Insecta: Trichoptera) in Different Types of Habitats in the Dinaric Karst Area (Central Croatia)

Total Page:16

File Type:pdf, Size:1020Kb

Insecta: Trichoptera) in Different Types of Habitats in the Dinaric Karst Area (Central Croatia) Ecologica Montenegrina 36: 6-39 (2020) This journal is available online at: www.biotaxa.org/em http://dx.doi.org/10.37828/em.2020.36.2 Ecological and faunistic features of caddisflies (Insecta: Trichoptera) in different types of habitats in the Dinaric karst area (Central Croatia) DARKO CERJANEC1, MLADEN KUČINIĆ2, MARINA VILENICA3, ANĐELA ĆUKUŠIĆ4, RENATA ĆUK5, HALIL IBRAHIMI6*, IVAN VUČKOVIĆ7, SANJA ŽALAC8 & DAMIR RUK9 1Primary School Barilović, Barilović 96, 47252 Barilović and Primary School Netretić, Netretić 1, 47271 Netretić, Croatia ([email protected]) 2Department of Biology (Laboratory for Entomology), Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10 000 Zagreb, Croatia 3Faculty of Teacher Education, University of Zagreb, Trg Matice hrvatske 12, 44250 Petrinja, Croatia 4Ministry of Economy and Sustainable Development, Vukovarska 78, 10000 Zagreb, Croatia 5Hrvatske vode, Central Water Management Laboratory, Ulica grada Vukovara 220, 10 000 Zagreb, Croatia 6Department of Biology, Faculty of Mathematical and Natural Sciences, University of Prishtina “Hasan Prishtina”, “Mother Theresa” p.n.,10000 Prishtina, Republic of Kosovo 7Elektroprojekt d.d., Civil and Architectural Engineering Department, Alexandera von Humboldta 4, 10 000 Zagreb, Croatia 8National Park Plitvice Lakes, Josipa Jovića 19, 53231 Plitvička jezera, Croatia 9Koprivničke vode d.o.o., Public water service company for drinking water supply, sewer drainage and waste water treatment, Mosna 15a, 48000 Koprivnica, Croatia 1,2 equal authors *Corresponding author: [email protected] Received 23 September 2020 │ Accepted by V. Pešić: 28 October 2020 │ Published online 2 November 2020. Abstract Caddisfly faunistic and ecological features were studied at 14 sampling sites along the catchment area of the Dobra River. Adults were collected monthly, over a period of 13 months (from early November 2009 until the end of November 2010), using ultraviolet (UV) light trap and entomological net. Physico-chemical parameters of water and air were also measured at all sampling sites. The study encompassed several segments of caddisfly fauna: the composition, new records, the distribution of all recorded species and seasonal dynamics. A total number of 77 species were recorded, out of which 15 species and four genera were new records for Croatian caddisfly fauna. The CCA analysis showed that the water temperature and the altitude had the highest impact on distribution of caddisfly fauna in this area. The results of this study contribute to the increase of faunistic and ecological knowledge of the Croatian caddisflies. Key words: Dobra River catchment area, biodiversity, distribution, new records. Ecologica Montenegrina, 36, 2020, 6-39 CADDISFLIES IN DIFFERENT TYPES OF HABITATS IN THE DINARIC KARST Introduction The order Trichoptera includes 16267 recent and 521 fossil species (Morse 2020), whereas European caddisfly fauna consists more than 1000 species (Malicky 2004; Previšić et al. 2014a). Trichoptera are present in all continents except Antarctica, with the highest biodiversity in Central and Southern America and Asia (Holzenthal et al. 2007; Morse 2020). They occur in almost all habitat types, however, the highest biodiversity is in streams and small rivers (Hickin 1967; Kučinić et al. 2017; Stanić-Koštroman et al. 2015; Wallace et al. 1990). Caddisflies require habitats with specific environmental conditions in their habitats such as water temperature, water velocity, substrate composition, availability of food resources, etc. (Dohet, 2002; Graf et al. 2008b; Hickin 1967; Previšić et al. 2007a; Rosenberg & Resh 1993; Waringer & Graf 2011), therefore, they are among the groups of aquatic insects widely used as ideal bioindicator models (Graf et al. 2002; 2008b). The Balkan Peninsula is known for its high species