<<

Ecologica Montenegrina 36: 6-39 (2020) This journal is available online at: www.biotaxa.org/em http://dx.doi.org/10.37828/em.2020.36.2

Ecological and faunistic features of (Insecta: Trichoptera) in different types of habitats in the Dinaric karst area (Central )

DARKO CERJANEC1, MLADEN KUČINIĆ2, MARINA VILENICA3, ANĐELA ĆUKUŠIĆ4, RENATA ĆUK5, HALIL IBRAHIMI6*, IVAN VUČKOVIĆ7, SANJA ŽALAC8 & DAMIR RUK9

1Primary School Barilović, Barilović 96, 47252 Barilović and Primary School Netretić, Netretić 1, 47271 Netretić, Croatia ([email protected]) 2Department of Biology (Laboratory for Entomology), Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10 000 Zagreb, Croatia 3Faculty of Teacher Education, University of Zagreb, Trg Matice hrvatske 12, 44250 Petrinja, Croatia 4Ministry of Economy and Sustainable Development, Vukovarska 78, 10000 Zagreb, Croatia 5Hrvatske vode, Central Water Management Laboratory, Ulica grada Vukovara 220, 10 000 Zagreb, Croatia 6Department of Biology, Faculty of Mathematical and Natural Sciences, University of Prishtina “Hasan Prishtina”, “Mother Theresa” p.n.,10000 Prishtina, Republic of Kosovo 7Elektroprojekt d.d., Civil and Architectural Engineering Department, Alexandera von Humboldta 4, 10 000 Zagreb, Croatia 8National Park Plitvice Lakes, Josipa Jovića 19, 53231 Plitvička jezera, Croatia 9Koprivničke vode d.o.o., Public water service company for drinking water supply, sewer drainage and waste water treatment, Mosna 15a, 48000 , Croatia 1,2 equal authors *Corresponding author: [email protected]

Received 23 September 2020 │ Accepted by V. Pešić: 28 October 2020 │ Published online 2 November 2020.

Abstract faunistic and ecological features were studied at 14 sampling sites along the catchment area of the River. Adults were collected monthly, over a period of 13 months (from early November 2009 until the end of November 2010), using ultraviolet (UV) light trap and entomological net. Physico-chemical parameters of water and air were also measured at all sampling sites. The study encompassed several segments of caddisfly fauna: the composition, new records, the distribution of all recorded species and seasonal dynamics. A total number of 77 species were recorded, out of which 15 species and four genera were new records for Croatian caddisfly fauna. The CCA analysis showed that the water temperature and the altitude had the highest impact on distribution of caddisfly fauna in this area. The results of this study contribute to the increase of faunistic and ecological knowledge of the Croatian caddisflies.

Key words: Dobra River catchment area, , distribution, new records.

Ecologica Montenegrina, 36, 2020, 6-39 CADDISFLIES IN DIFFERENT TYPES OF HABITATS IN THE DINARIC KARST

Introduction

The order Trichoptera includes 16267 recent and 521 fossil species (Morse 2020), whereas European caddisfly fauna consists more than 1000 species (Malicky 2004; Previšić et al. 2014a). Trichoptera are present in all continents except Antarctica, with the highest biodiversity in Central and Southern America and Asia (Holzenthal et al. 2007; Morse 2020). They occur in almost all habitat types, however, the highest biodiversity is in streams and small rivers (Hickin 1967; Kučinić et al. 2017; Stanić-Koštroman et al. 2015; Wallace et al. 1990). Caddisflies require habitats with specific environmental conditions in their habitats such as water temperature, water velocity, substrate composition, availability of food resources, etc. (Dohet, 2002; Graf et al. 2008b; Hickin 1967; Previšić et al. 2007a; Rosenberg & Resh 1993; Waringer & Graf 2011), therefore, they are among the groups of aquatic widely used as ideal bioindicator models (Graf et al. 2002; 2008b). The Balkan Peninsula is known for its high species biodiversity (Kryštufek et al. 2007; Marinković-Gospodnetić 1976; Oláh 2011; Previšić et al. 2014a, 2014b; Sket et al. 2001; Sket 2002), not only due to its geographical, climatological and geomorphological characteristics, but also as a result of certain geological processes which occurred in the past (Bilandžija et al. 2013). Particularly, interesting part of Balkan Peninsula is 600 km long Dinaric karst area situated from to Albania (Bilandžija et al. 2013). Although in the last 15 years, a certain number of studies on the biodiversity, and distribution of aquatic insects of this area has been published (Gligorović et al. 2010; Malicky 2005; Vilenica et al. 2015; Živić et al. 2009), including caddisflies (Ćuk & Vučković 2009, 2010, 2014; Ćuk et al. 2015; Vučković et al. 2016), there are still extensive gaps regarding caddisfly biodiversity and ecology. Limnological research of caddisflies in Croatia started in the second part of the 20th century (Habdija 1989; Habdija et al. 1994, 2004; Matoničkin 1959; Matoničkin & Pavletić 1961, 1967; Matoničkin et al. 1971; Matoničkin 1987). Most of those studies have focused on larvae. Yet in order to identify the exact composition and structure of Trichoptera fauna in a given area, adult forms have to be collected for each species, particularly the males, since in a certain number of genera the females cannot be identified to species level (Malicky 2004). Recent faunistic studies of caddisflies in Croatia take into consideration adult stages and were conducted amongst other in the area of the Plitvice Lakes National Park (Kučinić 2002; Kučinić & Malicky 2002; Malicky 1980, 1996; Marinković-Gospodnetić 1971, 1979; Previšić et al. 2007a, 2010), the River (Graf et al. 2008a; Kučinić et al. 2011; Waringer et al. 2009), the River (Vučković 2011), the River (Previšić et al. 2007b), the area (Previšić & Popijač 2010), the Banovina area (Kučinić et al. 2010, 2013, 2019a), the area (Previšić et al. 2013), counting a total of cca 200 species in Croatian fauna. This study presents the results of the research of caddisflies in the catchment area of the Dobra River with the following objectives: enrichment of the current knowledge on biodiversity, distribution and ecology, with a special note related to the DNA barcoding method and conservation biology. Some of the species recorded for the first time in Croatian fauna are presented as segments of separate faunistic papers, e.g. Kučinić et al. (2015, 2019b).

Material and Methods

Study area. Our study was conducted at 14 sites in the catchment area of the Dobra River, which included eight sites at the course of the Dobra River and six at its tributaries: the Kamačnik River (3 sites = K1-K3), the spring of the Zagorska Mrežnica River (1 site = ZM), Sabljaci reservoir (1 site = SR) and the River (1 site = KK) (Tab. 1, Fig. 1-2). With the length of 104 km the Dobra River is the longest Croatian underground river, forming the longest underground cave system over 16 km long. The river springs from two sources, at Bukov Vrh and at Skrad, while the mouth is into the Kupa River near the city of (Kovačević 2005). Together with the and Mrežnica rivers it is an important tributary of the Kupa River. The Dobra River catchment area is situated in Dinaric ecoregion (ER05) (Illies 1978). The reaches of the Dobra River can be divided into 3 parts: Gornja/Ogulinska Dobra (Upper Dobra), middle course which flows underground and Donja/Gojačka Dobra (Lower Dobra). The natural regime of the Dobra

7

CERJANEC ET AL.

River was significantly disturbed due to the construction of the hydropower Gojak in 1959. The associated catchment area of the Dobra River was originally 792 km2. However, since the construction of the HPP Gojak, additional 302 km² of the Zagorska Mrežnica River catchment area was redirected into the Dobra River catchment area increasing the total watershed area to 1.094 km2 (Kovačević 2005).

Figure 1. Map of the study area with sampling sites which correspond to the list in Tab. 1.

Moreover, after the construction of the new hydropower plant Lešće in mid-2010, which is located 12 km downstream from the hydropower plant Gojak on Donja Dobra, the water regime and the environmental regime of the Dobra watercourse has also been altered (Bonacci & Andrić 2010). Canyon Kamačnik, covering 74.44 ha with the elevation between 370 and 600 m, is a protected landscape since 2002. Kamačnik is a 3.2 km long right tributary of the Dobra River. The spring of Zagorska Mrežnica River is a flooded cave, whereby a total length of 320 m has been studied so far. The spring is captured and serves as a water supply for the wider area of the town of . Sabljaci reservoir is artificially created in 1956 for the purpose of accumulating the water of the Zagorska Mrežnica River for the production of electricity. Sabljaci reservoir has an area of 170 ha and it is the eleventh largest lake in Croatia (Duplić et al. 2007).

Ecologica Montenegrina, 36, 2020, 6-39 8

CADDISFLIES IN DIFFERENT TYPES OF HABITATS IN THE DINARIC KARST

Figure 2. Dobra - spring (D1), Dobra - upper Dobra (D2), Dobra - canyon (D4), Kamačnik - spring (K1), Zagorska Mrežnica - spring (ZM), Sabljaci - reservoir (SR).

Sampling and laboratory work. Samples were collected monthly over a period of 13 months (from November 2009 to November 2010) using UV light trap and entomological net. Samples were stored in 80% or 96% ethanol. In the period from 2016 to 2020 sampling of adult cadiesflies was conducted at several sites at the Dobra River (Dobra - spring (D1), Dobra - Jarče Polje (D6), Dobra - Novigrad na Dobri (D7)) in order to collect fresh samples for DNA method barcoding. At the spring of the Dobra River at Skrad samples have been taken five times, both adults and larvae with particular interes in finding the species Drusus chrysotus (Rambur, 1842). All specimens have been deposited as vouchers at Croatian Natural History Museum.

9

Table 1. List of sampling stations with short-codes, coordinates, elevation and results of physico-chemical parameters (min-max values). Springs (D1, K1, ZM), upper part (D2), middle parts (D3, D4, D5, K2, KK), lower parts (D6, D7, D8, K3) and reservoir (SR).

Coordinates Water Oxygen Alcality Short- Elevation Oxygen Conductivity Ammonia Nitrates Nitrites Sampling station temp. saturation pH (mg + - - code (m a.s.l.) (mg O2/l) (µS/cm) (mgNH4 /l) (mgNO3 /l) (mgNO2 /l) (˚C) (%) CaCO3/l) N E D1 Dobra - spring 45˚25ʹ 47.78ʺ 14˚54ʹ 33.91ʺ 700 6 – 11 10.56 - 12.33 97.5 - 112.8 7.03 - 7.88 284 - 345 170 - 195 <0.001 - 0.3 4.45 - 10.31 <0.001 Dobra - upper 45˚26ʹ 49.05ʺ 14˚57ʹ 29.77ʺ 520 6 – 18 8.92 - 14.7 87.7 - 121.7 7.06 - 7.95 124 - 339 170 - 192 <0.001 - 0.6 3.39 - 10.07 <0.001 - 0.06 D2 Dobra Dobra - 45˚19ʹ 34.78ʺ 15˚16ʹ 33.87ʺ 198 8 – 22 8.75 - 12.93 72.7 – 151.7 7.01 - 7.8 259 - 405 180 - 195 <0.001 - 0.13 1.11 - 6.79 <0.001 - 0.02 D3 Trošmarija D4 Dobra - canyon 45˚21ʹ 28.79ʺ 15˚18ʹ 19.52ʺ 190 5 – 22 9.08 - 14.73 88.9 – 151.6 7.03 - 7.92 276 - 407 170 - 196 <0.001 - 0.17 1.55 - 8.98 <0.001 - 0.12 D5 Dobra - Lešće 45˚22ʹ 21.78ʺ 15˚21ʹ 23.63ʺ 146 5 – 16 8.78 - 13.65 89.1 – 136.5 7.9 - 8.4 301 - 373 156 - 196 0.003 - 0.088 4.09 - 10.2 0.005 - 0.023 Dobra - Jarče 45˚27ʹ 06.33ʺ 15˚24ʹ 32.55ʺ 125 5 – 21 9.67 - 14.92 86.3 – 146.3 7 - 8.05 301 - 428 180 - 195 <0.001 - 0.08 2.07 - 8.32 <0.001 - 0.06 D6 Polje Dobra - Novigrad 45˚27ʹ 52.92ʺ 15˚25ʹ 58.09ʺ 120 5 - 20 9.78 - 12.75 93.2 – 132.1 8 - 8.45 330 - 438 164 - 198 0.003 - 0.138 3.66 - 11.11 0.005 - 0.005 D7 na Dobri D8 Dobra - mouth 45˚33ʹ 07.73ʺ 15˚31ʹ 11.73ʺ 112 5 – 21 9.17 - 13.2 92.2 – 140.3 8 - 8.5 313 - 416 161 - 205 0.003 - 0.121 4.36 - 10.54 0.005 - 0.005 K1 Kamačnik - spring 45˚20ʹ 48.34ʺ 15˚03ʹ 35.79ʺ 410 5 – 11 10.46 - 14.94 89.3 – 137.7 7.01 - 7.94 233 - 408 170 - 195 <0.001 - 0.05 4.11 - 6.52 <0.001 - 0.01 Kamačnik - 104.7 – 45˚21ʹ 38.73ʺ 15˚03ʹ 59.46ʺ 390 5 – 16 10.95 - 14.67 7.14 - 7.93 230 - 357 180 - 195 <0.001 - 0.01 4.04 - 6.32 <0.001 - 0.01 K2 middle course 131.8 103.7 – Kamačnik - mouth 45˚22ʹ 02.75ʺ 15˚04ʹ 17.74ʺ 370 5 – 18 10.53 - 14.71 7.03 - 8.24 229 - 405 180 - 195 <0.001 - 0.21 3.64 - 6.34 <0.001 - 0.03 K3 127.5 Zagorska 45˚11ʹ 48.48ʺ 15˚13ʹ 18.72ʺ 345 4 – 10 9.56 - 11.48 82.7 – 102.9 7.7 - 8.3 324 - 390 162 - 200 0.003 - 0.069 5.42 - 10.87 0.005 - 0.005 ZM Mrežnica - spring SR Sabljaci reservoir 45˚12ʹ 17.64ʺ 15˚13ʹ 31.30ʺ 340 5 – 23 10.58 - 15.35 90.1 – 149.9 7.6 - 8.5 337 - 383 170 - 199 0.003 - 0.138 3.94 - 9.77 0.005 - 0.005 KK Kupa - Kamanje 45˚38ʹ 54.29ʺ 15˚24ʹ 25.79ʺ 138 3 - 27 7.9 - 13.4 92.1 - 105 8 - 8.32 297 - 400 150 - 213 0.01 - 0.041 3 - 8.3 0.001 - 0.004

