modernity, 67–87. Oxford: Oxford University Press, 2018 Abstract This chapter discusses the roles of ether and electrons in relativity the- ory. One of the most radical moves made by Albert Einstein was to dismiss the ether from electrodynamics. His fellow physicists felt challenged by Einstein’s view, and they came up with a variety of responses, ranging from enthusiastic approval, to dismissive rejection. Among the naysayers were the electron theorists, who were unanimous in their affirmation of the ether, even if they agreed with other aspects of Einstein’s theory of relativity. The eventual success of the latter theory (circa 1911) owed much to Hermann Minkowski’s idea of four-dimensional spacetime, which was portrayed as a conceptual substitute of sorts for the ether.
    [Show full text]
  • Beyond Einstein Perspectives on Geometry, Gravitation, and Cosmology in the Twentieth Century Editors David E
    David E. Rowe • Tilman Sauer • Scott A. Walter Editors Beyond Einstein Perspectives on Geometry, Gravitation, and Cosmology in the Twentieth Century Editors David E. Rowe Tilman Sauer Institut für Mathematik Institut für Mathematik Johannes Gutenberg-Universität Johannes Gutenberg-Universität Mainz, Germany Mainz, Germany Scott A. Walter Centre François Viète Université de Nantes Nantes Cedex, France ISSN 2381-5833 ISSN 2381-5841 (electronic) Einstein Studies ISBN 978-1-4939-7706-2 ISBN 978-1-4939-7708-6 (eBook) https://doi.org/10.1007/978-1-4939-7708-6 Library of Congress Control Number: 2018944372 Mathematics Subject Classification (2010): 01A60, 81T20, 83C47, 83D05 © Springer Science+Business Media, LLC, part of Springer Nature 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
    [Show full text]
  • On the Shoulders of Giants: a Brief History of Physics in Göttingen
    1 6 ON THE SHO UL DERS OF G I A NTS : A B RIEF HISTORY OF P HYSI C S IN G Ö TTIN G EN On the Shoulders of Giants: a brief History of Physics in Göttingen 18th and 19th centuries Georg Ch. Lichtenberg (1742-1799) may be considered the fore- under Emil Wiechert (1861-1928), where seismic methods for father of experimental physics in Göttingen. His lectures were the study of the Earth's interior were developed. An institute accompanied by many experiments with equipment which he for applied mathematics and mechanics under the joint direc- had bought privately. To the general public, he is better known torship of the mathematician Carl Runge (1856-1927) (Runge- for his thoughtful and witty aphorisms. Following Lichtenberg, Kutta method) and the pioneer of aerodynamics, or boundary the next physicist of world renown would be Wilhelm Weber layers, Ludwig Prandtl (1875-1953) complemented the range of (1804-1891), a student, coworker and colleague of the „prince institutions related to physics proper. In 1925, Prandtl became of mathematics“ C. F. Gauss, who not only excelled in electro- the director of a newly established Kaiser-Wilhelm-Institute dynamics but fought for his constitutional rights against the for Fluid Dynamics. king of Hannover (1830). After his re-installment as a profes- A new and well-equipped physics building opened at the end sor in 1849, the two Göttingen physics chairs , W. Weber and B. of 1905. After the turn to the 20th century, Walter Kaufmann Listing, approximately corresponded to chairs of experimen- (1871-1947) did precision measurements on the velocity depen- tal and mathematical physics.
    [Show full text]
  • A Reconstruction and Its Implications for Einstein's Theories of Relativity
    The Mystery of the Lorentz Transform: A Reconstruction and Its Implications for Einstein’s Theories of Relativity and cosmology. Abdul Malek TECHNOLOGIE DMI 980 Rue Robert, Brossard, Québec. J4X 1C9, Canada E-mail: [email protected] Abstract: The Lorentz Transformation (LT) is an arbitrary and poorly conceived mathematical tool designed to make Maxwell’s electromagnetism conform to Galilean relativity, which formed the basis of classical mechanics and physics. A strange combination of this transform with an axiomatic assumption by Albert Einstein that the velocity of light c is an absolute and universal constant has led to an idealist,geometrical and phenomenological view of the universe,that is at variance with objective reality. This conundrum that has lasted for more than hundred years has led to rampant mysticism and has impaired the development of positive knowledge of the universe.The presentreconstructionof LT shows that the gamma term, which fueled mysticism in physics and cosmology is,on the contrary,a natural outcome of the subjective geometrical rendition of the speed of light and the idealist unification of abstract spaceand time into a 4D “spacetime” manifold; by Minkowski and Einstein. Only a materialist dialectical perspective of space and time can rid physics of all mysticism arising out of LT; from the quantum to the cosmic. The Lorentz Transformation: The idea of Lorentz Transform arose after Oliver Heavyside [1]in 1889showed from a consideration of Maxwell’s equations that thespherical electric field surrounding a point charge would not retain the spherical symmetry,once the charge is in motion in a Galilean co-ordinate system.
    [Show full text]