biodiversity (Kryštufek et al. 2007; Marinković-Gospodnetić 1976; Oláh 2011; Previšić et al. 2014a, 2014b; Sket et al. 2001; Sket 2002), not only due to its geographical, climatological and geomorphological characteristics, but also as a result of certain geological processes which occurred in the past (Bilandžija et al. 2013). Particularly, interesting part of Balkan Peninsula is 600 km long Dinaric karst area situated from Slovenia to Albania (Bilandžija et al. 2013). Although in the last 15 years, a certain number of studies on the biodiversity, taxonomy and distribution of aquatic insects of this area has been published (Gligorović et al. 2010; Malicky 2005; Vilenica et al. 2015; Živić et al. 2009), including caddisflies (Ćuk & Vučković 2009, 2010, 2014; Ćuk et al. 2015; Vučković et al. 2016), there are still extensive gaps regarding caddisfly biodiversity and ecology. Limnological research of caddisflies in Croatia started in the second part of the 20th century (Habdija 1989; Habdija et al. 1994, 2004; Matoničkin 1959; Matoničkin & Pavletić 1961, 1967; Matoničkin et al. 1971; Matoničkin 1987). Most of those studies have focused on larvae. Yet in order to identify the exact composition and structure of Trichoptera fauna in a given area, adult forms have to be collected for each species, particularly the males, since in a certain number of genera the females cannot be identified to species level (Malicky 2004). Recent faunistic studies of caddisflies in Croatia take into consideration adult stages and were conducted amongst other in the area of the Plitvice Lakes National Park (Kučinić 2002; Kučinić & Malicky 2002; Malicky 1980, 1996; Marinković-Gospodnetić 1971, 1979; Previšić et al. 2007a, 2010), the Krka River (Graf et al. 2008a; Kučinić et al. 2011; Waringer et al. 2009), the Cetina River (Vučković 2011), the Drava River (Previšić et al. 2007b), the Gorski kotar area (Previšić & Popijač 2010), the Banovina area (Kučinić et al. 2010, 2013, 2019a), the Papuk area (Previšić et al. 2013), counting a total of cca 200 species in Croatian fauna. This study presents the results of the research of caddisflies in the catchment area of the Dobra River with the following objectives: enrichment of the current knowledge on biodiversity, distribution and ecology, with a special note related to the DNA barcoding method and conservation biology. Some of the species recorded for the first time in Croatian fauna are presented as segments of separate faunistic papers, e.g. Kučinić et al. (2015, 2019b). Material and Methods Study area. Our study was conducted at 14 sites in the catchment area of the Dobra River, which included eight sites at the course of the Dobra River and six at its tributaries: the Kamačnik River (3 sites = K1-K3), the spring of the Zagorska Mrežnica River (1 site = ZM), Sabljaci reservoir (1 site = SR) and the Kupa River (1 site = KK) (Tab. 1, Fig. 1-2). With the length of 104 km the Dobra River is the longest Croatian underground river, forming the longest underground cave system over 16 km long. The river springs from two sources, at Bukov Vrh and at Skrad, while the mouth is into the Kupa River near the city of Karlovac (Kovačević 2005). Together with the Korana and Mrežnica rivers it is an important tributary of the Kupa River. The Dobra River catchment area is situated in Dinaric ecoregion (ER05) (Illies 1978). The reaches of the Dobra River can be divided into 3 parts: Gornja/Ogulinska Dobra (Upper Dobra), middle course which flows underground and Donja/Gojačka Dobra (Lower Dobra). The natural regime of the Dobra 7 CERJANEC ET AL. River was significantly disturbed due to the construction of the hydropower plant Gojak in 1959. The associated catchment area of the Dobra River was originally 792 km2. However, since the construction of the HPP Gojak, additional 302 km² of the Zagorska Mrežnica River catchment area was redirected into the Dobra River catchment area increasing the total watershed area to 1.094 km2 (Kovačević 2005). Figure 1. Map of the study area with sampling sites which correspond