Multiview Mm-Wave Imaging with Augmented Depth Camera Information

Total Page:16

File Type:pdf, Size:1020Kb

Multiview Mm-Wave Imaging with Augmented Depth Camera Information Received November 13, 2017, accepted March 4, 2018, date of publication March 15, 2018, date of current version April 18, 2018. Digital Object Identifier 10.1109/ACCESS.2018.2816466 Multiview mm-Wave Imaging With Augmented Depth Camera Information JAIME LAVIADA 1, MIGUEL LÓPEZ-PORTUGUÉS1, ANA ARBOLEYA-ARBOLEYA2, AND FERNANDO LAS-HERAS1, (Senior Member, IEEE) 1Department Ingeniería Eléctrica, Universidad de Oviedo, 33203 Gijón, Spain 2Universidad Rey Juan Carlos, 28942 Madrid, Spain Corresponding author: Jaime Laviada ([email protected]) This work was supported in part by Ayudas Fundación BBVA a Investigadores y Creadores Culturales 2016, in part by the Ministerio de Ciencia e Innovación of Spain /FEDER under Project TEC2014-55290-JIN and Project TEC2014-54005-P, and in part by the Gobierno del Principado de Asturias (PCTI)/FEDER-FSE under Project GRUPIN14-114. ABSTRACT This paper introduces a hybrid method that combines two 3-D imaging methods of very different nature but complementary. On the one hand, a depth camera, also known as RGB-D camera, is used in order to obtain a 3-D scan of the target under test. On the other hand, a synthetic aperture radar at millimeter-wave frequency band is used to exploit the penetration capabilities of these waves, allowing electromagnetic imaging. As a result, the system can provide two complementary and aligned 3-D models. In contrast to the previous work, in which the position estimation and the external 3-D model relied on conventional optical cameras, this setup can construct the model even in the case of flat textures as it does not resort to color information at any stage. Several examples, in which the millimeter-wave scanner is validated by raster scan, are presented for people screening revealing the validity of the approach. INDEX TERMS Millimeter-wave imaging, portable camera, multiview imaging, depth camera, structured light, synthetic aperture radar. I. INTRODUCTION diverse expenses such as the use of ionizing radiation Object and people scanning is a well-known tool that enables (X-rays) or the lost of resolution with respect to conventional to build a computational three-dimensional (3D) model of a optical cameras (micro- and mm-waves). given target. On the one hand, the most widespread approach In the last years, the use of mm-wave technology has is based on scanning an object so that a model of its visible widespread for different reasons. First, this frequency band layer, which is the most external layer, is calculated. This provides very interesting balance between penetration capa- goal can be achieved by means of multiple technologies such bilities and resolution. Consequently, it is appealing for appli- as lasers [1] or a collection of images taken from optical cations such as people screening [7], [9], [10] or automotive cameras [2], [3]. Also, depth cameras, which will be later radars [11]. Second, this frequency band can also provide introduced, can be used for this purpose. very high absolute bandwidth when compared to standard Depending on the technology and investment, different microwave communications, which has motivated its use for degrees of accuracy and scanning speed can be achieved. It is high data-rate wireless communications [12]–[14]. also relevant to observe that these approaches usually entail In addition, micro- and mm-wave camera and portable sys- a relatively low computational burden. Furthermore, it has tems are progressively being developed [6], [15], [16]. This been demonstrated that currently smartphones are capable fact has motivated the use of mm-wave cameras as portable to perform real-time 3D external reconstruction from the 3D electromagnetic scanners [17] in a similar fashion to information captured by their built-in cameras [4]. the aforementioned smartphones scanners with capability to On the other hand, the use of other technologies such build 3D models on-the-fly [4]. In this framework, [17] pro- as X-ray computed tomography, microwaves [5], [6] and posed the use of a Synthetic Aperture Radar (SAR) to scan millimeter-waves (mm-waves) [7], [8] can provide infor- a certain object or body at mm-wave frequencies by com- mation of not only the visible (i.e., external) surface but bining multiview information. The data were collected from also about the inner layers. However, this advantage entails multiple angles in order to achieve a complete model scan. 2169-3536 2018 IEEE. Translations and content mining are permitted for academic research only. VOLUME 6, 2018 Personal use is also permitted, but republication/redistribution requires IEEE permission. 