Ecologica Montenegrina, 36, 2020, 6-39 CADDISFLIES IN DIFFERENT TYPES OF HABITATS IN THE DINARIC KARST

For identification of collected specimens the following literature was used: Kumanski (1985, 1988) and Malicky (2004). All collected specimens are deposited in the Cerjanec Trichoptera collection (private collection of Darko Cerjanec). At each sampling date, and at each site, the following physico-chemical parameters were measured in the field: air and water temperature (˚C); and the following parameters were measured in the laboratory: dissolved oxygen (mg O2/l), oxygen -1 saturation (%), alkalinity (mg CaCO3/l), pH value, electrical conductivity (µScm ), concentrations of + - - ammonia (mg NH4 /l), nitrates (mg NO3 /l) and nitrites (mg NO2 /l) (Tab. 1). Air temperature was measured using a digital thermometer TFA Dostman/Wertheim, water temperature was measured by a mercury thermometer, dissolved oxygen in water and oxygen saturation was determined using the oximeter WTW Oxi 330/SET, the amount of CO2 bound in water (alkalinity) was determined by titration with 0.1 M hydrochloric acid, the pH was determined by a pH- metering method using WTW pH-meter, MDK: 6.5 - 9.5 pH units, electrical conductivity was o + determined by WTW conductor conductometric method, MDK 2500 μS/cm/20 C, ammonia (NH4 ), nitrate (NO2) and nitrite (NO3) were measured by using Shimadzu UV-VIS 1240 mini spectrophotometer and according to APHA standard methods (Clesceri et al. 1998), ammonia by modified phenate method, nitrate by UV spectrophotometric method and nitrite by modified colorimetric method. Whole genomic DNA was extracted from legs using GenElute Mammalian Genomic DNA Miniprep kit (Sigma-Aldrich, Germany) according to the manufacturer’s specifications and eluted in 60 µl of elution buffer. Full-length mtCOI DNA barcode region were amplified using LCO1490/HCO2198 (Folmer et al. 1994) primer sets. The 50 μl polymerase chain reactions (PCR) mixture contained 1 x Go Taq®Reaction Buffer (containing 1.5 mM MgCl2, Promega), 0.2 mM of each dNTP, 0.4 μM of each primer, 1.25 units of Go Taq®DNA Polymerase (Promega) and 5 µl of DNA eluate. PCR cycling conditions comprised an initial denaturation step (94°C for 2 min) followed by 35 cycles of denaturation at 94°C for 30 s, annealing at 50°C for 30 s and elongation at 72°C for 90 s and a final extension step of 72°C for 7 min. Product purification and bidirectional sequencing was performed by Macrogen Inc. sequencing service (Seoul, South Korea) using the amplification primers. Sequences were edited manually and aligned using the program BioEdit (Hall 1999). DNA sequences were submitted to Barcode of Life Data Systems (BOLD, Ratnasingham & Hebert 2007). BOLD ID and accession number of all specimens used in analyses are given in Tab. 4. Specimens which DNA was extracted within this study are marked with bold letter in column Specimen ID in Tab. 4. Data analysis. The similarity of caddisfly assemblages between sites was examined using non-metric multidimensional scaling (NMDS) ordination based on the Bray-Curtis similarity matrix. Species data were log transformed prior to analyses. NMDS analysis was performed using Primer 6 software package (Clarke & Gorley 2006). Canonical correspondence analysis (CCA) was used to ordinate caddisfly occurrence in respect to environmental variables. It was performed using data for 86 taxa (rare species were downweighed) and nine environmental variables. The Monte Carlo permutation test with 499 permutations was used to test the statistical significance of the relationship between all taxa and selected significant variables. The CCA analysis was performed using CANOCO 5.00 (Ter Braak & Smilauer 2012).

Results

Physico-chemical parameters. Physico-chemical parameters at each site are presented in Tab. 1, with minimal and maximal obtained values within the study period. The lowest obtained water temperature value was 3.5 ˚C at KK in January 2010, while the highest water temperature value (26.7˚C) was measured at the same station during July 2010. The lowest value of the concentrations of dissolved oxygen of 7.9 mg O2/l was recorded in August 2010 at KK while the highest value of 15.35 mg O2/l was measured in October 2010 at SR. Oxygen saturation values (%) at all sampling stations were relatively high and ranged from 72.7% in December 2009 at D3, up to 151.7% in August 2010, also at D3. The pH values ranged from 7.0 to 8.5, indicating that waters at the study area are neutral to slightly alkaline. The values of electric conductivity ranged from 124 µS/cm in February 2010 at D2 to + 438 µS/cm in February 2010 at D7. The concentrations of ammonia ranged from < 0,001 mg NH4 /l at

11

CERJANEC ET AL.

+ D1 to 0.21 mg NH4 /l at K3. Similar situation was with the nitrate concentrations which ranged from - 1.11 mg NO3 /l in August 2010 at D3 to 11.11 mg NO3-/l in November and December 2009 at D7. The - - nitrite concentrations ranged from <0,001 mg NO2 /l to 0.12 mg NO2 /l in April 2010 at D4 (Tab. 1). Caddisfly assemblages. A total of 23.741 individuals belonging to 77 species (16 families and 42 genera) was collected. The highest number of species was registered in (21 species), while families , , , and were represented by a single species (Tab. 2). The highest species biodiversity was recorded at sites D8 and K3 (29 species), while the lowest biodiversity was at the SR (9 species). The greatest number of species and specimens was collected at the Dobra River (60 species and 19.946 specimens) while the lowest number of both species and specimens were collected at SR (9 species and 18 specimens). Much higher number of specimens and species were collected at night (23.353 specimens / 73 species), while only 388 specimens (39 species) were collected in the daytime. However, five species (Rhyacophila laevis Pictet, 1834, Lype phaeopa Stephens, 1836, Tinodes braueri McLachlan, 1878, Micrasema sericeum Klapálek, 1902 and tesselatus (Rambur, 1842)) were collected only in the daytime. This study recorded four genera and 15 species of Trichoptera for the first time in Croatian fauna: Rhyacophila palmeni McLachlan, 1879, Agapetus laniger Pictet, 1834, forcipata Eaton, 1873, Hydroptila lotensis Mosely, 1930, Hydroptila tigurina Ris, 1894, Ithytrichia lamellaris Eaton, 1873, Orthotrichia angustella McLachlan, 1865, Oxyethira tristella Klapálek, 1895, Micrasema minimum McLachlan, 1876, Micrasema sericeum Klapálek, 1902, Drusus chrysotus (Rambur, 1842), Ceraclea riparia Albarda, 1874, Setodes punctatus Fabricius, 1793, Setodes bulgaricus Kumanski, 1967 and Oecetis notata Rambur, 1842 (Tab. 2). All four new recorded genera belong to the family : Ithytrichia, Orthotrichia, Oxyethira and Setodes (Tab. 2). Genomic DNA was extracted from legs of 22 specimens of 19 caddiesflies species from the Dobra River (Tab. 4). Compered to existing DNA sequences in the BOLD database, most diverse was specimen TDCHR_1, morphologically identified as Drusus chrysotus (5,72% difference to existing DNA sequence) (Tab. 4), while all other specimens did not indicate significant difference with DNA sequence of species from BOLD database collected in other regions in Europe. However, the results obtained for S. bulgaricus, which included two specimens (TSBUL_1 and TSBUL_2), indicate high similarity with DNA sequence of S. viridis from the BOLD database (over 99,7%, Tab. 4). P-distances value of the mtCOI DNA region between S. bulgaricus and S. viridis is 0,1%. This value is lower than interspecific value recorded in any Setodes species used this study (from 0,4% within S. viridis to 1,7% within S. punctatus) (Tab. 5). The phylogenetic tree doesn’t support morphological identification of specimens TSBUL_1 and TSBUL_2 as S. bulgaricus. Specimens TSBUL_1 and TSBUL_2 are grouped with S. viridis from Germany in highly supported group with S. viridis from Iraq (Fig. 5). Out of the total number of recorded species (77), thirty-seven (37) species were recorded at the springs, twelve (12) species in the upper parts of the investigated streams, fifty (50) species in the middle parts, fifty-three (53) species in the lower parts and only nine (9) species at the site SR (Tab. 2). Eleven (11) species were found in the springs exclusively, two (2) species exclusively in the upper parts of streams, five (5) species exclusively in the middle part, ten (10) in the lower part, and only two (2) species exclusively at the site SR (Tab. 2). Caddisflies and environmental parameters. The NMDS analysis showed grouping of some of the sampling sites of the Dobra River, as well as the certain mutual similarity of the Dobra and Kamačnik rivers, while sampling stations D1, ZM and SR were separated from all other sites (Fig. 3). The results of the ordination of species and environmental data of the CCA are presented on the F1 × F2 ordination plot. The eigenvalues for the first two CCA axes were 0.51 and 0.21 and explained 77.7% of the species-environment relations. The Monte Carlo permutation test showed that the species-environment ordination was significant (first axis: F-ratio = 4.86, p = 0.006; overall: trace = 1.02, F = 1.71, p = 0.002) indicating that caddisfly assemblages were significantly related to the tested set of environmental variables. Axis 1 was related to water temperature (R= - 0.77) and axis 2 to altitude (R=0.32) indicating that these were the most important parameters in explaining patterns of caddisfly assemblages (Fig. 4).

Ecologica Montenegrina, 36, 2020, 6-39 12

CADDISFLIES IN DIFFERENT TYPES OF HABITATS IN THE DINARIC KARST

Table 2. List of recorded species at sampling stations in the catchment area of the Dobra River (new records are marked with ●).

D1 D2 D3 D4 D5 D6 D7 D8 K1 K2 K3 ZM SR KK Family: 1. Rhyacophila aurata Brauer, 1857 1 2 7 5 20 2 2 9 97 1 1 2. Rhyacophila dorsalis persimilis McLachlan, 1879 6 2 1 2 1 10 3. Rhyacophila fasciata Hagen, 1859 23 4 7 1 1 1 104 42 47 6 1 4. Rhyacophila laevis Pictet, 1834 4 5. Rhyacophila palmeni McLachlan, 1879 ● 1 6 17 26 18 4 2 6. Rhyacophila schmidinarica Urbanič, Krušnik & Malicky, 2000 10 Family: 7. Glossosoma bifidum McLachlan, 1879 1 1 1 8. Glossosoma discophorum Klapálek, 1902 1 9. Agapetus delicatulus McLachlan, 1884 9 1 1 15 79 13 5 2 10. Agapetus laniger Pictet, 1834 ● 11 10 16 11. Agapetus ochripes Curtis, 1834 2 2 1 1 5 2 1 Family: HYDROPTILIDAE 12. Hydroptila forcipata Eaton, 1873 ● 13 10 37 63 29 137 1 132 13. Hydroptila lotensis Mosely, 1930 ● 11 4 1 2 1 65 1 62 14. Hydroptila tigurina Ris, 1894 ● 4 1 243 34 217 29 15. Hydroptila tineoides Dalman, 1819 19 15 16. Hydroptila sp. (♀♀) 41 28 36 30 6 355 4 159 17. Ithytrichia lamellaris Eaton, 1873 ● 6 5 23 2 18. Orthotrichia angustella McLachlan, 1865 ● 1 4 1 4 1 263 1 26 19. Oxyethira tristella Klapálek, 1895 ● 9 Family: 20. montanus Donovan, 1813 1 1 21. Wormaldia copiosa McLachlan, 1868 4 22. Wormaldia occipitalis Picet, 1834 1 2 1 1 2 23. Wormaldia subnigra McLachlan, 1865 2 ..continued on the next page

13

CERJANEC ET AL.