to the list in Tab. 1. Moreover, after the construction of the new hydropower plant Lešće in mid-2010, which is located 12 km downstream from the hydropower plant Gojak on Donja Dobra, the water regime and the environmental regime of the Dobra watercourse has also been altered (Bonacci & Andrić 2010). Canyon Kamačnik, covering 74.44 ha with the elevation between 370 and 600 m, is a protected landscape since 2002. Kamačnik is a 3.2 km long right tributary of the Dobra River. The spring of Zagorska Mrežnica River is a flooded cave, whereby a total length of 320 m has been studied so far. The spring is captured and serves as a water supply for the wider area of the town of Ogulin. Sabljaci reservoir is artificially created in 1956 for the purpose of accumulating the water of the Zagorska Mrežnica River for the production of electricity. Sabljaci reservoir has an area of 170 ha and it is the eleventh largest lake in Croatia (Duplić et al. 2007). Ecologica Montenegrina, 36, 2020, 6-39 8 CADDISFLIES IN DIFFERENT TYPES OF HABITATS IN THE DINARIC KARST Figure 2. Dobra - spring (D1), Dobra - upper Dobra (D2), Dobra - canyon (D4), Kamačnik - spring (K1), Zagorska Mrežnica - spring (ZM), Sabljaci - reservoir (SR). Sampling and laboratory work. Samples were collected monthly over a period of 13 months (from November 2009 to November 2010) using UV light trap and entomological net. Samples were stored in 80% or 96% ethanol. In the period from 2016 to 2020 sampling of adult cadiesflies was conducted at several sites at the Dobra River (Dobra - spring (D1), Dobra - Jarče Polje (D6), Dobra - Novigrad na Dobri (D7)) in order to collect fresh samples for DNA method barcoding. At the spring of the Dobra River at Skrad samples have been taken five times, both adults and larvae with particular interes in finding the species Drusus chrysotus (Rambur, 1842). All specimens have been deposited as vouchers at Croatian Natural History Museum. 9 Table 1. List of sampling stations with short-codes, coordinates, elevation and results of physico-chemical parameters (min-max values). Springs (D1, K1, ZM), upper part (D2), middle parts (D3, D4, D5, K2, KK), lower parts (D6, D7, D8, K3) and reservoir (SR).
Recommended publications
  • Nurita Y Amiguitos
    Graellsia, 60(1): 41-69 (2004) TRICHOPTERA (INSECTA) COLLECTED IN MEDITERRANEAN RIVER BASINS IN THE IBERIAN PENINSULA: TAXONOMIC REMARKS AND NOTES ON ECOLOGY N. Bonada*, C. Zamora-Muñoz**, M. Rieradevall* and N. Prat * ABSTRACT As a result of the GUADALMED project, which was performed in Iberian Mediterranean basins, together with samples taken by the junior author in the area, we collected numerous cad- disfly larvae, pupae and adults. Some larvae were also reared in the lab to obtain adults and allow proper identification. A total of 90 species were identified, which accounts for more than a fourth of the species known in the Iberian Peninsula and Balearic Islands. Here we confirm the presence of doubtful species in the Iberian Peninsula (Glyphotaelius pellucidus) and we expand the distribution range of others (Lype reducta, Micrasema minimum, Limnephilus gua- darramicus, Sericostoma pyrenaicum). Moreover, because of the unconformity of morphologi- cal larval characteristics with present taxonomical keys (Mesophylax aspersus) or lack of larvae descriptions (Allogamus mortoni, Stenophylax espanioli), here we include some relevant taxo- nomical aspects that are useful to identify larvae. A brief description of the larva of a possible new species of Hydropsyche (from now on H. gr. instabilis) is also given. Key words: Trichoptera, Mediterranean rivers, Iberian Peninsula, Faunistics, Taxonomy, Ecology. RESUMEN Los tricópteros (Insecta) recolectados en las cuencas mediterráneas españolas: notas taxonómicas y requerimientos ecológicos Como resultado de los estudios realizados en el proyecto GUADALMED en las cuencas de los ríos mediterráneos peninsulares y otros muestreos realizados por la primera autora del tra- bajo se han recolectado numerosas larvas, pupas y adultos de tricópteros.