16869 See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. J. Laviada et al.: Multiview mm-Wave Imaging With Augmented Depth Camera Information The position and attitude of the scanner at each view acqui- sition were estimated by using an optical camera. Thus, by taking pictures at the same positions as the mm-wave acqui- sitions are performed and processing them with Structure from Motion techniques [18], the scanner rotation angles and positions can be found to apply the appropriate multiview merge algorithms. The possibility of reducing the number of transmitting and receiving elements resorting to multistatic Fig. 1. Diagram of the steps of the proposed scanning involving techniques was later studied in [19]. electromagnetic and depth camera information. Nevertheless, as pointed out in [17], this positioning scheme requires to find a number of common key points from different views so that the position can be calculated by Fig.1 depicts a diagram with the different steps of the triangulation. In particular, the scale-invariant feature trans- scanning process. As shown, a mm-wave acquisition by form (SIFT) was used to compute the key points in [17]. means of multiple transmitters and receivers is performed in Consequently, the technique is expected to fail when consid- parallel to the acquisition of a depth camera. On one hand, ered objects lack of textures. the acquired scattered field is processed by means of standard In order to bypass the previous limitation, the use of depth range-migration techniques [25] to obtain the reflectivity cameras, also known as RGB-D cameras [20], [21], is pro- evaluated on a regular grid of points. On the other hand, posed in this paper. These cameras are based on two different the PC measured by the depth camera is processed by means approaches. The first one is usually known as structured of the iterative closest point (ICP) algorithm [26] to find light and it relies on projecting a known set of (infrared) out the movement with respect to the previously acquired patterns into the object so that its shape can be estimated from PC, i.e., to know the relative movement between two depth the deformed pattern [22]. The second technique is usually camera acquisitions. Consequently, the global camera attitude known as time-of-flight and it is based on measuring how and position can be estimated by taking into account the long it takes for light to travel the round trip from the sensor cumulative movements and rotations. to a given scene point [23]. It is worthy to note that these Finally, the reflectivity and PC data are merged with the tools have also been hybridized with mm-wave imaging for data from previous acquisitions yielding a double 3D model people screening with booth-size flat-panels to help reducing that contains two sets of information. One related to the exter- the observation volume [24]. nal layer of the object (global point cloud) and the second one The main contribution of this paper is the extension of related to inner layers (global reflectivity). the mm-wave portable scanner concept presented in [17] by replacing the conventional optical camera with a depth B. mm-WAVE IMAGING camera. Thus, positioning is not accomplished by finding key In this work, a regular grid of monostatic transceivers points but by comparing point clouds (PCs) acquired by the is considered as in [7] and [17]. Consequently, standard depth camera. This change does not affect the ability of the range-migration imaging algorithms are used. In particular, system to produce a double model including the external and the approach described in [25], which relies on fast Fourier inner layers. The accuracy achieved by this combination is transforms, is employed. Thus, if a system of coordinates, assessed for several cases in the people screening context. local to the scanner, is defined as x0; y0; z0, where the scan- This paper is structured as follows. First, an overview of the ner aperture is assumed to be along the plane y0 D 0 , then approach combining mm-wave and depth camera information the reflectivity ρ x0; y0; z0 can be computed as: is presented. Next, the details of both imaging systems are detailed. After that, the merging approach to create the double ρ x0; y0; z0 D F −1 F s x0; z0;! model strategy is presented. In the Results section, the accu- k xz racy and time to estimate the position with the depth camera q 2 2 2 are evaluated and, next, several examples considering one × exp −j 4k − kx − kz D (1) dimensional as well as two-dimensional synthetic apertures are shown. Finally, the conclusions are drawn. where s(x0; z0;!) is the acquired complex amplitude for the transceiver placed at the aperture position x0; z0 when it is transmitting a tone at the angular frequency !; D is the II. mm-WAVE SCANNER ENHANCED BY distance along the y axis from the center of the scanner DEPTH CAMERA INFORMATION aperture to the center of the observation grid; Fxz f·g denotes A. GLOBAL OVERVIEW a bidimensional Fourier transform from the (x0; z0) space to The scanner proposed in [17] is based on a relatively small the .kx ; kz/ space; k D !=c is the wavenumber, being c the aperture (e.g., a maximum size of 15 cm was considered speed of light; Fk f·g denotes a 3D Fourier transform from in [17]) so that it can be moved around the object under test the k-domain defined by the coordinates (ky; ky; kz), which 2 2 2 2 to perform a multiview scan.
