Evolution of Mathematics: a Brief Sketch
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Differential Calculus and by Era Integral Calculus, Which Are Related by in Early Cultures in Classical Antiquity the Fundamental Theorem of Calculus
History of calculus - Wikipedia, the free encyclopedia 1/1/10 5:02 PM History of calculus From Wikipedia, the free encyclopedia History of science This is a sub-article to Calculus and History of mathematics. History of Calculus is part of the history of mathematics focused on limits, functions, derivatives, integrals, and infinite series. The subject, known Background historically as infinitesimal calculus, Theories/sociology constitutes a major part of modern Historiography mathematics education. It has two major Pseudoscience branches, differential calculus and By era integral calculus, which are related by In early cultures in Classical Antiquity the fundamental theorem of calculus. In the Middle Ages Calculus is the study of change, in the In the Renaissance same way that geometry is the study of Scientific Revolution shape and algebra is the study of By topic operations and their application to Natural sciences solving equations. A course in calculus Astronomy is a gateway to other, more advanced Biology courses in mathematics devoted to the Botany study of functions and limits, broadly Chemistry Ecology called mathematical analysis. Calculus Geography has widespread applications in science, Geology economics, and engineering and can Paleontology solve many problems for which algebra Physics alone is insufficient. Mathematics Algebra Calculus Combinatorics Contents Geometry Logic Statistics 1 Development of calculus Trigonometry 1.1 Integral calculus Social sciences 1.2 Differential calculus Anthropology 1.3 Mathematical analysis -
Calculus? Can You Think of a Problem Calculus Could Be Used to Solve?
Mathematics Before you read Discuss these questions with your partner. What do you know about calculus? Can you think of a problem calculus could be used to solve? В A Vocabulary Complete the definitions below with words from the box. slope approximation embrace acceleration diverse indispensable sphere cube rectangle 1 If something is a(n) it В Reading 1 isn't exact. 2 An increase in speed is called Calculus 3 If something is you can't Calculus is the branch of mathematics that deals manage without it. with the rates of change of quantities as well as the length, area and volume of objects. It grew 4 If you an idea, you accept it. out of geometry and algebra. There are two 5 A is a three-dimensional, divisions of calculus - differential calculus and square shape. integral calculus. Differential calculus is the form 6 Something which is is concerned with the rate of change of quantities. different or of many kinds. This can be illustrated by slopes of curves. Integral calculus is used to study length, area 7 If you place two squares side by side, you and volume. form a(n) The earliest examples of a form of calculus date 8 A is a three-dimensional back to the ancient Greeks, with Eudoxus surface, all the points of which are the same developing a mathematical method to work out distance from a fixed point. area and volume. Other important contributions 9 A is also known as a fall. were made by the famous scientist and mathematician, Archimedes. In India, over the 98 Macmillan Guide to Science Unit 21 Mathematics 4 course of many years - from 500 AD to the 14th Pronunciation guide century - calculus was studied by a number of mathematicians. -
Historical Notes on Calculus
Historical notes on calculus Dr. Vladimir Dotsenko Dr. Vladimir Dotsenko Historical notes on calculus 1/9 Descartes: Describing geometric figures by algebraic formulas 1637: Ren´eDescartes publishes “La G´eom´etrie”, that is “Geometry”, a book which did not itself address calculus, but however changed once and forever the way we relate geometric shapes to algebraic equations. Later works of creators of calculus definitely relied on Descartes’ methodology and revolutionary system of notation in the most fundamental way. Ren´eDescartes (1596–1660), courtesy of Wikipedia Dr. Vladimir Dotsenko Historical notes on calculus 2/9 Fermat: “Pre-calculus” 1638: In a letter to Mersenne, Pierre de Fermat explains what later becomes the key point of his works “Methodus ad disquirendam maximam et minima” and “De tangentibus linearum curvarum”, that is “Method of discovery of maximums and minimums” and “Tangents of curved lines” (published posthumously in 1679). This is not differential calculus per se, but something equivalent. Pierre de Fermat (1601–1665), courtesy of Wikipedia Dr. Vladimir Dotsenko Historical notes on calculus 3/9 Pascal and Huygens: Implicit calculus In 1650s, slightly younger scientists like Blaise Pascal and Christiaan Huygens also used methods similar to those of Fermat to study maximal and minimal values of functions. They did not talk about anything like limits, but in fact were doing exactly the things we do in modern calculus for purposes of geometry and optics. Blaise Pascal (1623–1662), courtesy of Christiaan Huygens (1629–1695), Wikipedia courtesy of Wikipedia Dr. Vladimir Dotsenko Historical notes on calculus 4/9 Barrow: Tangents vs areas 1669-70: Isaac Barrow publishes “Lectiones Opticae” and “Lectiones Geometricae” (“Lectures on Optics” and “Lectures on Geometry”), based on his lectures in Cambridge. -