    [Show full text]
  • Species Fact Sheet for Homoplectra Schuhi
    SPECIES FACT SHEET Common Name: Schuh’s Homoplectran Caddisfly Scientific Name: Homoplectra schuhi Denning 1965 Phylum: Mandibulata Class: Insecta Order: Trichoptera Suborder: Annulipalpia Family: Hydropsychidae Subfamily: Diplectroninae Conservation Status Global Status (2005): G3Q – Vulnerable, but taxonomic questions persist (last reviewed 25 Mar 2005) National Status (United States): N3 - Vulnerable (23 Feb 2005) State Status (Oregon): S3 - Vulnerable (NatureServe 2015) Oregon Biodiversity Information Center: List 3 IUCN Red List: NE – Not evaluated Taxonomic Note This species has been given a global status of G3Q due to the limited number of specimens that have been reviewed to date, and the variability of diagnostic characteristics (NatureServe 2015). This genus is in need of additional collecting and taxonomic review, which may lead to synonymization with older described species (Wisseman 2015, Ruiter 2015). For example, specimens identified as H. luchia Denning 1966 may in fact be synonyms of H. schuhi (Ruiter 2015). Technical Description A microscope is required to identify Homoplectra schuhi, as identifications are based on genitalia anatomy. The advice of a Trichoptera expert is suggested. See Denning (1965) for lateral view drawings of the male and female genitalia. Adult: The adults of this species are small, moth-like insects in the caddisfly family Hydropsychidae. Homoplectra males are recognized by the complexity of the phallic apparatus, which can be complicated by very strong development of several sclerotized branches (Schmid 1998). Holotype male: Length 6 mm. General color of head, thorax and abdomen dark brown, wings tan with no pattern, legs and antennae varying shades of brownish. Pubescence of head, thorax and legs aureous. Fifth sternite with a dorsal filament enlarged distally and curved dorso-caudad.
    [Show full text]
  • Primjena Indeksa Kvalitete Vode U Ocjeni Kakvoće Vode Krških Jezera
    D. tomas et al. PrimjenA inDeksa kvAlitete voDe u ocjeni kAkvoće voDe kRških Jezera Stručni članak Professional paper UDk 556.55:556.114/.115>(497.5 Cres) primljeno (Received): 10. 7. 2013.; prihvaćeno (Accepted): 27. 11. 2013. primjena inDeKsa Kvalitete voDe u oCjeni KaKvoće voDe KršKih jezera U radu je prikazana kakvoća vode jezera primjenom indeksa Damir tomas, dipl. ing. kvalitete vode (eng. Water Quality Index, WQI) i njihov kemijski Hrvatske vode, Glavni vodnogospodarski laboratorij sastav Piperovim dijagramom. Ispitivana su jezera: Vrana na otoku Ulica Grada Vukovara 220, 10000 Zagreb Cresu, Vransko jezero kod Biograda na Moru, Baćinsko jezero [email protected] Crniševo i akumulacija Butoniga u razdoblju 2010.-2012. godine. Krešimir maldini, dipl. ing. U izračunu WQI korišteni su sljedeći pokazatelji: pH vrijednost, Hrvatske vode, Glavni vodnogospodarski laboratorij ukupna otopljena tvar (TDS), hidrogenkarbonati, ukupna tvrdoća, Ulica Grada Vukovara 220, 10000 Zagreb kloridi, sulfati, nitrati, fluoridi, kalcij, magnezij, željezo i mangan. Za izračun WQI korištene su preporuke vode za piće Svjetske natalija matić, dipl. ing. Hrvatske vode, EU jedinica zdravstvene organizacije (eng. World Health Organization, WHO) Ulica Grada Vukovara 220, 10000 Zagreb te dobiveni WQI predstavlja prikladnost voda za uporabu u vodoopskrbi. mr. sc. marija marijanović rajčić, dipl. ing. Istraživanjem je utvrđeno da je kakvoća vode na Vranskom jezeru Hrvatske vode, Glavni vodnogospodarski laboratorij kod Biograda n/m bila najlošije kvalitete u 2012. godini (WQI=870), Ulica Grada Vukovara 220, 10000 Zagreb dok je najbolja kakvoća vode zabilježena na jezeru Vrana na otoku Cresu u 2012. godini (WQI=31,2). Prema Piperovom dijagramu ispitivana jezera se po kemijskom sastavu razlikuju ovisno o hidrološkom dobu, dok je Vransko jezero na Cresu ujednačene kakvoće.