Recommended publications
  • The Construction and Optimization on an Ion Mobility
    Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 2-2-2010 The onsC truction and Optimization on an Ion Mobility Spectrometer for the Analysis of Explosives and Drugs Hanh Tuyet Lai Florida International University, [email protected] Follow this and additional works at: http://digitalcommons.fiu.edu/etd Part of the Analytical Chemistry Commons Recommended Citation Lai, Hanh Tuyet, "The onC struction and Optimization on an Ion Mobility Spectrometer for the Analysis of Explosives and Drugs" (2010). FIU Electronic Theses and Dissertations. Paper 169. http://digitalcommons.fiu.edu/etd/169 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida THE CONSTRUCTION AND OPTIMIZATION OF AN ION MOBILITY SPECTROMETER FOR THE ANALYSIS OF EXPLOSIVES AND DRUGS A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in CHEMISTRY by Hanh Tuyet Lai 2010 To: Dean Kenneth Furton College of Arts and Sciences This dissertation, written by Hanh Tuyet Lai, and entitled The Construction and Optimization of an Ion Mobility Spectrometer for the Analysis of Explosives and Drugs, having been approved in respect to style and intellectual content, is referred to you for judgment. We have read this dissertation and recommend that it be approved. ____________________________________________ Bruce McCord ____________________________________________ Surendra K. Saxena ____________________________________________ Konstantinos Kavallieratos ____________________________________________ Kenneth Furton ____________________________________________ José R.
    [Show full text]
  • 664-672, 2012 Issn 1995-0772
    664 Advances in Natural and Applied Sciences, 6(5): 664-672, 2012 ISSN 1995-0772 This is a refereed journal and all articles are professionally screened and reviewed ORIGINAL ARTICLE Ethical Analysis of the Full-Body Scanner (FBS) for Airport Security H. Bello-Salau, A.F. Salami, M. Hussaini Department of Electrical and Computer Engineering, International Islamic University Malaysia (IIUM), P.O. Box 10, 53100, Gombak, Malaysia. H. Bello-Salau, A.F. Salami, M. Hussaini: Ethical Analysis of the Full-Body Scanner (FBS) for Airport Security ABSTRACT The deployment of full body scanner machine in airports has generated serious concern for airport users. Apart from the fact that many are yet to know the health implication of a long-term exposure to radiation from this machine, more still believe it infringes on fundamental human rights. Of particular interest to the Muslims is its religious permissibility or prohibition. This paper examines various ramification of the application of the body scanner on air passengers. It discusses its health-related issues and delves into the Islamic perspective on its use. It finally gives recommendations, which could be adopted to make airport safer for all users while not jeopardizing the religious inclination of all. Key words: Whole Body Scanning, Advanced Imaging Technology, Health Hazards, Ethical Perspectives, Airport Security. Introduction A full-body scanner is a device that creates an image of a person's nude body through their clothing to look for hidden objects without physically removing their clothes or making physical contact. They are increasingly being deployed at airports and train stations in many countries (Laskey M., 2010; Dictionary, 2006).