Henry Andrews Bumstead 1870-1920
NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA BIOGRAPHICAL MEMOIRS VOLUME XIII SECOND MEMOIR BIOGRAPHICAL MEMOIR OF HENRY ANDREWS BUMSTEAD 1870-1920 BY LEIGH PAGE PRESENTED TO THE ACADEMY AT THE ANNUAL MEETING, 1929 HENRY ANDREWS BUMSTEAD BY LIUGH PAGE Henry Andrews Bumstead was born in the small town of Pekin, Illinois, on March 12th, 1870, son of Samuel Josiah Bumstead and Sarah Ellen Seiwell. His father, who was a physician of considerable local prominence, had graduated from the medical school in Philadelphia and was one of the first American students of medicine to go to Vienna to complete his studies. While the family was in Vienna, Bumstead, then a child three years of age, learned to speak German as fluently as he spoke English, an accomplishment which was to prove valuable to him in his subsequent career. Bumstead was descended from an old New England family which traces its origin to Thomas Bumstead, a native of Eng- land, who settled in Boston, Massachusetts, about 1640. Many of his ancestors were engaged in the professions, his paternal grandfather, the Reverend Samuel Andrews Bumstead, being a graduate of Princeton Theological Seminary and a minister in active service. From them he inherited a keen mind and an unusually retentive memory. It is related that long before he had learned to read, his Sunday school teacher surprised his mother by complimenting her on the ease with which her son had rendered the Sunday lesson. It turned out that his mother made a habit of reading the lesson to Bumstead before he left for school, and the child's remarkable performance there was due to his ability to hold in his memory every word of the lesson after hearing it read to him a single time. -
Pure Mathematics
good mathematics—to be without applications, Hardy ab- solved mathematics, and thus the mathematical community, from being an accomplice of those who waged wars and thrived on social injustice. The problem with this view is simply that it is not true. Mathematicians live in the real world, and their mathematics interacts with the real world in one way or another. I don’t want to say that there is no difference between pure and ap- plied math. Someone who uses mathematics to maximize Why I Don’t Like “Pure the time an airline’s fleet is actually in the air (thus making money) and not on the ground (thus costing money) is doing Mathematics” applied math, whereas someone who proves theorems on the Hochschild cohomology of Banach algebras (I do that, for in- † stance) is doing pure math. In general, pure mathematics has AVolker Runde A no immediate impact on the real world (and most of it prob- ably never will), but once we omit the adjective immediate, I am a pure mathematician, and I enjoy being one. I just the distinction begins to blur. don’t like the adjective “pure” in “pure mathematics.” Is mathematics that has applications somehow “impure”? The English mathematician Godfrey Harold Hardy thought so. In his book A Mathematician’s Apology, he writes: A science is said to be useful of its development tends to accentuate the existing inequalities in the distri- bution of wealth, or more directly promotes the de- struction of human life. His criterion for good mathematics was an entirely aesthetic one: The mathematician’s patterns, like the painter’s or the poet’s must be beautiful; the ideas, like the colours or the words must fit together in a harmo- nious way. -
December 4, 1954 NATURE 1037
No. 4440 December 4, 1954 NATURE 1037 COPLEY MEDALLISTS, 1915-54 is that he never ventured far into interpretation or 1915 I. P. Pavlov 1934 Prof. J. S. Haldane prediction after his early studies in fungi. Here his 1916 Sir James Dewar 1935 Prof. C. T. R. Wilson interpretation was unfortunate in that he tied' the 1917 Emile Roux 1936 Sir Arthur Evans word sex to the property of incompatibility and 1918 H. A. Lorentz 1937 Sir Henry Dale thereby led his successors astray right down to the 1919 M. Bayliss W. 1938 Prof. Niels Bohr present day. In a sense the style of his work is best 1920 H. T. Brown 1939 Prof. T. H. Morgan 1921 Sir Joseph Larmor 1940 Prof. P. Langevin represented by his diagrams of Datura chromosomes 1922 Lord Rutherford 1941 Sir Thomas Lewis as packets. These diagrams were useful in a popular 1923 Sir Horace Lamb 1942 Sir Robert Robinson sense so long as one did not take them too seriously. 1924 Sir Edward Sharpey- 1943 Sir Joseph Bancroft Unfortunately, it seems that Blakeslee did take them Schafer 1944 Sir Geoffrey Taylor seriously. To him they were the real and final thing. 1925 A. Einstein 1945 Dr. 0. T. Avery By his alertness and ingenuity and his practical 1926 Sir Frederick Gow 1946 Dr. E. D. Adrian sense in organizing the Station for Experimental land Hopkins 1947 Prof. G. H. Hardy Evolution at Cold Spring Harbor (where he worked 1927 Sir Charles Sherring- 1948 . A. V. Hill Prof in 1942), ton 1949 Prof. G. -
Can Science Advance Effectively Through Philosophical Criticism and Reflection?