    [Show full text]
  • Projekt Frisco1
    PROJEKT FRISCO1 PREKOGRANIČNO USKLAĐENO SLOVENSKO-HRVATSKO SMANJENJE RIZIKA OD POPLAVA – NEGRAĐEVINSKE MJERE ČEZMEJNO USKLAJENO SLOVENSKO-HRVAŠKO ZMANJŠEVANJE POPLAVNE OGROŽENOSTI – NEGRADBENI UKREPI MURA DRAVA SOTLA/SUTLA KOLPA/KUPA BREGANA DRAGONJA 4 O projektu (ENG, HR, SI) 9 Rezultati projekta Unaprijeđene baze podataka za upravljanje rizicima od poplava 10 Izboljšane baze podatkov za obvladovanje poplavne ogroženosti Zajedničke prekogranične studije integriranog upravljanja rizicima od poplava 12 Skupne čezmejno usklajene študije celovitega obvladovanja poplavne ogroženosti Unaprijeđeni hidraulički modeli 14 Izboljšani hidravlični modeli Unaprijeđeni modeli za prognoziranje poplava 16 Izboljšani modeli za napovedovanje poplav Unaprijeđene i prekogranično usklađene karte opasnosti od poplava i 18 karte rizika od poplava Izboljšane in čezmejno usklajene karte poplavne nevarnost in poplavne ogroženosti Zajednički projekti provedbe građevinskih mjera (Priprema projektne i druge tehničke dokumentacije) 20 Skupni projekti za izvedbo gradbenih ukrepov (priprava projektne in ostale tehnične dokumentacije) Sustavi ranog upozoravanja 22 Sistemi zgodnjega opozarjanja Podizanje svijesti javnosti o rizicima od poplava 24 Ozaveščanje o poplavni ogroženosti in krepitev zmogljivosti 26 Opis porečij in prikaz možnih gradbenih ukrepov 28 Sliv Kupe / Porečje Kolpe 34 Sliv Sutle / Porečje Sotle 40 Sliv Mure / Porečje Mure 46 Sliv Drave / Porečje Drave 51 Sliv Dragonje / Porečje Dragonje 56 Sliv Bregane / Porečje Bregane Kazalo About the project ENG In
    [Show full text]
  • TO SLOVENIA First Time Cultivating Wine in Protestant Literature
    Compiled by FACTS Neža Lukančič & VINARIUM TOWER Benjamin Wolf The Pannonian Eiffel Tower is the SLOVENIA highest observation tower in Slovenia POPULATION: and allows a view in four countries: 2,067,000 Slovenia, Croatia, Hungary and Austria. CAPITAL CITY: LJUBLJANA (288,250) ŽIČE CHARTERHOUSE The ruins of this 12th century GDP: €43 BILLION monastery complex, overgrown with GDP PER CAPITA: ivy and moss, are a magical place. €21,000 MEŽICA MINE CROATIA ZAGREB POPULATION: The underground of Slovenia also offers hidden treasures. Sit in a small train and descend to a mine The history of Croatia’s capital dates back 4,167,000 universe that has been active for over 350 years. to the Romans. Today, the area houses a CAPITAL CITY: quarter of the country's population. ZAGREB (806,920) Zagreb’s old town boasts buildings from the 13th to the 19th century. GDP: €49 BILLION GDP PER CAPITA: OTOČEC €11,700 PREDJAMA CASTLE The only water castle in Slovenia was build on a small Source: Eurostat (2017). This Renaissance castle is built within a cave, island on Krka River. It is a favorite wedding venue, pressed next to a cliff under the original while the nearby leisure park offers fun times. Medieval fortification. METAL DAYS (SOČA) LJUBLJANA Every July, the peaceful Soča River is Slovenia’s capital stands at the middle the setting for one of the biggest heavy of a trade route between the northern metal music festivals in Europe with Adriatic Sea and the Danube region. the fitting motto: “Hell over Paradise.” Among the sights of this green city are Tivoli Park and Ljubljana Castle.