TABLE 2 24. Wormaldia sp. (♀♀) 2 1 8 1 Family: 25. Hydropsyche contubernalis McLachlan, 1865 1 26. Hydropsyche fulvipes (Curtis, 1834) 1 27. Hydropsyche incognita Pitsch, 1993 1 1 2 4 162 1 1 3 28. Hydropsyche instabilis (Curtis, 1834) 1 7 2 1 1 29. Hydropsyche sp. (♀♀) 6 44 28 80 61 63 60 452 11 30 42 112 30. Cheumatopsyche lepida Pictet, 1834 2 2 1 1269 1 Family: 31. Cyrnus trimaculatus Curtis, 1834 1 19 32. Polycentropus irroratus Curtis, 1835 3 15 13 4 3 2 1 4 33. Plectrocnemia brevis McLachlan, 1871 2 1 34. Plectrocnemia conspersa (Curtis, 1834) 18 1 1 Family: ECNOMIDAE 35. Ecnomus tenellus Rambur, 1842 4 Family: 36. Psychomyia klapaleki Malicky, 1995 1 1 1 9 37. Psychomyia pusilla Fabricius, 1781 4 4 9 10 2 384 1 10 27 1 230 38. Psychomyia sp. (♀♀) 14 42 78 54 65 4120 6 53 205 1 1191 39. Lype phaeopa Stephens, 1836 1 40. Lype reducta (Hagen, 1868) 6 1 41. Lype sp. (♀♀) 2 42. Tinodes braueri McLachlan, 1878 4 43. Tinodes dives Pictet, 1834 1 44. Tinodes rostocki McLachlan, 1878 1 1 45. Tinodes sp. (♀♀) 3 1 1 1 2 Family: PHRYGANEIDAE 46. Agrypnia varia Fabricius, 1793 5 ..continued on the next page

Ecologica Montenegrina, 36, 2020, 6-39 14

CADDISFLIES IN DIFFERENT TYPES OF HABITATS IN THE DINARIC KARST

TABLE 2 Family: 47. Micrasema minimum McLachlan, 1876 ● 130 23 330 812 22 229 1 238 5 264 48. Micrasema sericeum Klapálek, 1902 ● 1 49. Micrasema sp. (♀♀) 21 Family: LIMNEPHILIDAE 50. Drusus chrysotus (Rambur), 1842 ● 1 51. Drusus croaticus Marinković-Gospodnetić, 1971 5 52. Drusus discolor (Rambur) 1842 1 53. auricula Curtis, 1834 1 1 54. Limnephilus hirsutus (Pictet, 1864) 1 55. Limnephilus lunatus Curtis, 1834 2 1 1 56. (Linnaeus, 1758) 1 9 1 57. nigropunctatus (Retzius, 1873) 1 58. pellucidus (Retzius, 1783) 2 59. furcata Brauer, 1857 1 1 1 1 60. latipennis Curtis, 1834 2 47 18 14 61. Potamophylax pallidus (Klapálek, 1899) 2 1 1 1 62. Halesus digitatus (Schrank, 1781) 1 2 1 2 3 63. Halesus tesselatus (Rambur, 1842) 1 64. Halesus sp. (♀♀) 1 2 1 1 1 65. permistus McLachlan, 1895 2 1 66. Micropterna lateralis Stephens, 1837 2 67. Micropterna testacea (Gemlin, 1879) 1 68. Allogamus uncatus (Braur, 1857) 9 69. fusca Brauer, 1857 1 9 37 70. Chaetopteryx gonospina Marinković-Gospodnetić, 1966 1 71. apfelbecki (Klapálek, 1899) 12 9 Family: ..continued on the next page

15

CERJANEC ET AL.

TABLE 2 72. Goera pilosa Fabricius, 1775 1 24 2 6 73. Silo piceus (Brauer, 1857) 1 12 5 12 2 38 98 2 3 11 7 Family: LEPIDOSTOMATIDAE 74. hirtum (Fabricius, 1775) 2 316 571 2410 2048 1197 7 1 64 12 Family: 75. Athripsodes sp. (♀♀) 7 1 3 1 76. Ceraclea albimacula (Rambur, 1842) 27 4 77. Ceraclea dissimilis (Stephens, 1836) 426 136 9 1344 184 31 1 75 78. Ceraclea riparia Albarda, 1874 ● 159 79. Leptocerus interruptus Fabricius, 1775 1 1 1 80. Mystacides azurea (Linnaeus, 1761) 2 4 4 4 2 7 81. Setodes punctatus Fabricius, 1793 ● 32 1 25 82. Setodesbulgaricus Kumanski, 1967 ● 20 7 5 83. Oecetis notata Rambur, 1842 ● 6 11 84. Oecetis testacea (Curtis, 1834) 6 1 1 1 Family: ODONTOCERIDAE 85. Odontocerum albicorne (Scopoli,1769) 1 2 10 9 4 75 Family: SERICOSTOMATIDAE 86. Sericostoma flavicorne Schneider, 1845 1 3 2 3 No. of specimens 87 85 1061 955 3055 5059 1744 7900 207 192 914 62 18 2402 No. of species 19 12 22 21 19 27 25 29 13 21 29 11 9 28 No. of genera 13 10 21 16 16 19 20 21 11 14 23 9 8 23 No. of families 10 9 14 11 11 11 12 12 7 10 14 4 6 12

Ecologica Montenegrina, 36, 2020, 6-39 16

CADDISFLIES IN DIFFERENT TYPES OF HABITATS IN THE DINARIC KARST

Figure 3. NMDS similarity analysis of caddisflies fauna at the study area (sampling sites correspond to the list in Tab. 1).

Figure 4. F1×F2 plane of CCA analysis showing 86 caddisfly taxa (77 species + 9 genera of females sp.) six selected environmental variables. Caddisfly taxa codes are presented in Tab. 2.

Ecologica Montenegrina, 36, 2020, 6-39 17

CERJANEC ET AL.

Notes on the phenology. Out of 77 species recorded in this study, the highest number of species, 45 and 40, was found in June and August while the lowest number of species was recorded in January and December (3 species). In February and March no caddisflies were recorded. Regarding the season, a total of fifty-two (52) species were recorded in the spring period, fifty-four (54) in the summer, twenty-five (25) in the autumn, and four (4) species in the winter (Tab. 3), with thirteen (13) species being recorded exclusively in the spring, fifteen (15) species in the summer, seven (7) species in autumn while non of the species (0) was recorded in the winter period exclusively (Tab. 3). Potamophylax latipennis Curtis, 1834 was recorded in all four seasons, thus, having the longest activity period from all recorded species (Tab. 3).

Table 3. Flight periods of caddisfly species in all sampling stations (● UV-lamp, ▲ entomological net).

Season Winter Spring Summer Autumn Species/Month 1 2 3 4 5 6 7 8 9 10 11 12 Rhyacophila aurata ● ▲● ● ● ● ▲● ▲● ▲● Rhyacophila d. persimilis ● ● ▲● ▲● ● ● ● Rhyacophila fasciata ▲● ▲● ▲● ● ▲● ▲● ▲● ▲● ● Rhyacophila laevis ▲ Rhyacophila palmeni ▲● ● ▲● ● ▲● ▲● ▲● Rhyacophila schmidinarica ▲ ▲ ● ● ● ● Glossosoma bifidum ● ● ● Glossosoma discophorum ● Agapetus delicatulus ▲ ● ● Agapetus laniger ● ● Agapetus ochripes ● ● Hydroptila forcipata ● ● ▲● ● ● ● Hydroptila lotensis ● ● ▲● ● ● Hydroptila tigurina ● ● ● ● ● Hydroptila tineoides ● Hydroptila sp. (♀♀) ● ● ▲● ● ● ● Ithytrichia lamellaris ● ● Orthotrichia angustella ▲● ● ● ● Oxyethira tristella ● ● ● Wormaldia copiosa ● ● ● Wormaldia occipitalis ▲ ● ● ▲● ● Wormaldia subnigra ● ● Wormaldia sp. (♀♀) ● ● ▲● Hydropsyche contubernalis ● Hydropsyche fulvipes ● Hydropsyche incognita ▲● ▲● ▲● ● ▲● ● ● Hydropsyche instabilis ● ● Hydropsyche sp. (♀♀) ▲● ▲● ▲● ▲● ▲● ● ● Cheumatopsyche lepida ● ▲● ● ● Cyrnus trimaculatus ▲● ● Polycentropus irroratus ▲● ▲● ● ● Plectrocnemia brevis ● Plectrocnemia conspersa ● ● ● Ecnomus tenellus ● ● Psychomyia klapaleki ● ● ● Psychomyia pusilla ● ● ▲● ● ● ● Psychomyia sp. (♀♀) ● ▲● ▲● ● ● ● ..continued on the next page

18

CADDISFLIES IN DIFFERENT TYPES OF HABITATS IN THE DINARIC KARST

TABLE 3 Lype phaeopa ▲ Lype reducta ● ▲● Lype sp. (♀♀) ▲ ● Tinodes braueri ▲ Tinodes dives ● Tinodes rostocki ▲ ● Tinodes sp. (♀♀) ● ▲● ▲● ● Agrypnia varia ● ● Micrasema minimum ● ● ● ● ● Micrasema sericeum ▲ Micrasema sp. (♀♀) ● Drusus chrysotus ● Drusus croaticus ● ● Drusus discolor ● Limnephilus auricula ● ▲ Limnephilus hirsutus ● Limnephilus lunatus ● ● ● ● Limnephilus rhombicus ● ▲● ● G. nigropunctatus ● ● Anabolia furcata ▲ ● Potamophylax latipennis ▲ ▲● ● ● ▲● ▲● ● Potamophylax pallidus ● ● ● ● Halesus digitatus ▲● ● ● Halesus tesselatus ▲ Halasus sp. (♀♀) ● ● Stenophylax permistus ● ● ● Micropterna lateralis ● Micropterna testacea ● Allogamus uncatus ● ▲● Chaetopteryx fusca ▲● ● ▲● ● Chaetopteryx gonospina ● Annitella apfelbecki ▲ ● ▲● ● Goera pilosa ● ▲ ● ● ● ● Silo piceus ▲● ▲● ▲● ● ▲ Lepidostoma hirtum ● ▲● ▲● ● ▲● ● ● Athripsodes sp. (♀♀) ● ● Ceraclea albimacula ● ▲● Ceraclea dissimilis ▲● ● ▲● Ceraclea riparia ● ● Leptocerus interruptus ● ● Mystacides azurea ▲● ▲● ● ● Setodes punctatus ● ● ● Setodes bulgaricus ● ● Oecetis notata ● ● Oecetis testacea ● ▲● Odontocerum albicorne ● ▲● ▲● ▲● ▲● Sericostoma flavicorne ● ▲● No. of species 3 0 0 15 35 45 36 40 24 19 12 3

Ecologica Montenegrina, 36, 2020, 6-39 19

CERJANEC ET AL.

Figure 5. Maximum likelihood (ML) phylogram based on 658 bp long fragment of the mt COI DNA barcode region showing the relationships between species of the Setodess. Numbers above the branches represent bootstrap support (BS) for Neighbor-Joining (NJ) and ML analysis (NJ/ML). BS values less than 60 are not shown. Specimen ID from sequences obtained in this study are written with bold letters.

Discussion

Physico-chemical parameters. The water temperature in the spring sampling sites (D1, K1, ZM) was uniform throughout the year, while the temperature amplitudes in the medium and lower flows of the watercourses and at SR were much higher, which was also in line with the expectations. Relatively high values of dissolved oxygen were recorded at all sites, indicating thus that the water is of a high quality. The usual values of dissolved oxygen for karst rivers are 10-12 mg/l (Štambuk-Giljanović 2002, 2005). Oxygen saturation values (%) at all sampling sites are fairly high, which also has a postive impact on the living world in the investigated waters and confirms their quality. Many caddisflies species are sensitive to the water pH. The pH values ranged from 7.0 to 8.5 indicating that waters at the study area are neutral to slightly alkaline (Tab. 1). The pH range from 6.5 to 8.5 is the standard for karst ecosystems (Štambuk-Giljanović 2005). The values of electric conductivity of Dobra River and its tributaries indicate low concentrations of dissolved anions and kations. Low concentrations of ammonium ions showed no organic contamination of water, which also indicates high water quality. Likewise, the concentration of nitrate and nitrite ions in the research area also indicated high water quality (Official Gazette No. 73/13, 151/14, 78/15, 61/16 and 80/18). All measured parameters indicated high water quality in the research area which can be linked with a large biodiversity of caddisfly in this area. Faunistic features. With 77 recorded species, caddisfly species richness is high at the studied karstic habitats (e.g. Kučinić et al. 2011, 2017; Vučković 2011). The number of recorded species represents one of the highest number of caddisflies species recorded in one systematic research in Croatia (Kučinić 2002; Kučinić et al. 2011, 2017; Vučković 2011). For the first time the sampling of caddisflies was conducted with the same working effort during the day (entomological net) and during the night (UV light trap). The former method is proven to be useful due to records of very interesting species and even species new to science (Kučinić et al. 2013; Urbanič et al. 2002; Vitecek et al. 2017). The frequency of the presence of adult caddisflies specimens in both methods of collection (UV lamp and entomological net) is different from species to species, as well as from station to station within the same species. DNA barcoding method has confirmed to be a very useful tool in species identification not only in morphologically similar species, as it was the case within the Hydroptilide family, but also for females that are difficult to identify (e.g. Hydropsychidae) (Tab. 4). The largest number of recorded

20

CADDISFLIES IN DIFFERENT TYPES OF HABITATS IN THE DINARIC KARST

species was found in the lower reaches of the Dobra and Kamačnik rivers, and the smallest number of specimens was recorded at the Sabljaci reservoir (SR), which is in line with the biological characteristics of Trichoptera and also previous studies, where the greatest biodiversity refers to streams, and smallest to lakes and reservoirs (e.g. Vučković 2011). A relatively large number of species, fifteen (15), identified for the first time in the Croatian fauna is a result of a certain climatic, ecological, hydrological and geomorphological specifics of the research area (Cerjanec 2012; Ibrahimi et al. 2012; Kučinić et al. 2015, 2019b), but also by insufficient research of the caddisfly fauna of Croatia in the period when these researches were carried out (Cerjanec 2012).