    [Show full text]
  • An Introduction to the Use of Body Scanners, the Science Behind the Technology, and the Ethical Implications of These Devices
    An introduction to the use of Body Scanners, the science behind the technology, and the ethical implications of these devices. Amanda Kay Dierickx June 2 ndndnd , 2010 Presentation for CS 305 This will be an informative presentation, with my opinion included. This presentation hopes to give you the facts, a personal perspective, and give you something to think about. Warning! You may leave this presentation with some new thoughts and opinions different from the ones you have now. Do not be afraid to change your mind, it’s a sign of intelligence! What are Body Scanners and where are they? ◦ Advanced Imaging Technology Backscatter Millimeter Wave What do they see? ◦ Airports with Imaging Technology 24 currently and more be added. The science behind them… are they safe? ◦ Approved and Evaluated by FDA, NIST, JHU APL Privacy Issues ◦ Passenger Privacy Storage of Images Who is looking at my photo? Do they know its me? What is expected of the staff viewing the photos? ◦ What to Expect when you are scanned My Opinion ◦ My personal opinion, and a ethical analysis using Rule Utilitarianism Conclusion References Body Scanners are advanced Imaging Technology for the purposes of detecting metallic and nonmetallic items on Airplane Passengers without bodily contact. Body Scanners use low level X-ray beams to Imaging Booth Backscatter create an image (in Picture Source: www.tsa.gov Backscatter Imaging) or bounce electromagnetic waves to create an image(in Millimeter Wave Technology) Imaging Booth Millimeter Picture Source: www.tsa.org Backscatter Image with Blurred face and body Photo Source: www.tsa.org Millimeter Scanner Image with Face Blurred Photo Source: www.tsa.gov If you have ever image searched Google with safe search off, you have seen far worse.
    [Show full text]
  • Design Justice: Community-Led Practices to Build the Worlds We
    Design Justice Information Policy Series Edited by Sandra Braman The Information Policy Series publishes research on and analysis of significant problems in the field of information policy, including decisions and practices that enable or constrain information, communication, and culture irrespective of the legal siloes in which they have traditionally been located, as well as state- law- society interactions. Defining information policy as all laws, regulations, and decision- making principles that affect any form of information creation, processing, flows, and use, the series includes attention to the formal decisions, decision- making processes, and entities of government; the formal and informal decisions, decision- making processes, and entities of private and public sector agents capable of constitutive effects on the nature of society; and the cultural habits and predispositions of governmentality that support and sustain government and governance. The parametric functions of information policy at the boundaries of social, informational, and technological systems are of global importance because they provide the context for all communications, interactions, and social processes. Virtual Economies: Design and Analysis, Vili Lehdonvirta and Edward Castronova Traversing Digital Babel: Information, e- Government, and Exchange, Alon Peled Chasing the Tape: Information Law and Policy in Capital Markets, Onnig H. Dombalagian Regulating the Cloud: Policy for Computing Infrastructure, edited by Christopher S. Yoo and Jean- François Blanchette Privacy on the Ground: Driving Corporate Behavior in the United States and Europe, Kenneth A. Bamberger and Deirdre K. Mulligan How Not to Network a Nation: The Uneasy History of the Soviet Internet, Benjamin Peters Hate Spin: The Manufacture of Religious Offense and Its Threat to Democracy, Cherian George Big Data Is Not a Monolith, edited by Cassidy R.