    [Show full text]
  • Groundwater Bodies at Risk
    Results of initial characterization of the groundwater bodies in Croatian karst Zeljka Brkic Croatian Geological Survey Department for Hydrogeology and Engineering Geology, Zagreb, Croatia Contractor: Croatian Geological Survey, Department for Hydrogeology and Engineering Geology Team leader: dr Zeljka Brkic Co-authors: dr Ranko Biondic (Kupa river basin – karst area, Istria, Hrvatsko Primorje) dr Janislav Kapelj (Una river basin – karst area) dr Ante Pavicic (Lika region, northern and middle Dalmacija) dr Ivan Sliskovic (southern Dalmacija) Other associates: dr Sanja Kapelj dr Josip Terzic dr Tamara Markovic Andrej Stroj { On 23 October 2000, the "Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy" or, in short, the EU Water Framework Directive (or even shorter the WFD) was finally adopted. { The purpose of WFD is to establish a framework for the protection of inland surface waters, transitional waters, coastal waters and groundwater (protection of aquatic and terrestrial ecosystems, reduction in pollution groundwater, protection of territorial and marine waters, sustainable water use, …) { WFD is one of the main documents of the European water policy today, with the main objective of achieving “good status” for all waters within a 15-year period What is the groundwater body ? { “groundwater body” means a distinct volume of groundwater within an aquifer or aquifers { Member States shall identify, within each river basin district: z all bodies of water used for the abstraction of water intended for human consumption providing more than 10 m3 per day as an average or serving more than 50 persons, and z those bodies of water intended for such future use.
    [Show full text]
  • Research Article
    Ecologica Montenegrina 44: 69-95 (2021) This journal is available online at: www.biotaxa.org/em http://dx.doi.org/10.37828/em.2021.44.10 Biodiversity, DNA barcoding data and ecological traits of caddisflies (Insecta, Trichoptera) in the catchment area of the Mediterranean karst River Cetina (Croatia) IVAN VUČKOVIĆ1*, MLADEN KUČINIĆ2**, ANĐELA ĆUKUŠIĆ3, MARIJANA VUKOVIĆ4, RENATA ĆUK5, SVJETLANA STANIĆ-KOŠTROMAN6, DARKO CERJANEC7 & MLADEN PLANTAK1 1Elektroprojekt d.d., Civil and Architectural Engineering Department, Section of Ecology, Alexandera von Humboldta 4, 10 000 Zagreb, Croatia. E-mails:[email protected]; [email protected] 2Department of Biology (Laboratory for Entomology), Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10 000 Zagreb, Croatia. E-mail: [email protected] 3Ministry of Economy and Sustainable Development, Radnička cesta 80/7, 10000 Zagreb, Croatia. E-mail: [email protected] 4Croatian Natural History Museum, Demetrova 1, 10 000 Zagreb, Croatia. E-mail: [email protected] 5Hrvatske vode, Central Water Management Laboratory, Ulica grada Vukovara 220, 10 000 Zagreb, Croatia. E-mail:[email protected] 6Faculty of Science and Education, University of Mostar, Matice hrvatske bb, 88000 Mostar, Bosnia and Herzegovina. E-mail: [email protected] 7Primary School Barilović, Barilović 96, 47252 Barilović and Primary School Netretić, Netretić 1, 47271 E-mail: [email protected] *Corresponding author: [email protected] **Equally contributing author Received 2 June 2021 │ Accepted by V. Pešić: 19 July 2021 │ Published online 2 August 2021. Abstract The environmental and faunistic research conducted included defining the composition and distribution of caddisflies collected using ultraviolet (UV) light trap at 11 stations along the Cetina River, from the spring to the mouth, and also along its tributaries the Ruda River and the Grab River with two sampling stations each, and the Rumin River with one station.