Table 4. List of species used in this study: first column - identification according to morphological features; followed by specimens ID; Locality/Family; BOLD Sequence ID; last column - DNA species identification with percentage similarity to existing DNA sequences in the BOLD database (identification according to BOLD Identification Engine).

Species Specimen ID Locality/Family BOLD Sequence Species similarity ID with known species in BOLD Family Hydroptilidae Hydroptila THFOR_3 Dobra – mouth (D8) CROTR121-19 Hydroptila forcipata forcipata (100%) Hydroptila THTIG_2 Dobra – mouth (D8) CROTR182-19 Hydroptila sp. (85.38%) tigurina Hydroptila THTIG_3 Dobra – mouth (D8) CROTR183-19 Hydroptila sp. (85.38%) tigurina Hydroptila THTIN_1 Dobra – Jarče Polje CROTR085-19 Hydroptila tineoides tineoides (D6) (99.52%) Ithytrichia TILAM_3 Dobra – Jarče Polje CROTR138-19 Ithytrichia lamellaris lamellaris (D6) (100%) Ithytrichia TITH_1 Dobra – Jarče Polje CROTR143-19 Ithytrichia lamellaris lamellaris (D6) (100%) Oxyethira TOXY_1 Dobra – Trošmarija CROTR103-19 Oxyethira flavicornis flavicornis (D3) (100%) Family Ecnomidae Ecnomus TETEN_3 Dobra – Trošmarija (D3) CROAA107-18 Ecnomus tenellus tenellus (99.69%) Family Polycentropotidae Cyrnus TCTRI_3 Dobra – Lešće (D5) CROTR075-19 Cyrnus trimaculatus trimaculatus (100%) Plectrocnemia TPBRE_1 Dobra – spring (D1) CROAA071-18 Plectrocnemia brevis brevis (98.39%) Plectrocnemia TPCON_6 Dobra – spring (D1) CROTR144-19 Plectrocnemia conspersa conspersa (99.83%) Polycentropus TPFLA_3 Dobra – Lešće (D5) CROTR190-19 Polycentropus flavomaculatus flavomaculatus (99.84%) Family Psychomyia Psychomyia TPPUS_7 Dobra – mouth (D8) CROTR133-19 Psychomyia pusilla pusilla (100%) Family Hydropsychidae Hydropsyche THINC_11 Dobra – mouth (D8) CROTR119-19 Hydropsyche incognita incognita (99.84%) Hydropsyche THINS_9 Dobra – spring (D1) CROTR142-19 Hydropsyche instabilis instabilis (100%)

Ecologica Montenegrina, 36, 2020, 6-39 21

CERJANEC ET AL.

Family Goeridae Goera pilosa TGPIL_2 Dobra – mouth (D8) CROTR118-19 Goera pilosa (99.68%) Family Lepidostomatidae Chaetopteryx TCFUS_1 Zagorska Mrežnica – CROAA082-18 Chaetopteryx villosa x fusca spring (ZM) sahlbergi (99.68%) Drsusu TDCHR_1 Dobra – spring (D1) CROAA104-18 Drusus chrysotus chrysotus (94.28%) Family Leptoceridae Ceraclea TCRIP_3 Dobra – mouth (D8) CROTR128-19 Ceraclea riparia riparia (99.51%) Ceraclea TSET_1 Dobra – Novigrad na CROTR112-19 Ceraclea riparia riparia Dobri (D7) (99.35%) Setodes TSBUL_1 Dobra – Jarče Polje CROTR137-19 Setodes viridis bulgaricus (D6) (99.84%) Setodes TSBUL_2 Dobra – Novigrad na CROTR117-19 Setodes viridis bulgaricus Dobri (D7) (99.67%)

The faunal results obtained in this study indicate the interestingness of the caddisfly fauna of the karstic area of Croatia, and a brief overview of some of the most interesting species will be presented. The species R. palmeni is a widespread European species with a very interesting, disjunct areal which includes areas in the north of and Slovenia (Cianficconi 2002; Krušnik & Urbanič 2002), and in the south areas of Macedonia, Greece and Kosovo (Ibrahimi et al. 2012; Malicky 2005). Record of R. palmeni in the catchment area of the Dobra River is unexpected because inspite of thorough research of caddisflies fauna located in the vicinity of study area e.g. Gorski Kotar, the upper course of the Kupa River, Čabranka, Zeleni Vir (Previšić & Popijač 2010) and little farther localities e.g. the Plitvice Lakes National Park (Kučinić et al. 2008, 2017; Previšić et al. 2007a, 2010) this species has not been recorded yet. Furthermore, a detailed research of the Cetina River catchment area (Graf et al. 2008a; Vučković 2011; Waringer et al. 2009) and the Krka River (Kučinić et al. 2011) in Croatia, and recent research in Bosnia and Herzegovina (Marinković-Gospodnetić 1979, 1980; Stanić-Koštroman 2009; Stanić-Koštroman et al. 2012, 2015) haven't resulted in findings of this species and we can conclude that the distribution of this species is a result of specific geological, climatic and hydrological events in the past and not the result of poor exploration of the area. In addition to the species R. palmeni from the family Rhyacophilidae, the finding of R. schimidinarica Urbanič, Krušnik & Malicky, 2000 recorded only at 2 localities in Croatia is also fauinistically significant (Previšić et al. 2013; Urbanič et al. 2000). In this study we recorded the highest number of species within the family of Hydroptilidae with four new genera in Croatian fauna. A large number of specimens was recorded especially in the middle and lower part of the Dobra River and the middle part of the Kupa River, which are characterized by a wider and slower water flow with a specific structure of microhabitats and aquatic vegetation thus making preferable conditions for the Hydroptilidae family (e.g. Graf et al. 2008b; Hickin 1967). It is interesting that in the Kamačnik River we record only four female specimens from the family Hydroptilidae, which is a very small number in relation to the Dobra and Kupa rivers. The reason for this is the fact that the Kamačnik River is only 3.2 kilometers long and that in the middle and lower part of the stream it shows all the characteristics of a faster mountain river ecologically unsuitable for the family Hydroptilidae which generally prefer slower flowing courses or still waters (Graf et al. 2008b). Genus Drusus is particularly interesting because it is one of the largest in the fauna of Europe and neighbouring areas (Graf et al. 2008b; Malicky 2004). So far, about 100 species of this genus have been described, including several new descriptions (e.g. Ibrahimi et al. 2015; Malicky 2020; Oláh 2010; Vitecek et al. 2015, 2017). The great diversity of this genus is determined by its biological characteristics since the species of this genus normally inhabit springs and spring areas of mountain

22

CADDISFLIES IN DIFFERENT TYPES OF HABITATS IN THE DINARIC KARST

streams with small fluctuations in annual temperature of water (Graf et al. 2008b; Kučinić et al. 2014; Waringer et al. 2016). The genus Drusus has been the subject of many taxonomic, phylogenetic, phylogeographical and ecological studies lately (Ibrahimi et al. 2016; Kučinić et al. 2015; Oláh 2010; Pauls et al. 2006, 2008; Vitecek et al. 2015, 2017; Previšić et al. 2009, 2014b; Waringer et al. 2013, 2016). Furthermore, the genus is characterized by huge differencies and many microendemic species, consequently is suitable for the above mentioned types of studies. Four species of the genus Drusus have been identified in previous studies in Croatia: D. croaticus Marinković-Gospodnetić, 1971, D. discolor (Rambur, 1842), D. vespertinus Marinković-Gospodnetić, 1976 and D. schmidi Botosaneanui, 1960 (Kučinić et al. 2014; Marinković-Gospodnetić, 1971; Previšić et al. 2012, 2013). Finding of D. croaticus at K1 expands areal of this species to the north. Drusus discolor is probably the most widespread species of the genus Drusus whose distribution range includes many populations in mountainous areas of Europe. Findings at D1 in adult stage represents the third record of this species in Croatia. Drusus discolor was found in Croatia for the first time, in the larval stage in one locality in the Mrežnica River, by Habdija (1979) and later was recorded in adult stage in the spring of the Čabranka River (Previšić & Popijač, 2010). The third and probably the most interesting species of the genus Drusus recorded in these study is an alpine species D. chrysotus which has a disjunct areal and is widespread in the mountainous areas of (Previšić et al. 2012). This record in Gorski Kotar expands its distribution area on Dinaric Western Balkan Ecoregion (ER5). This finding also represents the only record of the species in the Dinaric karst as the closest population occures 180 km distant in the area of Julian Alps in Slovenia. The specimen of D. chrysotus (TDCHR_1) used in this study has showed high sequence divergences from specimens from and Germany obtained from BOLD database (5,72%, Tab. 4). Such a difference is relatively high within the spring inhabiting genus Drusus (Vitecek et al. 2017). For instance, the higest intraspecific distance (mtCOI DNA region) recorded within the genus Drusus is 1,4% (D. franzressli Malicky 1974 and D. spelaeus (Ulmer, 1920) (Waringer et al. 2013), and value of interspecific difference recorded in other studies is 6,4% (Waringer et al. 2008). Oláh et al. (2017) separates species D. chrysotus from „nominal“ D. chrysotus species which inhabits majority of middle Europe, France, Czech Republic (Oláh et al. 2017). Our detailed analysis of morphological characteristics of both males and larvae (females have not been collected so far) collected in the spring of the Dobra River sugested that in this area is D. chrysotus. Also, this specimen (TDCHR_1) didn’t reveal evidence of morphological divergence between the specimens of other D. chrysotus. The species D. chrysotus is extremely rare in Croatia as it has been recorded at a single site (Dobra-spring, D1) by a single male and several larvae specimens (Cerjanec 2012; Previšić et al. 2012). DNA barcoding method indicates interesting results regarding genus Setodes which was represented with two species at the Dobra River: S. punctatus and S. bulgaricus. Data obtained for S. punctatus were expected as the species was confirmed by DNA barcode analysis. Kumanski determined S. bulgaricus as a subspecies of S. viridis while describing it (Kumanski 1988). Later taxonomists changed its taxonomic status into species (Malicky 2004). Our results indicate that S. bulgaricus (specimens TSBUL_1 and TSBUL_2) observing mtCOI DNA region belongs to species S. viridis (Fig. 5, Tab. 5). Since „bulgaricus" populations are characterized by specific and recognizable morphological features, also referring to those specimens from the Dobra River, this is most likely S. viridis bulgaricus. The exact taxonomic status of this taxon will be established after detailed analysis of morphological features of imago and also genetic analysis of certain number of specimens by including other genes as well (e.g. nuclear genes: CADH, WG, mitochondrial genes: mtCOI3-P, 16S). Ecological features. The biodiversity of the caddisfly fauna at the study localities is conditioned by their biological characteristics, the diversity of microhabitats important for larval stages, as well as the hydrological characteristics of a certain locality (Habdija et al. 2002, 2004; Svensson 1972; Šemnički et al. 2012; Urbanič et al. 2005; Waringer 1991; Wiberg-Larsen et al. 2000). The NMDS analysis showed the categorisation of stations according to the degree of faunistic and environmental similarities of the habitats (Fig. 3). This study also confirmed the distinction of springs and lakes (reservoirs) in relation to river flows as far as caddisfly fauna is concerned (Graf et al. 2008b; Kučinić et al. 2017; Previšić et al. 2007a). These results are consistent with similar studies that indicate large ecological differences between above mentioned habitat types due to geological, hydrological and climatic characteristics resulting in different composition and structure of caddis

Ecologica Montenegrina, 36, 2020, 6-39 23

CERJANEC ET AL. fauna (Graf et al. 2008b; Kučinić et al. 2017; Stanić-Koštroman et al. 2012, 2015; Urbanič & Toman 2007).