    [Show full text]
  • New Views on Airport Screening
    Published on Security Management (http://www.securitymanagement.com) New Views on Airport Screening By Joseph Straw As we’re all too well aware, the threats facing the aviation sector have evolved enormously over the past three decades. Once, an airport security screener’s concerns were limited to traditional guns and knives and rudimentary homemade bombs carried by would-be hijackers. Now, everything from radios and notebook computers to shoes and beverage containers may conceal bombs. Guns and knives have evolved too. They are now mass-produced in large part from organic polymers—plastic—not just metal. And seven years ago, a handful of hardware store box cutters, probably containing less metal than a typical belt buckle, helped alter the course of history. Yet in the years immediately following 9-11, airport security checkpoints advanced little from those first fielded in the 1970s—consisting of baggage x-ray machines and magnetometers. That, however, has begun to change. Carry-On Baggage One new approach, initially called “advanced technology” (AT) baggage screening, has come to be known as “dual view” (DV). The Transportation Security Administration (TSA) began testing the AT/DV machines in 2007. As of this summer, they were deployed to 250 of the 2,000 lanes at 700 TSA-run checkpoints around the country. The agency plans to field an additional 600 by the end of 2008 and another 230 early in 2009. TSA uses equipment from two companies—Smiths Detection’s HI-SCAN 6040aTiX and Rapiscan’s 620 DV. As the name implies, the dual-view technology gives TSA transportation security officers (TSOs) two views of each bag passing by the x-ray scanner, one horizontally and one diagonally from below.
    [Show full text]
  • How Can Body Scanners Be Applied in Shopping Malls Passing the Test of Article 8 of the ECHR, Based on Lessons Learned from Their Deployment in Airport Security?
    How can body scanners be applied in shopping malls passing the test of Article 8 of the ECHR, based on lessons learned from their deployment in airport security? Master’s Thesis LL.M Law & Technology Tilburg Law School Tilburg University Supervisors: Student: Dr. C.M.K.C. Cuijpers Tommaso Chiericati Salvioni Ms. L. van Dongen SNR: 2017398 March 2020 Per aspera sic itur ad astra Table of Contents 1 INTRODUCTION ............................................................................................................ 5 1.1 BACKGROUND ................................................................................................................. 5 1.2 PROBLEM STATEMENT ..................................................................................................... 6 1.3 LITERATURE REVIEW ....................................................................................................... 6 1.4 CENTRAL RESEARCH QUESTION AND DERIVING SUB-QUESTIONS ..................................... 7 1.5 METHODOLOGY............................................................................................................... 8 1.6 STRUCTURE ..................................................................................................................... 8 2 CHAPTER 2 ................................................................................................................... 10 2.1 INTRODUCTION .............................................................................................................. 10 2.2 MILLIMETRE WAVES .....................................................................................................
    [Show full text]
  • Naked in Front of the Machine: Does Airport Scanning Violate Privacy?
    Naked in Front of the Machine: Does Airport Scanning Violate Privacy? YOFI TIRoSH* & MICHAEL BIRNHACKt TABLE OF CONTENTS 1. INTRODUCTION .......................................... 1263 II. THE TECHNOLOGY AND ITS LEGAL ENVIRONMENT ...... ....... 1269 A. The Technology and Its Design .............. ...... 1271 B. Timeline and Legal Authority ........................ 1275 C. Experiencing the Scanners. ....................... 1276 D. The (Hidden)Judicial Conception of Privacy.... ...... 1278 1. Legal Challenges ..................... ...... 1278 2. Administrative Search and Balancing ............. 1280 3. Deciphering the Court's Privacy Conception.... .... 1283 4. Balancing with a Missing Variable ............... 1285 III. Two DISSONANCES ............................ ....... 1286 A. The Dress/UndressDissonance ............... ..... 1287 B. The Normal/Abnormal Dissonance ................. 1293 C. Privacy and Shame ...................................1299 1. Privacy? ................................. 1299 2. Shame? ....................................... 1302 IV. CONCLUSION........................ .................... 1305 I. INTRODUCTION There is a fierce battle going on over the social and legal construction of new surveillance technologies that are rapidly becoming part of our daily lives. One such surveillance technology is full-body scanners, officially known as Advanced Imaging Technology (AIT).' Body scanners were deployed in airports across the United States in 2007.2 By June 2013, the Transportation * Senior lecturer, Faculty of Law,
    [Show full text]
  • Science China Newsletter, July 2018 Trends in Education, Research, Innovation and Policy
    Science, Technology and Education Section 科技与教育处 Science China Newsletter, July 2018 Trends in education, research, innovation and policy Beijing, China Table of Contents 1. Policy ......................................................................................................................................................................... 3 2. Education ................................................................................................................................................................. 4 3. Life Sciences / Health Care .............................................................................................................................. 5 4. Engineering / IT / Computer Science .......................................................................................................... 10 5. Energy / Environment ........................................................................................................................................ 13 6. Physics / Chemistry / Material Science / Nano- & Micro Technology ............................................ 15 7. Economy, Social Sciences & Humanities ................................................................................................. 17 8. Corporates / Startups / Technology Transfer ........................................................................................... 17 9. Bilateral News .....................................................................................................................................................