    [Show full text]
  • Trichopterological Literature This List Is Informative Which Means That It Will
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Braueria Jahr/Year: 2011 Band/Volume: 38 Autor(en)/Author(s): Anonymus Artikel/Article: Trichopterological literature. 45-50 45 Trichopterological literature Armitage, Brian J. 2008 A new species in the Rhyacophila lieftincki group (Trichoptera, This list is informative which means that it will include any papers Rhyacophilidae) from southwestern Virginia. - Zootaxa 1958:65-68. from which fellow workers can get information on caddisflies, including dissertations, short notes, newspaper articles ect. It is not Baryshev, I.A. 2008 limited to formal publications, peer-reviewed papers or publications Diurnal dynamics of emergence of caddis flies Agapetus ochripes with high impact factor etc. However, a condition is that a minimum Curt, and Hydroptila tineoides Dalm. in the Far North (Indera Revier, of one specific name of a caddisfly must be given (with the Kola Peninsula, Russia). - Russian J. Ecol. 39:379-381. exception of fundamental papers e.g. on fossils). The list does not include publications from the internet. - To make the list as complete Bazova.N.V.; Bazov, A.V.; Pronin, N.M.; Rozhkova, N.A.; as possible, it is essential that authors send me reprints or Dashibalova, L.T.; Khazheeva, Z.I. 2008 xerocopies of their papers, and, if possible, also papers by other Spatiotemporal distribution of caddis fly larvae Aethaloptera authors which they learn of and when I do not know of them. If only evanescens MacLachlan, 1880 (Trichoptera: Hydropsychidae) in the references of such publications are available, please send these to Selenga Revier.
    [Show full text]
  • Trichoptera: Hydropsychidae) in the Carpathians
    Eur. J. Entomol. 112(1): 106–113, 2015 doi: 10.14411/eje.2015.006 ISSN 1210-5759 (print), 1802-8829 (online) Spatial ecology of Hydropsyche incognita (Trichoptera: Hydropsychidae) in the Carpathians MÃLINA PÎRVU 1, 2, CLAUDIA ZAHARIA3, ALINA SATMARI 4 and LUCIAN PÂRVULESCU 1 1 Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timișoara, Timișoara, Romania; e-mails: [email protected]; [email protected] 2 Department of Systems Ecology and Sustainability, Faculty of Biology, University of Bucharest, Bucharest, Romania 3 Department of Mathematics, Faculty of Mathematics and Computer Science, West University of Timișoara, Timișoara, Romania; e-mail: [email protected] 4 Department of Geography, Faculty of Chemistry, Biology, Geography, West University of Timișoara, Timișoara, Romania; e-mail: [email protected] Key words. Trichoptera, Hydropsychidae, Hydropsyche incognita, ecological preferences, spatial analysis, species distribution modelling Abstract. Caddisflies are often used in studies on freshwater ecosystem ecology because of their aquatic-dependent larvae. The pre- sent study addresses the ecological affinities of larvae of Hydropsyche incognita in terms of the pattern of distribution of this species in the Romanian Carpathians using a boosted regression trees (BRT) model. A population cluster located in the western Romanian Carpathians was identified by the spatial analysis. The statistical model revealed that this species prefers a neutral to low-alkaline pH, high levels of dissolved oxygen, low conductivity, fast flowing water, moderate sized rivers at an altitude below 600 m a.s.l. and low concentrations of organic pollutants. An eastward decrease in the frequency of H.