Table 5. Values of the p-distance in percentage between groups of Setodes and outgroup species for mtCOI DNA region.

Mystacides S. bulgaricus S. viridis S. punctatus azurea S. bulgaricus 0,7 S. viridis 0,1 0-0,4 S. punctatus 14,8-15,6 14,5-15 0-1,7 Mystacides 14,7-15,1 14,5-14,7 16,1-16,4 azurea

The CCA analysis showed that, taking into consideration six analysed parameters (altitude, water temperature, pH value, dissolved oxygen, electroconductivity and nitrates), the ecological factors considered as most influential on the composition and the structure of Trichoptera are: water temperatures and altitude, and to a much lesser extent pH value, dissolved oxygen, electroconductivity and nitrate (Fig. 4). Unfortunately, within this study we were not able to measure the water velocity which is, besides the food availability, one of the most important environmental factors in the distribution, composition and structure of Trichoptera fauna (Brooks et al. 2005; Habdija et al. 2002, 2004; Miliša et al. 2006) therefore certainly affecting the assemblages in the study rivers. Analysis of the seasonal dynamics of caddis fauna indicates the appearance of the largest number of species in the warm period of the year, spring and summer months, which is consistent with previous research (Kučinić et al. 2017; Morse 2003; Previšić et al. 2007a; Stanić-Koštroman 2015), and is conditioned by geographical and climatic characteristics of the study area. Some species were recorded only once, while others were recorded in many months (Tab. 3). In most months, the species R. fasciata was identified, which is in line with the results of previous research (Kučinić et al. 2017; Previšić et al. 2007a) as well as the hypothesis presented by Otto (1981) according to which Trichoptera species with predatory larval types have a very long emergence period (Otto 1981; Previšić et al. 2007a) and occurrence in a larger number of months throughout the year. Three (3) species from two (2) autumn-winter genera are of particular interest: Annitella apfelbecki (Klapálek, 1899), Chaetopteryx fusca Brauer, 1857 and Chaetopteryx gonospina Marinković-Gospodnetić, 1966 with emergence in the late autumn and winter months (October to January) due to their special adaptations to cold climatic characteristics in the middle and north part of the temperate zone (Hickin 1967). Conservation remarks. Karst habitats are characterized by great biodiversity but at the same time are very sensitive to various anthropogenic influences. One of the most endangered aspects of karst habitat biodiversity is the flora and fauna of aquatic ecosystems. The research of Trichoptera fauna presented in this study indicates on the one hand the interestingness of the fauna but on the other hand its great endangerment. The smallest number of species was recorded at RS, a site under the great anthropogenic stress. Certain anthropogenic impacts within the Dobra catchment area (springs, hydropower : HPP Gojak and HPP Lešće, Fig 1; Fig 2: D1 - Dobra spring, ZM, SR) will certainly reduce the biodiversity of aquatic fauna (e.g. Ćaleta et al. 2020). As the worst example of devastation of natural habitats we can highlight the construction of HPPs in the central part of Dobra River resulting in the 13 km long accumulation lake. As another example of the negative anthropogenic impact on the composition and structure of the Trichoptera fauna, we can point out the devastation of the spring part of the Dobra River, currently the only known habitat of the species D. chrysotus in Croatia. During 2015 the spring area of the Dobra River and the upper course were channelized and concreted, which significantly changed the natural hydrological conditions. Only 2-3 meters of length of the spring area was not devastated by this intervention, however, our efforts to find D. chrysotus in the macrozoobenthos and adults as well did not result in the finding of the species, which most likely disappeared from that locality, and its presence in Croatian fauna is now questionable (Fig. 6).

24

CADDISFLIES IN DIFFERENT TYPES OF HABITATS IN THE DINARIC KARST

The future research of Trichoptera fauna should involve similar types of spring habitats in the wider area of the Dobra River for the purpose of finding D. chrysotus species in new localities. This study together with several other studies (Kučinić et al. 2014; Previšić et al. 2009, 2012; Waringer et al. 2009) highlights the interestingness of spring caddies fauna not only in Croatia but also in other parts of Europe (Pauls et al. 2006; Waringer et al., 2016) and the necessity of adequate protection. Spring fauna is often restricted to small areal and certain number of species from Balkan Peninsula and South-East Europe is recorded only at few sites (Kučinić et al. 2011; Marinković-Gospodnetić 1976, 1979). Populations at springs are characterized by relatively high genetic variability and specificity (Pauls et al. 2006; Previšić et al. 2009, 2014b; Vitecek et al. 2017) which all contributes to the exigency for protection and preservation.

Figure 6. Dobra - spring (D1). A) before channelization (2010), B) after channelization (2020).

Conclusions

Systematic study of caddisflies in the catchment area of the Dobra River indicated the great biodiversity of this area, with 15 new species and four new genera recorded in Croatian caddisflies fauna. The sampling with the entomological net is confirmed as useful and methodologically very important due to 39 collected species, which represents more than 50% of all taxa in the investigated area, despite the modest number of collected specimens comparing to the UV lamp. The results of the study should become a baseline for similar faunistic and ecological studies of caddisflies, as well as for studying some other features of this segment of the Croatian fauna. The protection of karst river areas including Dobra and Kamačnik in Croatia should be one of the priorities in the future. By protecting these types of habitats, we protect not only the quality of drinking water, but also all associated fauna and flora. Therefore, biomonitoring would be very useful in providing information on ecological status including the community structure. Springs and spring areas in Gorski Kotar are of great importance for the fauna of aquatic insects, as they represent microrefugees for stenothermal organisms, and overlapping areal of the Alpine and Balkan species (Graf et al. 2008b; Popijač & Sivec 2009; Previšić et al. 2009, 2014b).

Ecologica Montenegrina, 36, 2020, 6-39 25

CERJANEC ET AL.

Acknowledgement We are very grateful to Mrs. Neda Cerjanec for help in collecting adult Trichoptera in this study. This research was partly supported by the scientific project “DNA barcoding of Croatian faunal biodiversity” (IP-06-2016-9988) funded by the Croatian Science Foundation, lead by Professor Mladen Kučinić and partly with financial support of University of Zagreb.

References

Bilandžija, H., Morton, B., Podnar M. & Ćetković, H. (2013) Evolutionary history of relict Congeria (Bivalvia: Dreissenidae): unearthing the subterranean biodiversity of the Dinaric Karst. Frontiers in Zoology, 10, 5. Bonacci O. & Andrić I. (2010) Hydrological Analysis of the Karst River Dobra. Hrvatske Vode, 18 (72), 127–138. Brooks, A. J., Haeusler, T., Reinfelds, I. & Williams, S. (2005) Hydraulic microhabitats and the distribution of macroinvertebrate assemblages in riffles. Freshwater Biology, 50, 331–344. Cerjanec, D. (2012) Ecological and biogeographical features of caddisflies (Insecta: Trichoptera) in different types of habitats in drainage of the Dobra River. PhD Thesis (in Croatian), Division of Biology, Faculty of Science, University of Zagreb, Zagreb, pp 226. Cianficconi, F. (2002) The third list of Italian Trichoptera (1990 - 2000). U: Mey, W. (Ur.). Proceedings of the 10th International Symposium on Trichoptera, Nova Supplementa Entomologica, 15, 349–358. Clarke K.R. & Gorley R.N. (2006) Primer v6: User Manual / Tutorial. Primer-E, Plymouth. Clesceri, L. S., Greenberg, A. E. & Eaton, A. D. (1998) Standard methods for the examination of water and wastewater, 20nd Edition, American Public Health Association, Washington DC. Ćaleta, M., Mustafić, P., Zanella, D., Buj, I., Maričić, Z. & Mrakovčić, M. (2020) Human Impacts on the Dobra River (Croatia). In: Bănăduc, D., Curtean-Bănăduc, A., Pedrotti, F., Cianfaglione, K. & Akeroyd, J. R., Human Impact on Watershed Biodiversity in the XXI Century. Cham, Switzerland, Springer International Publishing, 151-168. Ćuk, R. & Vučković, I. (2009) First record of caddisfly Rhyacophila laevis Pictet, 1834 (Insecta: Trichoptera) in Croatia. Natura Croatica, 18 (2), 449–453. Ćuk, R. & Vučković, I. (2010) dubia Stephens, 1837 (Insecta: Trichoptera), a caddisfly species new for Croatia. Natura Croatica, 19 (1), 231–237. Ćuk, R. & Vučković, I. (2014) The first record of caddisfly Setodes viridis (Fourcroy, 1875) (Insecta: Trichoptera) in Croatia. Natura Croatica, 23 (2), 407–413. Ćuk, R., Vučković, I., Kučinić, M., Valić, D. & Waringer, J. (2015) First record of Beraea dira McLachlan 1875 (Insecta, Trichoptera, ) in Croatia. Natura Croatica, 24 (2), 311– 316, Zagreb. Dohet, A. (2002) Are caddisflies an ideal group for the biological assessment of water quality in stream? Nova Supplementa Entomologica, 15, 507–520. Duplić, A., Hršak, V., Krivanek, G., Plavac, I., Radović, J., Topić, R. (2007) Stručna podloga zaštite prirode za reviziju Prostornog plana Karlovačke županije, 103–113. Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299. Gligorović, B., Pešić, V. & Gligorović, A. (2010) A contribution to the knowladge of the dragonflies (Odonata) from the River Morača. Acta entomologica Serbica, 15 (2), 149–159. Graf, W., Grasser, U. & Waringer, J. (2002) Trichoptera. In Moog, O. (ed.): Fauna Aquatica Austriaca, Edition 2002. Wasserwirtschaftskataster, Bundesministerium für Land­ und Forswirtschaft, Umwelt und Wasserwirtschaft, . Graf, W., Kučinić, M., Prevšić, A., Vučković, I. & Waringer, J. (2008a) The and distribution of Tinodes braueri McLachan, 1878 (Trichoptera: Psychomyiidae). Aquatic Insects, 30 (4), 295– 299.

26

CADDISFLIES IN DIFFERENT TYPES OF HABITATS IN THE DINARIC KARST

Graf, W., Murphy, J., Dahl, J., Zamora-Muñoz, C. Q. & López Rodríguez, M. J. (2008b) Distribution and ecological preferences of european freshwater organisms. Pensoft Publishers, Sofia-Moscow, pp. 388. Habdija, I. (1989) Trophic importance of trichopterous larvae in benthos of the Plitvice Lakes. Periodicum Biologorum, 90, 355–361. Habdija, I., Primc-Habdija, B. & Belinić, I. (1994) Functional community organization of macroinvertebrates in lothic habitats of the Plitvice Lakes. Acta Hydrochimica et Hydrobiologica, 22, 85–92. Habdija, I., Radanović, I., Primc-Habdija B. & Špoljar, M. (2002) Vegetation cover and substrate type as factors influencing the spatial distribution of trichopterans along a karstic river. International Review of Hydrobiology, 87, 423–437. Habdija, I., Primc-Habdija, B., Matoničkin, R., Kučinić, M., Radanović, I., Miliša, M. & Mihaljević, Z. (2004) Current velocity and food supply as factors affecting the composition of macroinvertebrates in bryophyte habitats in karst running water. Biologia, 59, 577–593. Hall, T. A. (1999) BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95– 98. Hickin, N. E. (1967) Caddis larvae (Larvae of British Trichoptera). Hutchinson & Co., London. Holzenthal, R. W., Blahnik, R. J., Prather, A. L. & Kjer, K M. (2007) Order Trichoptera Kirby, 1813 (Insecta), Caddisflies. Zootaxa, 1668, 639–698. Ibrahimi, H., Kučinić M., Gashi A., Grapci-Kotori, L., Vučković, I., Cerjanec, D. (2012) The Genus Rhyacophila Pictet, 1834 (Insecta: Trichoptera) in Kosovo. Aquatic Insects, 34 (1), 23–31. Ibrahimi, H., Kučinić, M., Vitecek, S., Graf, W., Previšić, A., Bálint, M., Keresztes, L. & Pauls, S. U. (2015) New records for the Kosovo caddisfly fauna with the description of a new species, Drusus dardanicus sp. nov. (Trichoptera: Limnephilidae). Zootaxa, 4032, 551–568. Ibrahimi, H., Vitecek, S., Previšić, A., Kučinić, M., Waringer, J., Graf, W., Balint, M., Keresztes, L. & Pauls, S. U. (2016) Drusus sharrensis sp. n. (Trichoptera, Limnephilidae), a new species from Sharr National Park in Kosovo, with molecular and ecological notes. Zookeys, 559, 107–124. Illies, J. (1978) Limnofauna Europaea, Stuttgart: Gustav Fischer Verlag. Kovačević, A. (2005) Hidrogeološke značajke Karlovačke županije. Magistarski rad, Sveučilište u Zagrebu, Rudarsko-geološko-naftni fakultet, Zagreb, 1–80. Kryštufek, B., Buzan, E. V., Hutchinson, W. F. & Hänfling, B. (2007) Phylogeography of the rare Balkan endemic Martino's vole, Dinaromys bogdanovi, reveals strong differentiation within the western Balkan Peninsula. Molecular Ecology, 16, 1221– 1232. Krušnik, C. & Urbanič, G. (2002) Preliminary List of Slovenian Trichoptera, Proceedings of The 10th International Symposium on Trichoptera. In: Wolfram Mey (Ed). Nova Supplementa Entomologica, 15, 359–364. Kučinić, M. (2002) Raznolikost i rasprostranjenost tulara (Insecta, Trichoptera) u staništima Plitvičkih jezera. Doktorska disertacija, Sveučilište u Zagrebu, Zagreb, pp 139. Kučinić, M. & Malicky, H. (2002) Rhyacophila dorsalis plitvicensis new subspecies from Croatia, Proceedings of the 10th International Symposium on Trichoptera (Ed. Wolfram Mey), Nova Supplementa Entomologica, 15, 145–147. Kučinić, M., Previšić, A., Gottstein, A., Hrašovec, B., Stanić-Koštroman, S., Pernek, M. & Delić, A. (2008) Description of the larvae of Drusus radovanovici septentrionis Marinković- Gospodnetić, 1976 and Drusus croaticus Marinković-Gospodnetić, 1971 (Trichoptera: Limnephilidae) from Bosnia and Herzegovina and Croatia. Zootaxa, 1783, 1–17. Kučinić, M., Bučar, M. & Delić, A. (2010) Prvi prilog poznavanju faune tulara (Insecta, Trichoptera) na području Banovine. Zrinska gora regionalni park prirode zbornik radova, Petrinja, 226– 235. Kučinić, M., Vučković, I., Kutnjak, H., Šerić Jelaska, L. & Marguš, D. (2011) Diversity, distribution, ecology and biogeography of caddisflies (Insecta: Trichoptera) in the Krka River (National Park “Krka”, Croatia). Zoosymposia, 5, 255–268.