Can science advance effectively through philosophical criticism and reflection? ROBERTO TORRETTI Universidad de Puerto Rico ABSTRACT Prompted by Hasok Chang’s conception of the history and philosophy of science (HPS) as the continuation of science by other means, I examine the possibility of obtaining scientific knowledge through philosophical criticism and reflection, in the light of four historical cases, concerning (i) the role of absolute space in Newtonian dynamics, (ii) the purported contraction of rods and retardation of clocks in Special Relativity, (iii) the reality of the electromagnetic ether, and (iv) the so-called problem of time’s arrow. In all four cases it is clear that a better understanding of such matters can be achieved —and has been achieved— through conceptual analysis. On the other hand, however, it would seem that this kind of advance has more to do with philosophical questions in science than with narrowly scientific questions. Hence, if HPS in effect continues the work of science by other means, it could well be doing it for other ends than those that working scientists ordinarily have in mind. Keywords: Absolute space – Inertial frames – Length contraction – Clock retardation – Special relativity – Ether – Time – Time directedness – Entropy – Boltzmann entropy Philosophical criticism and the advancement of science 2 The mind will not readily give up the attempt to apprehend the exact formal character of the latent connexions between different physical agencies: and the history of discovery may be held perhaps to supply the strongest reason for estimating effort towards clearness of thought as of not less importance in its own sphere than exploration of phenomena. -
Ether and Electrons in Relativity Theory (1900-1911) Scott Walter
Ether and electrons in relativity theory (1900-1911) Scott Walter To cite this version: Scott Walter. Ether and electrons in relativity theory (1900-1911). Jaume Navarro. Ether and Moder- nity: The Recalcitrance of an Epistemic Object in the Early Twentieth Century, Oxford University Press, 2018, 9780198797258. hal-01879022 HAL Id: hal-01879022 https://hal.archives-ouvertes.fr/hal-01879022 Submitted on 21 Sep 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ether and electrons in relativity theory (1900–1911) Scott A. Walter∗ To appear in J. Navarro, ed, Ether and Modernity, 67–87. Oxford: Oxford University Press, 2018 Abstract This chapter discusses the roles of ether and electrons in relativity the- ory. One of the most radical moves made by Albert Einstein was to dismiss the ether from electrodynamics. His fellow physicists felt challenged by Einstein’s view, and they came up with a variety of responses, ranging from enthusiastic approval, to dismissive rejection. Among the naysayers were the electron theorists, who were unanimous in their affirmation of the ether, even if they agreed with other aspects of Einstein’s theory of relativity. The eventual success of the latter theory (circa 1911) owed much to Hermann Minkowski’s idea of four-dimensional spacetime, which was portrayed as a conceptual substitute of sorts for the ether. -
Fermat's Technique of Finding Areas Under Curves
Fermat’s technique of finding areas under curves Ed Staples Erindale College, ACT <[email protected]> erhaps next time you head towards the fundamental theorem of calculus Pin your classroom, you may wish to consider Fermat’s technique of finding expressions for areas under curves, beautifully outlined in Boyer’s History of Mathematics. Pierre de Fermat (1601–1665) developed some impor- tant results in the journey toward the discovery of the calculus. One of these concerned finding areas under simple polynomial curves. It is an amazing fact that, despite deriving these results, he failed to document any connection between tangents and areas. The method is essentially an exercise in geometric series, and I think it is instructive and perhaps refreshing to introduce a little bit of variation from the standard introductions. The method is entirely accessible to senior students, and makes an interesting connection between the anti derivative result and the factorisation of (1 – rn+1). Fermat considered that the area between x = 0 and x = a below the curve y = xn and above the x-axis, to be approximated by circumscribed rectangles where the width of each rectangle formed a geometric sequence. The divi- sions into which the interval is divided, from the right hand side are made at x = a, x = ar, x = ar2, x = ar3 etc., where a and r are constants, with 0 < r < 1 as shown in the diagram. A u s t r a l i a n S e n i o r M a t h e m a t i c s J o u r n a l 1 8 ( 1 ) 53 s e 2 l p If we first consider the curve y = x , the area A contained within the rectan- a t S gles is given by: A = (a – ar)a2 + (ar – ar2)(ar)2 + (ar2 – ar3)(ar2)2 + … This is a geometric series with ratio r3 and first term (1 – r)a3. -