    [Show full text]
  • United States Court of Appea-Ls for the Eleventh Circuit
    Case: 12-15893 Date Filed: 10/07/2013 Page: 1 of 110 Case No. 12-15893-RR UNITED STATES COURT OF APPEA-LS FOR THE ELEVENTH CIRCUIT JONATHAN CORBETT, Petitioner V. TRANSPORTATION SECURITY ADMfNISTRA TION, Respondent Petition for Review of a Decision of the Transportation Security Administration BRIEF OF PETITIONER JONATHAN CORBETT Jonathan Corbett, Pro Se 382 N.E. 19 1St St., #86952 Miami, FL 33179 Phone: +1(305) 600-0410 E-mail: jon@professionai-troublemaker. corn - FILED UNDER SEAL - Case: 12-15893 Date Filed: 10/07/2013 Page: 2 of 110 CERTIFICATE OF INTERESTED PARTIES Petitioner Jonathan Corbett certifies that the following is a complete list of the trial judges, attorneys, persons, associations of persons, firms, partnerships, or corporations known to him that have an interest in the outcome of this case as defined by 11th Circuit Local Rule 26.1-1: Judges & Magistrates of Related Cases o U.S. Chief Circuit Judge James L. Edmondson o U.S. Circuit Judge Gerald B. Tjoflat o U.S. Circuit Judge Peter T. Fay o U.S. District Judge Marcia G. Cooke o U.S. Magistrate (Ret.) Ted E. Bandstra Petitioner o Jonathan Corbett Respondent o U.S. Department of Homeland Security o Janet Napolitano o Transportation Security Administration John Pistole - FILED UNDER SEAL - Case: 12-15893 Date Filed: 10/07/2013 Page: 3 of 110 • U.S. Department of Justice o Andrea W. McCarthy o Anne R. Schultz o Carlotta P. Wells o Jesse Grauman o Joseph W. Mead o Laura G. Lothman o Mark B. Stem o Rupa Bhattacharyya o Sandra M.
    [Show full text]
  • Routine Body Scanning in Airports: a Fourth Amendment Analysis Focused on Health Effects Rebekka Murphy
    Hastings Constitutional Law Quarterly Volume 39 Article 5 Number 4 Summer 2012 1-1-2012 Routine Body Scanning in Airports: A Fourth Amendment Analysis Focused on Health Effects Rebekka Murphy Follow this and additional works at: https://repository.uchastings.edu/ hastings_constitutional_law_quaterly Part of the Constitutional Law Commons Recommended Citation Rebekka Murphy, Routine Body Scanning in Airports: A Fourth Amendment Analysis Focused on Health Effects, 39 Hastings Const. L.Q. 915 (2012). Available at: https://repository.uchastings.edu/hastings_constitutional_law_quaterly/vol39/iss4/5 This Note is brought to you for free and open access by the Law Journals at UC Hastings Scholarship Repository. It has been accepted for inclusion in Hastings Constitutional Law Quarterly by an authorized editor of UC Hastings Scholarship Repository. For more information, please contact [email protected]. Routine Body Scanning in Airports: A Fourth Amendment Analysis Focused on Health Effects by REBEKKA MURPHY* Introduction On January 25, 2011, the Transportation and Security Administration ("TSA") announced its intention to use Advanced Imaging Technology ("AIT") to screen all passengers in airports.' The announcement remains controversial because, while AIT has the advantage of detecting on-body explosives and thus augments flight safety, its use also raises health concerns. Conclusive research on the technology's long-term health effects is wanting. Moreover, since the TSA administers the scans routinely and without regard to any individualized suspicion, the practice raises Fourth Amendment concerns related to freedom from unreasonable searches. This Note argues that while jurisprudence on medically intrusive searches fails to provide either clear support for or opposition to routine body scanning, the special needs doctrine requires TSA officials to have reasonable suspicion before scanning passengers, at least as long as AIT's impact on health remains uncertain.