Ecologica Montenegrina, 36, 2020, 6-39 27

CERJANEC ET AL.

Kučinić, M., Szivák, I., Pauls, S. U., Bálint, M., Delić, A. & Vučković, I. (2013) Chaetopteryx bucari sp. n. a new species from the Chaetopteryx rugulosa group from Croatia (Insecta, Trichoptera) with some molecular, taxonomical and ecological notes on the group. Zookeys, 320, 1–28. Kučinić, M., Delić, A., Ćuk, R., Previšić, A., Mihoci, I., Žganec, K., Cerjanec, D. & Vučković, I. (2014) The first finding of Drusus bosnicus Group (Insecta, Trichoptera, Limnephilidae) in Croatia with some notes on diversity, distribution and ecology of genus Drusus in Croatia and in Dinaric karst of the Balkan Peninsula. Natura Croatica, 23 (2), 265–377. Kučinić M., Cerjanec D., Vučković I., Mihoci I., Perović F., Kutnjak H., Ibrahimi H., Pelić Fixa D., Žalac S., Mrnjavčić Vojvoda A. & Plantak M. (2015) Some new and interesting species of caddisflies (Insecta, Trichoptera) found in Croatia. Natura Croatica, 24 (2), 293–310. Kučinić, M., Previšić, A., Vajdić, M., Tunjić, M., Mihoci, I., Žalac, S., Sviben, S., Vučković, I., Trupković, M. & Habdija, I. (2017) First systematic investigation of adults and second checklist of caddisflies of the Plitvice Lakes National Park with notes on research history, biodiversity, distribution and ecology. Natura Croatica, 26 (2), 225–260. Kučinić, M., Ćukušić, A., Cerjanec, D., Podnar M., Plantak M., Žalac S., Ćuk R., Vučković, I., Ibrahimi, H, & Delić A. (2019a) DNA barcoding of the family Phryganeidae (Insecta, Trichoptera) in Croatia with particular reference to phylogeny, distribution and conservation biology. Natura Croatica, 28 (2), 305–323. Kučinić, M., Ćukušić, A., Delić, A., Podnar, M., Gumhalter, D., Mičetić Stanković, V., Plantak, M., Čeple, G., Plavec, H. & Marguš, D. (2019b) New species from the family Hydroptilidae in Croatian fauna collected in the with particular notice to biodiversity and DNA barcoding. Natura Croatica, 28 (2), 441–454. Kumanski, K.P. (1985) Trichoptera, . Fauna Bulgarica, 15, Bulgarska Akademia na Naukite, Sofia, 243 pp. Kumanski, K. P. (1988) Trichoptera, . Fauna Bulgarica, 19, Bulgarska Akademia na Naukite, Sofia, 354 pp. Malicky, H. (1980) Beschreibungen von neuen Mediterranen köcherfliegen und Bemerkungen zu bekannten (Trichoptera). Zeitschrift der Arbeitsgemeinschaft Österreichischer Entomologen, 32, 1–17. Malicky, H. (1996) Das Problem der allopatrischen Arten bei europäischen Köcherfliegen (Insecta: Trichoptera). Natura Croatica, 5 (1), 11–23. Malicky, H. (2004) Atlas of European Trichoptera. Springer, Dordrecht, 360 pp. Malicky, H. (2005) Die Köcherfliegen Griechenlands. Denisia, 17, 1–240. Malicky, H. (2020) Ein neuer Drusus (Trichoptera, Limnephilidae) aus dem Piemont: Drusus delmastroi n. sp. Braueria, Lunz am See, Austria 47, 38. Marinković-Gospodnetić, M. (1971) The species of the genus Drusus in Yugoslavia. Godišnjak Biološkog Instituta Univerziteta Sarajevo (Annual of the Institute of Biology - University of Sarajevo) 24, 105–109. Marinković-Gospodnetić M. (1976) The differentiation of Drusus species of the group bosnicus. In: Malicky H, editor. Proceedings of the First International Symposium on Trichoptera, The Hague, The Netherlands: Dr. W. Junk Publisher, pp. 77–85. Marinković-Gospodnetić, M. (1979) Trichoptera (Insecta) velikih karstnih izvora u Dinaridima. U: Rauš, Đ. (Ed.). Drugi kongres Ekologa Jugoslavije (Second Congress of Ecologists of Yugoslavia). Savez društava ekologa Jugoslavije, Zagreb, 1837–1849. Marinković-Gospodnetić, M., Krek, S., Tanasijević, M. & Kaćanski, D. (1980) in: Vuković, T. (ed.), Problemi inventarizacije životinjskog svijeta Bosne i Hercegovine - stanje i perspective. Akademija nauka i umjetnosti BiH, Sarajevo, pp. 56–75. Matoničkin, I. (1959) Faunistička istraživanja reikotopnih biotopa na Plitvičkim jezerima. Ljetopis knjiga, 63, 355–360. Matoničkin, I. & Pavletić, Z. (1961) Biljni i životinjski svijet na sedrenim slapovima Jugoslavenskih krških voda. Biološki glasnik, 14, 105–127. Matoničkin, I. & Pavletić, Z. (1967) Hidrologija potočnog sistema Plitvičkih jezera i njegove biocenološke značajke. Krš Jugoslavije, 5, 83–126.

28

CADDISFLIES IN DIFFERENT TYPES OF HABITATS IN THE DINARIC KARST

Matoničkin, I., Pavletić, Z., Tavčar, V. & Krkač, N. (1971) Limnološka istraživanja reikotopa i fenomena protočne travertinizacije u Plitvičkim jezerima. Prirodoslovna istraživanja JAZU 40, Acta Biologica, 7, 1–88. Matoničkin, I. (1987) Građa za limnofaunu krških voda tekućica Hrvatske, Plitvička jezera. Biosistematika, 13 (1), 25–35. Miliša, M., Habdija, I., Primc-Habdija., B., Radanović I. & Matoničkin Kepčija, R. (2006) The role of flow velocity in the vertical distribution of particulate organic matter on mos-covered travertine barriers of the Plitvice Lakes (Croatia). Hydrobiologia, 553, 231–243. Morse, J. C. (2003) Trichoptera (caddisflies). U: Resh, V. H., Freschwater Invertebrates of The Malaysian Region. Academic Press. New York, 501–508. Morse, J. C. (ed.) (2020) Trichoptera World Checklist. http://entweb.clemson.edu/database/trichopt/index. htm (accessed on 16th August 2020). Official Gazette (2013) Regulation on Water Quality Standard, Official Gazette of the Republic of Croatia No. 73/13, 151/14, 78/15, 61/16, 80/18. Oláh, J. (2010) New species and new records of Palaearctic Trichoptera in the material of the Hungarian Natural History Museum. Annales Historico Naturales Musei Nationalis Hungarici, 102, pp. 65–117. Oláh, J. (2011) New species and records of Balkan Trichoptera. Folia historico Naturalia Musei Matraensis, 35, 111–121. Oláh, J., Beshkov, S., Chvojka, P., Ciubuc, C., Coppa, G., Ibrahimi, H., Kovacs, T., Mey, W. & Oláh, J. Jr. (2017) Revision of Drusinae subfamily (Trichoptera, Limnephilidae): divergence by paraproct and paramere: speciation in isolation by integration. Opuscula Zoologica, 48, (Supplementum 1), 3–228. Otto, C. (1981) Why does duration of flight periods differ in caddisflies? Oikos 37, 383–386. Pauls, S. U., Lumbsch, H. T. & Haase, P. (2006) Phylogeography of the montane caddisfly Drusus discolor: evidence for multiple refugia and periglacial survival. Molecular Ecology, 15, 2153– 2169. Pauls, S. U., Graf, W., Haase, P., Lumbsch, H. T. & Waringer, J. (2008) Grazers, shredders and filtering carnivores – the evolution of feeding ecology in Drusinae (Trichoptera: Limnephilidae. Insights from a molecular phylogeny. Molecular Phylogenetic and Evolution, 46, 776–791. Popijač, A. & Sivec, I. (2009) First records of the alpine stonefly species Protonemura Julia Nicolai, 1983 (Insecta, Plecoptera) in Croatia. Natura Croatica, 18, 83–98. Previšić, A., Kerovec, M. & Kučinić, M. (2007a) Emergence and Composition of Trichoptera From Karst Habitans, Plitvice lakes Region, Croatia. International Review of Hydrobiology, 92 (1), 61–83. Previšić, A., Mihaljević, Z. & Kerovec, M. (2007b) Caddisfly (Insecta: Trichoptera) fauna of altered and man-made habitats in Drava river, NW Croatia. Natura Croatica, 16 (3), 181–187. Previšić, A., Walton, C., Kučinić, M., Mitrikeski, P. T. & Kerovec, M. (2009) Pleistocene divergence of Dinaric Drusus endemics (Trichoptera, Limnephilidae) in multiple refugia within the Balkan Peninsula. Molecular Ecology, 18 (4), 634–647. Previšić, A. & Popijač, A. (2010) Caddisfly (Insecta: Trichoptera) fauna of Kupa and Čabranka rivers and their tributaries, Gorski Kotar, W Croatia. Natura Croatica, 19 (2), 357–368. Previšić, A., Graf, W. & Kučinić, M. (2010) Caddisly (Trichoptera) fauna of the Plitvice Lakes National Park, Croatia. Denisia, 29, 287–294. Previšić, A., Cerjanec, D., Graf, W., Kučinić, M. (2012) Drusus chrysotus (Rambur, 1842) (Trichoptera: Limnephilidae: Drusinae): A new caddisfly species in the Croatian fauna. Natura Croatica, 21 (2), 419–425. Previšić, A., Ivković, M., Miliša, M., Kerovec, M. (2013) Caddisfly (Insecta: Trichoptera) fauna of Papuk Nature Park, Croatia. Natura Croatica, 22 (1), 1–13. Previšić, A., Graf, W., Vitecek, S., Kučinić, M., Bálint, M., Keresztes, L., Pauls, S. U. & Waringer, J. (2014a) Cryptic diversity of caddisflies in the Balkans: the curious case of Ecclisopteryx species (Trichoptera: Limnephilidae). Systematics & Phylogeny, 72 (3), 309–329.

Ecologica Montenegrina, 36, 2020, 6-39 29

CERJANEC ET AL.