    [Show full text]
  • Biodiversity & Environment Biodiver & Enviro
    „Moderné„Moderné vzdelávanie vzdelávanie pre pre vedomostnú vedomostnú spoločnosť spoločnosť/ / ProjektProjekt je jespolufinancovaný spolufinancovaný zo zozdrojov zdrojov EÚ“ EÚ“ BiodiversityBiodiversity && EnvironmentEnvironment VolumeVolume 12 12 NumberNumber 1 1 PrešovPrešov 20 202020 BIODIVERSITY & ENVIRONMENT (Acta Universitatis Prešoviensis, Folia Oecologica) Ročník 12., číslo 1. Prešov 2020 Časopis je jedným z výsledkov realizácie projektu: „Inovácia vzdelávacieho a výskumného procesu ekológie ako jednej z nosných disciplín vedomostnej spoločnosti“, ITMS: 26110230119, podporeného z operačného programu Vzdelávanie, spolufinancovaného zo zdrojov EÚ. Editor: RNDr. Adriana Eliašová, PhD. Recenzenti: RNDr. Alexander Csanády, PhD. RNDr. Adriana Eliašová, PhD. doc. Ing. Ladislav Hamerlik, PhD. Ing. Martin Hauptvogl, PhD. Mgr. Tomáš Jászay, PhD. RNDr. Juliana Krokusová, PhD. doc. Mgr. Peter Manko, PhD. doc. Ing. Milan Novikmec, PhD. Ing. Jozef Oboňa, PhD. RNDr. Martin Pizňak, PhD. RNDr. Matej Žiak, PhD. Redakčná rada: Predseda: doc. Mgr. Martin Hromada, PhD. Výkonný redaktor: RNDr. Adriana Eliašová, PhD. Členovia: RNDr. Mária Balážová, PhD. RNDr. Michal Baláž, PhD. RNDr. Alexander Csanády, PhD. RNDr. Lenka Demková, PhD. prof. PaedDr. Ján Koščo, PhD. doc. Mgr. Peter Manko, PhD. doc. Ruslan Maryichuk, CSc. doc. Ing. Milan Novikmec, PhD. Ing. Jozef Oboňa, PhD. Ing. Marek Svitok, PhD. Mgr. Iveta Škodová, PhD. doc. RNDr. Marcel Uhrin, PhD. Adresa redakcie: Biodiversity & Environment Katedra ekológie FHPV PU Ulica 17. novembra č. 1 081 16 Prešov Tel: 051 / 75 70 358 e-mail: [email protected] Vydavateľ: Vydavateľstvo Prešovskej univerzity v Prešove Sídlo vydavateľa: Ulica 17. novembra č. 15, 080 01 Prešov IČO vydavateľa: 17 070 775 Periodicita: 2 čísla ročne Jazyk: slovenský/anglický/český Poradie vydania: 1/2020 Dátum vydania: jún 2020 Foto na obálke: Bufo bufo (autor Mgr.
    [Show full text]
  • Diversity and Ecosystem Services of Trichoptera
    Review Diversity and Ecosystem Services of Trichoptera John C. Morse 1,*, Paul B. Frandsen 2,3, Wolfram Graf 4 and Jessica A. Thomas 5 1 Department of Plant & Environmental Sciences, Clemson University, E-143 Poole Agricultural Center, Clemson, SC 29634-0310, USA; [email protected] 2 Department of Plant & Wildlife Sciences, Brigham Young University, 701 E University Parkway Drive, Provo, UT 84602, USA; [email protected] 3 Data Science Lab, Smithsonian Institution, 600 Maryland Ave SW, Washington, D.C. 20024, USA 4 BOKU, Institute of Hydrobiology and Aquatic Ecology Management, University of Natural Resources and Life Sciences, Gregor Mendelstr. 33, A-1180 Vienna, Austria; [email protected] 5 Department of Biology, University of York, Wentworth Way, York Y010 5DD, UK; [email protected] * Correspondence: [email protected]; Tel.: +1-864-656-5049 Received: 2 February 2019; Accepted: 12 April 2019; Published: 1 May 2019 Abstract: The holometabolous insect order Trichoptera (caddisflies) includes more known species than all of the other primarily aquatic orders of insects combined. They are distributed unevenly; with the greatest number and density occurring in the Oriental Biogeographic Region and the smallest in the East Palearctic. Ecosystem services provided by Trichoptera are also very diverse and include their essential roles in food webs, in biological monitoring of water quality, as food for fish and other predators (many of which are of human concern), and as engineers that stabilize gravel bed sediment. They are especially important in capturing and using a wide variety of nutrients in many forms, transforming them for use by other organisms in freshwaters and surrounding riparian areas.
    [Show full text]
  • Microsoft Outlook
    Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA).
    [Show full text]