Beyond Einstein Perspectives on Geometry, Gravitation, and Cosmology in the Twentieth Century Editors David E
David E. Rowe • Tilman Sauer • Scott A. Walter Editors Beyond Einstein Perspectives on Geometry, Gravitation, and Cosmology in the Twentieth Century Editors David E. Rowe Tilman Sauer Institut für Mathematik Institut für Mathematik Johannes Gutenberg-Universität Johannes Gutenberg-Universität Mainz, Germany Mainz, Germany Scott A. Walter Centre François Viète Université de Nantes Nantes Cedex, France ISSN 2381-5833 ISSN 2381-5841 (electronic) Einstein Studies ISBN 978-1-4939-7706-2 ISBN 978-1-4939-7708-6 (eBook) https://doi.org/10.1007/978-1-4939-7708-6 Library of Congress Control Number: 2018944372 Mathematics Subject Classification (2010): 01A60, 81T20, 83C47, 83D05 © Springer Science+Business Media, LLC, part of Springer Nature 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. -
Leonhard Euler English Version
LEONHARD EULER (April 15, 1707 – September 18, 1783) by HEINZ KLAUS STRICK , Germany Without a doubt, LEONHARD EULER was the most productive mathematician of all time. He wrote numerous books and countless articles covering a vast range of topics in pure and applied mathematics, physics, astronomy, geodesy, cartography, music, and shipbuilding – in Latin, French, Russian, and German. It is not only that he produced an enormous body of work; with unbelievable creativity, he brought innovative ideas to every topic on which he wrote and indeed opened up several new areas of mathematics. Pictured on the Swiss postage stamp of 2007 next to the polyhedron from DÜRER ’s Melencolia and EULER ’s polyhedral formula is a portrait of EULER from the year 1753, in which one can see that he was already suffering from eye problems at a relatively young age. EULER was born in Basel, the son of a pastor in the Reformed Church. His mother also came from a family of pastors. Since the local school was unable to provide an education commensurate with his son’s abilities, EULER ’s father took over the boy’s education. At the age of 14, EULER entered the University of Basel, where he studied philosophy. He completed his studies with a thesis comparing the philosophies of DESCARTES and NEWTON . At 16, at his father’s wish, he took up theological studies, but he switched to mathematics after JOHANN BERNOULLI , a friend of his father’s, convinced the latter that LEONHARD possessed an extraordinary mathematical talent. At 19, EULER won second prize in a competition sponsored by the French Academy of Sciences with a contribution on the question of the optimal placement of a ship’s masts (first prize was awarded to PIERRE BOUGUER , participant in an expedition of LA CONDAMINE to South America). -
Rethinking 'Classical Physics'
This is a repository copy of Rethinking 'Classical Physics'. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/95198/ Version: Accepted Version Book Section: Gooday, G and Mitchell, D (2013) Rethinking 'Classical Physics'. In: Buchwald, JZ and Fox, R, (eds.) Oxford Handbook of the History of Physics. Oxford University Press , Oxford, UK; New York, NY, USA , pp. 721-764. ISBN 9780199696253 © Oxford University Press 2013. This is an author produced version of a chapter published in The Oxford Handbook of the History of Physics. Reproduced by permission of Oxford University Press. Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 Rethinking ‘Classical Physics’ Graeme Gooday (Leeds) & Daniel Mitchell (Hong Kong) Chapter for Robert Fox & Jed Buchwald, editors Oxford Handbook of the History of Physics (Oxford University Press, in preparation) What is ‘classical physics’? Physicists have typically treated it as a useful and unproblematic category to characterize their discipline from Newton until the advent of ‘modern physics’ in the early twentieth century.