Previšić, A., Schnitzler, J., Kučinić, M., Graf, W., Ibrahimi, H., Kerovec, M. & Pauls S. U. (2014b) Microscal vicariance and diversification of western Balkan caddisflies linked to Karstification. Freshwater Science, 33, 250–262. Rosenberg, D. M. & Resh, V. H. (1993) Freshwater Biomonitoring and Benthic Macroinvertebrates. Champ and Hall, New York. Sket, B., Dovc, P., Jalžić, B., Kerovec, M., Kučinić, M. & Trontelj, P. (2001) A cave leech (Hirudinea, Erpobdellidae) from Croatia with unique morphological features. Zoologica Scripta, 30, 223–229. Sket, B. (2002) The evolution of the karst versus the distribution and diversity of the hypogean fauna. In: Gabrovšek, F. (Ed) Evolution of karst: from prekarst to cessation. Karst Research Institute at Research Centre of the Slovenian Academy of Sciences and Arts, Postojna-Ljubljana, pp. 225–232. Svensson, B. W. (1972) Flight periods, ovarian maturation, and mating in Trichoptera at a South Swedish stream. Oikos, 23, 370–383. Stanić-Koštroman., S. (2009) Faunističke, ekološke i biogeografske značajke tulara (Insecta: Trichoptera) Bosne i Hercegovine. Doktorska disertacija, Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet, 151 str. Stanić-Koštroman, S., Kučinić, M., Kolobara, A., Škobić, D., Knezović, L. & Durbešić, P. (2012) Light-trapped caddisflies (Insecta: Trichoptera) as indicators of the ecological integrity of the Liśtica River, Bosnia and Herzegovina, Entomologica Croatica, 16 (1- 4), pp. 21–36. Stanić-Koštroman, S., Previšić, A., Planinić, A., Kučinić, M., Škobić, D., Dedić, A. & Durbešić, P. (2015) Environmental determinants of contrasting caddisfly (Insecta, Trichoptera) biodiversity in the and Bosna River basins (Bosnia and Herzegovina) under temperate and mediterranean climates. International review of Hydrobiology, 100 (2), 79–95. Šemnički, P., Previšić, A., Ivković, M., Čmrlec, K. & Mihaljević, Z. (2012) Tufa Barriers from a Caddisfly’s Point of View: Streams or Lake Outlets? International review of Hydrobiology, 97, 465–484. Štambuk-Giljanović, N. (2002) Vode Cetine i njezina poriječja. Dalmacija papir, Split. Štambuk-Giljanović, N. (2005) The quality of water resource in Dalmatia. Enviromental Monitoring and Assesment, 104, 235–267. Ter Braak, C. J. F., & Smilauer, P. (2012) Canoco reference manual and user's guide: Software for ordination (version 5.0). Ithaca, NY, USA. Urbanič, G., Krušnik, C. & Malicky, H. (2000) Rhyacophila schmidinarica, a new species of the philopotamoides group (Trichoptera: Rhyacophilidae) from northern Balkan peninsula. Braueria, 27, 17–18. Urbanič, G., Krušnik, C. & Malicky, H. (2002) Drusus slovenicus (Trichoptera, Limnephilidae), a new species from Slovenian alps. Braueria, 29, 35. Urbanič, G., Toman, M. J. & Krušnik, C. (2005) Microhabitat type selection of caddisfly larvae (Insecta; Trichoptera) in a shallow lowland stream. Hydrobiologia, 541, 1–12. Urbanič, G. & Toman, M. J. (2007) Influence of environmental variables on stream caddis larvae in three Slovenian ecoregions: Alps, Dinaric Western Balkans and Pannonian Lowland. International Review of Hydrobiology, 92, 582−602. Vilenica, M., Gattolliat, J.-L, Mihaljević, Z. & Sartori, M. (2015) Croatian mayflies (Insecta, Ephemeroptera): species diversity and distribution patterns. ZooKeys, 523, 99–127. Vitecek, S., Kučinić, M., Oláh, J., Previšić, A., Bálint, M., Keresztes, L., Waringer, J., Pauls, S. U. & Graf, W. (2015) Description of two new filtering carnivore Drusus species (Limnephilidae, Drusinae) from the Western Balkans. Zookeys, 513, 79–104. Vitecek, S., Kučinić, M., Previšić, A., Živić, I., Stojanović, K., Keresztes, L., Bálint, M., Hoppeler, F., Waringer, J., Graf, W. & Pauls, S. U. (2017) Integrative taxonomy by molecular species delimitation: multi-locus data corroborate a new species of Balkan Drusinae microendemics. BMC Evolutionary Biology, 17 (1), 129. Vučković, I. (2011) Faunističke, takosonomske i ekološke značajke tulara (Insecta: Trichoptera) sliva rijeke Cetine. Doktorska disertacija, Prirodoslovno­matematički fakultet, Sveučilište u Zagrebu.

30

CADDISFLIES IN DIFFERENT TYPES OF HABITATS IN THE DINARIC KARST

Vučković, I., Ćuk, R., Cerjanec, D., Vidaković, I., Plantak, M., Srebočan, M. & Kučinić, M. (2016) The genus Ecclisopteryx (Insecta: Trichoptera: Limnephilidae) in Croatia: Distribution and conservation aspects. Natura Croatica, 25 (2), 267–278. Wallace, I. D., Walace, B. & Philipson, G. N. (1990) A key to the Case-bearing Caddis Larve of Britain and Ireland. Scientific Publication 51, Freshwater Biological Association, Ambleside, Cumbira, 273. Waringer, J. A. (1991) Phenology and the influence of meteorological parameters on the catching success of light-trapping for Trichoptera. Freshwater Biology, 25, 307–319. Waringer, J., Graf, W., Pauls, S. U., Vicentini, H. & Lubini, V. (2008) DNA based association and description of the larval stage of Drusus melanchaetes McLachlan, 1876 (Trichoptera: Limnephilidae: Drusinae) with notes on ecology and zoogeography. Limnologica, 38 (1), pp. 34–42. Waringer, J. A., Graf, W., Kučinić, M., Previšić, A. & Vučković, I. (2009) The Larva and life cycle of Annitella apfelbecki Klapalek, 1899, including a re-description of Melampophylax nepos McLachlan, 1880 (Trichoptera: Limnephilidae). Aquatic Insects, 31 (1), 71–80. Waringer, J. & Graf, W. (2011) Atlas der mitteleuropäischen Köcherfliegenlarven - Atlas of Central European Trichoptera Larvae. Erik Mauch Verlag, Dinkelscherben, pp. 469. Waringer, J., Graf, W., Bálint, M., Kučinić, M., Pauls, S. U., Previšić, A., Keresztes, L., & Vitecek, S. (2013) The larvae of Drusus franzressli Malicky 1974 and Drusus spelaeus (Ulmer 1920) (Trichoptera: Limnephilidae: Drusinae) with notes on ecology and zoogeography. Zootaxa, 3637, 1–16. Waringer, J., Previšić, A., Kučinić, M., Graf, W., Vitecek, S., Keresztes, L., Bálint, M. & Pauls, S. U. (2016) Larval morphology of the Western Balkans endemic caddisflies Drusus krusniki Malicky 1981, D. vernonenis Malicky 1989 and D. vespertinus Marinković-Gospodnetić 1976 (Trichoptera, Limnephilidae, Drusinae). Zootaxa, 4083, 483–500. Wiberg-Larsen, P., Brodersen, K. P., Birkholm, S., Grøn, P. N. & Skriver, J. (2000) Species richness and assemblage structure of Trichoptera in Danish streams. Freshwater Biology, 43, 633–647. Živić I., Marković Z., Simić V. & Kučinić M. (2009) New records of bacescui (Trichoptera, Helicopsychidae) from the Balkan Peninsula with notes on its habitat. Acta Zoologica Academiae Scientarum Hungaricae, 55 (1), 77–87.

Appendix 1. Systematic list of caddisflies with sites, dates, sex and collecting method (l - UV lamp, e - entomological net).

Suborder: Superfamily: Stephens, 1836 Family: RHYACOPHILIDAE Stephens, 1836 Genus: Rhyacophila Pictet, 1834 Rhyacophila aurata Brauer, 1857 D1: 12.07.2010. 1 ♀ - l, D3: 25.05.2010. 1 ♂, 1 ♀ - l, D5: 15.06.2010. 1 ♀ - l, 23.09.2010. 1 ♀ - e, 25.09.2010. 1 ♀ - l, 24.10.2010. 1 ♀ - e, 13.11.2010. 1 ♂, 2 ♀♀ - l, D6: 6.07.2010. 1 ♂ - l, 27.09.2010. 1 ♂, 1 ♀ - l, 14.11.2010. 2 ♂♂ - l, D7: 15.09.2010. 1 ♀ - e, 16.09.2010. 13 ♂♂, 6 ♀♀ - l, D8: 13.09.2010. 1 ♂ - l, 14.10.2010. 1 ♀ - l, K1: 27.05.2010. 1 ♀ - l, 24.08.2010. 1 ♂ - l, K2: 27.05.2010. 1 ♀ - e, 29.06.2010. 2 ♂♂ - l, 24.08.2010. 2 ♂♂ - l, 30.09.2010. 1 ♀ - l, 23.10.2010. 3 ♀♀ - l, K3: 15.11.2009. 1 ♀ - e, 15.11.2009. 4 ♂♂, 5 ♀♀ - l, 28.04.2010. 1 ♂ - l, 27.05.2010. 4 ♂♂, 3 ♀♀ - l, 29.06.2010. 10 ♂♂, 2 ♀♀ - l, 27.07.2010. 2 ♂♂, 4 ♀♀ - l, 31.08.2010. 12 ♂♂, 1 ♀ - l, 29.09.2010. 3 ♂♂, 1 ♀ - l, 30.09.2010. 1 ♀ - e, 23.10.2010. 16 ♂♂, 8 ♀♀ - l, 31.10.2010. 9 ♂♂, 2 ♀♀ - e, 15.11.2010. 1 ♀ - e, 15.11.2010. 2 ♂♂, 5 ♀♀ - l, SR: 27.06.2010. 1 ♂ - l, KK: 15.07.2010. 1 ♂ - l. Rhyacophila dorsalis persimilis McLachlan, 1879 D2: 12.06.2010. 2 ♂♂ - l, 30.07.2010. 1 ♂ - e, 22.08.2010. 1 ♂, 1 ♀ - l, 28.09.2010. 1 ♀ - l, D6: 19.08.2010. 1 ♂ - e, 14.11.2010. 1 ♂ - l, D7: 24.05.2010. 1 ♀ - l, D8: 11.06.2010. 1 ♂ - l, 14.10.2010. 1 ♂ - l, K2: 24.08.2010. 1 ♂ - l, K3: 15.11.2009. 1 ♀ - l, 29.06.2010. 2 ♂♂ - l, 27.07.2010. 2 ♂♂, 1 ♀

Ecologica Montenegrina, 36, 2020, 6-39 31

CERJANEC ET AL.

- l, 31.08.2010. 2 ♀♀ - l, 15.11.2010. 1 ♂, 1 ♀ - l. Rhyacophila fasciata Hagen, 1859 D1: 30.04.2010. 1 ♀ - e, 30.05.2010 1 ♂ - e, 30.05.2010 1 ♀ - l, 12.06.2010. 5 ♂♂, 1 ♀ - l, 12.07.2010. 1 ♂ - l, 22.08.2010. 4 ♂♂, 5 ♀♀ - l, 29.08.2010. 1 ♀ - e, 28.09.2010. 2 ♂♂ - e, 28.09.2010. 1 ♂ - l, D3: 24.12.2009. 1 ♂ - l, 8.04.2010. 1 ♂ - l, 25.05.2010. 1 ♂ - l, 23.06.2010. 1 ♂ - l, D4: 24.12.2009. 1 ♂ - l, 24.05.2010. 3 ♂♂ - l, 28.06.2010. 1 ♀ - e, 28.06.2010. 1 ♂ - l, 30.10.2010. 1 ♂ - l, D5: 8.07.2010. 1 ♂ - l, D6: 12.10.2010. 1 ♂ - e, D8: 14.10.2010. 1 ♀ - l, K1: 15.11.2009. 1 ♀ - e, 15.11.2009. 13 ♂♂, 5 ♀♀ - l, 27.05.2010. 8 ♂♂ - l, 30.06.2010. 1 ♂, 1 ♀ - e, 30.06.2010. 26 ♂♂ - l, 31.07.2010. 13 ♂♂, 2 ♀♀ - l, 24.08.2010. 31 ♂♂ - l, 29.10.2010. 2 ♂♂, 1 ♀ - l, K2: 15.11.2009. 1 ♀ - e, 15.11.2009. 7 ♂♂, 2 ♀♀ - l, 27.05.2010. 3 ♂♂, 2 ♀♀ - e, 27.05.2010. 2 ♂♂ - l, 29.06.2010. 8 ♂♂ - l, 31.07.2010. 6 ♂♂ - l, 24.08.2010. 1 ♂ - l, 29.09.2010. 1 ♂ - e, 30.09.2010. 1 ♂ - l, 23.10.2010. 5 ♂♂, 1 ♀ - l, 20.11.2010. 2 ♂♂ - l, K3: 15.11.2009. 9 ♂♂, 1 ♀ - l, 28.04.2010. 2 ♂♂ - l, 27.05.2010. 5 ♂♂ - l, 29.06.2010. 10 ♂♂ - l, 27.07.2010. 3 ♂♂ - l, 31.08.2010. 3 ♂♂ - l, 29.09.2010. 2 ♂♂ - l, 30.09.2010. 1 ♂ - e, 23.10.2010. 4 ♂♂, 1 ♀ - l, 31.10.2010. 1 ♂, 4 ♀ - e, 15.11.2010. 1 ♀ - l, ZM: 12.05.2010. 1 ♂ - l, 25.06.2010. 1 ♂ - e, 23.08.2010. 2 ♂♂ - l, 24.10.2010. 1 ♀ - e, 24.10.2010. 1 ♂ - l, KK: 15.07.2010. 1 ♂ - l. Rhyacophila laevis Pictet, 1834 D1: 30.05.2010. 4 ♂♂ - e. Rhyacophila palmeni McLachlan, 1879 D2: 15.11.2010. 1 ♀ - l, D5: 18.11.2009. 1 ♂ - l, 15.06.2010. 1 ♂ - l, 27.08.2010. 1 ♂ - l, 25.09.2010. 3 ♂♂ - l, D6: 19.05.2010. 1 ♀ - l, 10.06.2010. 1 ♀ - l, 19.08.2010. 8 ♀♀ - l, 27.09.2010. 1 ♀ - l, 13.10.2010. 2 ♀♀ - l, 5.11.2010. 2 ♂♂, 1 ♀ - e, 14.11.2010. 1 ♂ - l, D7: 9.06.2010. 1 ♀ - l, 29.07.2010. 1 ♂ - e, 18.08.2010. 1 ♂, 1 ♀ - l, 15.09.2010. 2 ♀♀ - e, 16.09.2010. 8 ♂♂, 9 ♀♀ - l, 12.10.2010. 2 ♂♂ - e, 11.11.2010. 1 ♂ - l, D8: 30.11.2009. 4 ♂♂, 1 ♀ - l, 14.05.2010. 1 ♂ - e, 14.07.2010. 1 ♂ - l, 27.08.2010. 1 ♂ - l, 13.09.2010. 1 ♀ - l, 14.10.2010. 2 ♂♂, 2 ♀♀ - l, 23.10.2010. 3 ♂♂ - e, 7.11.2010. 1 ♂ - e, 7.11.2010. 1 ♂ - l, K3: 27.07.2010. 1 ♀ - l, 31.10.2010. 1 ♂, 1 ♀ - e, 15.11.2010. 1 ♂ - l, KK: 6.11.2010. 1 ♂ - e, 7.11.2010. 1 ♀ - l. Rhyacophila schmidinarica Urbanič, Krušnik & Malicky, 2000 D1: 30.05.2010. 1 ♂ - e, 12.06.2010. 1 ♂ - e, 12.07.2010. 2 ♂♂ - l, 22.08.2010. 1 ♂, 3 ♀♀ - l, 28.09.2010. 1 ♂ - l, 15.11.2010. 1 ♂ - l.