    [Show full text]
  • Hatfield & Dawson Consulting Engineers
    HATFIELD & DAWSON BENJAMIN F. DAWSON III, PE CONSULTING ELECTRICAL ENGINEERS TELEPHONE (206) 783-9151 THOMAS M. ECKELS, PE 9500 GREENWOOD AVE. N. FACSIMILE (206) 789-9834 STEPHEN S. LOCKWOOD, PE SEATTLE, WASHINGTON 98103 E-MAIL [email protected] DAVID J. PINION, PE ERIK C. SWANSON, PE JAMES B. HATFIELD, PE CONSULTANT THOMAS S. GORTON, PE MICHAEL H. MEHIGAN, PE MAURY L. HATFIELD, PE (1942-2009) PAUL W. LEONARD, PE (1925-2011) 20 November 2013 Suzanne Bosman Whatcom County Planning & Development Services 5280 Northwest Drive Bellingham, WA 98226 Dear Ms. Bosman; This purpose of this letter is to provide a basic framework for understanding the electromagnetic spectrum and how radio signals work, and to illustrate some key characteristics of the differences between AM radio and other uses of the spectrum. Electromagnetic Spectrum Bands The federal government, through the Federal Communications Commission (“FCC”), coordinates and regulates all uses of electromagnetic spectrum in the United States. Every portion of the spectrum is organized into types of uses. See attached United States Frequency Allocation chart and Radio Frequency Spectrum table. AM radio operates in the Medium Wave (MW)1 band, and is different from FM which operates in the Very High Frequency band (VHF),2 TV which operates in both the VHF band and the 1 MW is Medium Wave which is 300 kHz to 3,000 kHz (3 MHz). 2 VHF is Very High Frequencies from 30 to 300 MHz. Hatfield & Dawson Consulting Engineers KRPI Site Selection and Radio Engineering Basics Page 2 Ultra-High Frequency band (UHF),3 and cellular which also operates in the Ultra-High Frequency band.
    [Show full text]
  • American BODY SCAN by OBAMA, CHERTOFF & NAPOLITANO
    American BODY SCAN BY OBAMA, CHERTOFF & NAPOLITANO coming to your hometown airport SOON. Via Drudge Report: November 13, 2010 Read the incident of a traveler named John Tyner on his way to South Dakota when he encountered a cadre blue-shirted of TSA gropers Tyner’s ordeal demonstrates the severity of a government out of control, especially when a TSA officer has no problems with sexual assault when it’s the government doing it . During the next half-hour, his cell phone recorded Tyner refusing to submit to a full body scan, opting for the traditional metal scanner and a basic “pat down” — and then refusing to submit to a “groin check” by a TSA security guard . He even told the guard , “You touch my junk and I’m going to have you arrested.” His threat triggered a code red alert as TSA agents, supervisors and eventually the local police gravitated to the spot where the reluctant traveler stood in his stocking feet, his cell phone sitting in the nearby bin (which he wasn’t allowed to touch) picking up the audio. [snip] Once he threatened to have the TSA agent arrested though, events turned surreal. A supervisor is heard re-explaining the groin check process to Tyner then adding “If you’re not comfortable with that, we can escort you back out and you don’t have to fly today.” Tyner responded “OK, I don’t understand how a sexual assault can be made a condition of my flying.” “This is not considered a sexual assault,” replied the supervisor, calmly.
    [Show full text]