Superfamily: GLOSSOSOMATOIDEA Wallengren, 1891 Family: GLOSSOSOMATIDAE Wallengren, 1891 Genus: Glossosoma Curtis, 1834 Glossosoma bifidum McLachlan, 1879 D8: 14.07.2010. 1 ♂ - l, K2: 24.08.2010. 1 ♂ - l, K3: 29.06.2010. 1 ♂ - l. Glossosoma discophorum Klapálek, 1902 K2: 29.06.2010. 1 ♂ - l. Genus: Agapetus Curtis, 1834 Agapetus delicatulus McLachlan, 1884 D2: 12.06.2010. 1 ♂, 3 ♀♀ - l, 30.07.2010. 5 ♀♀ - l, D3: 11.07.2010. 1 ♀ - l, D4: 24.05.2010. 1 ♀ - e, D5: 15.06.2010. 14 ♀♀ - l, 8.07.2010. 1 ♀ - l, D6: 10.06.2010. 79 ♀♀ - l, D7: 9.06.2010. 13 ♀♀ - l, D8: 11.06.2010. 5 ♀♀ - l, K2: 29.06.2010. 2 ♀♀ - l. Agapetus laniger Pictet, 1834 D5: 15.06.2010. 1 ♂, 10 ♀♀ - l, D8: 11.06.2010. 4 ♂♂, 5 ♀♀ - l, 14.07.2010. 1 ♂ - l, KK: 18.06.2010. 6 ♂♂, 9 ♀♀ - l, 15.07.2010. 1 ♀ - l. Agapetus ochripes Curtis, 1834 D1: 12.06.2010. 1 ♂, 1 ♀ - l, D2: 12.06.2010. 2 ♀♀ - l, D4: 24.05.2010. 1 ♀ - l, D8: 11.06.2010. 1 ♂ - l, K2: 29.06.2010. 4 ♂♂, 1 ♀ - l, K3: 29.06.2010. 2 ♀♀ - l, SR: 27.06.2010. 1 ♀ - l.

Superfamily: HYDROPTILOIDEA Stephens, 1836 Family: HYDROPTILIDAE Stephens, 1836 Genus: Hydroptila Dalman, 1834 Hydroptila forcipata Eaton, 1873 D3: 29.04.2010. 2 ♂♂, 9 ♀♀ - l, 25.05.2010. 1 ♀ - l, 23.06.2010. 1 ♀ - l, D4: 24.05.2010. 2 ♀♀ - l,

32

CADDISFLIES IN DIFFERENT TYPES OF HABITATS IN THE DINARIC KARST

28.06.2010. 2 ♂♂, 1 ♀ - l, 25.08.2010. 2 ♂♂, 3 ♀♀ - l, D5: 25.04.2010. 7 ♀♀ - l, 26.05.2010. 9 ♂♂, 21 ♀♀ - l, D6: 10.06.2010. 1 ♀ - l, 19.08.2010. 12 ♂♂, 50 ♀♀ - l, D7: 9.06.2010. 2 ♀♀ - l, 7.07.2010. 1 ♂, 2 ♀♀ - l, 18.08.2010. 1 ♂ - l, 16.09.2010. 3 ♂♂, 20 ♀♀ - l, D8: 27.04.2010. 24 ♂♂, 2 ♀♀ - l, 14.05.2010. 1 ♀ - l, 11.06.2010. 9 ♀♀ - l, 18.06.2010. 1 ♀ - e, 14.07.2010. 14 ♂♂, 58 ♀♀ - l, 27.08.2010. 10 ♂♂, 18 ♀♀ - l, K3: 27.07.2010. 1 ♀ - l, KK: 27.04.2010. 42 ♂♂, 77 ♀♀ - l, 18.06.2010. 1 ♀ - l, 15.07.2010. 1 ♂, 11 ♀♀ - l. Hydroptila lotensis Mosely, 1930 D3: 29.04.2010. 3 ♂♂ - l, 25.05.2010. 8 ♂♂ - l, D4: 24.05.2010. 2 ♂♂ - l, 25.08.2010. 2 ♂♂ - l, D5: 26.05.2010. 1 ♂ - l, D6: 19.08.2010. 2 ♂♂ - l, D7: 9.06.2010. 1 ♂ - l, D8: 27.04.2010. 2 ♂♂ - l, 14.05.2010. 4 ♂♂ - l, 11.06.2010. 39 ♂♂ - l, 18.06.2010. 1 ♂ - e, 14.07.2010. 7 ♂♂ - l, 27.08.2010. 12 ♂♂ - l, ZM: 23.08.2010. 1 ♂ - l, KK: 18.06.2010. 4 ♂♂ - l, 15.07.2010. 58 ♂♂ - l. Hydroptila tigurina Ris, 1894 D4: 24.05.2010. 1 ♀ - l, 25.08.2010. 2 ♂♂, 1 ♀ - l, D5: 15.06.2010. 1 ♀ - l, D6: 19.08.2010. 34 ♂♂, 209 ♀♀ - l, D7: 7.07.2010. 3 ♀♀ - l, 18.08.2010. 15 ♂♂, 13 ♀♀ - l, 16.09.2010. 3 ♀♀ - l, D8: 11.06.2010. 4 ♂♂, 16 ♀♀ - l, 14.07.2010. 20 ♂♂, 50 ♀♀ - l, 27.08.2010. 1 ♂, 11 ♀♀ - l, 13.09.2010. 7 ♂♂, 108 ♀♀ - l, KK: 15.07.2010. 2 ♂♂, 3 ♀♀ - l, 17.08.2010. 1 ♂, 23 ♀♀ - l. Hydroptila tineoides Dalman, 1819 D3: 29.04.2010. 10 ♂♂, 9 ♀♀ - l, KK: 27.04.2010. 10 ♂♂, 5 ♀♀- l. Hydroptila sp. D3: 29.04.2010. 13 ♀♀ - l, 25.05.2010. 25 ♀♀ - l, 23.06.2010. 3 ♀♀ - e, D4: 24.05.2010. 19 ♀♀ - l, 25.08.2010. 9 ♀♀ - l, D5: 26.05.2010. 35 ♀♀ - l, 15.06.2010. 1 ♀ - l, D6: 19.08.2010. 30 ♀♀ - l, D7: 7.07.2010. 1 ♀ - l, 18.08.2010. 4 ♀♀ - l, 16.09.2010. 1 ♀ - l, D8: 11.06.2010. 310 ♀♀ - l, 18.06.2010. 1 ♀ - e, 14.07.2010. 32 ♀♀ - l, 27.08.2010. 12 ♀♀ - l, K3: 27.07.2010. 4 ♀♀ - l, KK: 27.04.2010. 1 ♀ - l, 18.06.2010. 1 ♀ - l, 15.07.2010. 157 ♀♀ - l. Genus: Ithytrichia Eaton, 1873 Ithytrichia lamellaris Eaton, 1873 D3: 23.06.2010. 3 ♂♂, 3 ♀♀ - l, D4: 28.06.2010. 3 ♂♂ - l, 25.08.2010. 2 ♂♂ - l, D6: 10.06.2010. 1 ♂ - l, 19.08.2010. 4 ♂♂, 18 ♀♀ - l, Dobra-Novigrad: 18.08.2010. 1 ♂, 1 ♀ - l. Genus: Orthotrichia Eaton, 1873 Orthotrichia angustella McLachlan, 1865 D3: 11.07.2010. 1 ♀ - l, D4: 25.08.2010. 4 ♀♀ - l, D5: 8.07.2010. 1 ♂ - l, D6: 19.08.2010. 1 ♂, 3 ♀♀ - l, D7: 16.09.2010. 1 ♂ - l, D8: 11.06.2010. 32 ♂♂, 142 ♀♀ - l, 18.06.2010. 1 ♂, 2 ♀♀ - e, 14.07.2010. 15 ♂♂, 54 ♀♀ - l, 27.08.2010. 4 ♂♂, 13 ♀♀ - l, ZM: 23.08.2010. 1 ♀ - l, KK: 18.06.2010. 1 ♀ - l, 15.07.2010. 3 ♂♂, 22 ♀♀ - l. Genus: Oxyethira Eaton, 1873 Oxyethira tristella Klapálek, 1895 D5: 26.05.2010. 1 ♂, 8 ♀♀ - l.

Suborder: ANULIPALPIA Superfamily: Stephens, 1829 Family: PHILOPOTAMIDAE Stephens, 1829 Genus: Philopotamus Stephens, 1829 Philopotamus montanus Donovan, 1813 K2: 24.08.2010. 1 ♂ - l, K3: 27.05.2010. 1 ♂ - l. Genus: Wormaldia McLachan, 1865 Wormaldia copiosa McLachlan, 1868 K3: 29.06.2010. 2 ♂♂ - l, 29.08.2010. 1 ♂ - l, 29.09.2010. 1 ♂ - l. Wormaldia occipitalis Picet, 1834 D1: 30.05.2010. 1 ♂ - e, D3: 23.06.2010. 1 ♂ - l, 11.07.2010. 1 ♂ - l, D7: 18.08.2010. 1 ♂ - l, K2: 15.11.2009. 1 ♂ - l, K3: 29.08.2010. 2 ♂♂ - e. Wormaldia subnigra McLachlan, 1865 D8: 11.06.2010. 1 ♂ - l, 14.07.2010. 1 ♂ - l. Wormaldia sp. D1: 12.06.2010. 2 ♀ - l, D2: 12.06.2010. 1 ♀ - l, D7: 7.07.2010. 3 ♀♀ - l, 18.08.2010. 5 ♀♀ - l, K3:

Ecologica Montenegrina, 36, 2020, 6-39 33

CERJANEC ET AL.

29.08.2010. 1 ♀ - e.

Superfamily: Curtis, 1835 Family: HYDROPSYCHIDAE Curtis, 1835 Genus: Hydropsyche Pictet, 1834 Hydropsyche contubernalis McLachlan, 1865 D6: 10.06.2010. 1 ♂ - l.

Hydropsyche fulvipes (Curtis, 1834) D7: 9.06.2010. 1 ♂ - l. Hydropsyche incognita Pitsch, 1993 D1: 12.06.2010. 1 ♂ - l, D2: 22.08.2010. 1 ♂ - l, D4: 29.04.2010. 1 ♂ - l, 24.05.2010. 1 ♂ - l, D7: 22.08.2010. 1 ♂ - e, 16.09.2010. 2 ♂♂ - l, 26.10.2010. 1 ♂ - l, D8: 27.04.2010. 5 ♂♂ - e, 27.04.2010. 21 ♂♂ - l, 14.05.2010. 1 ♂ - e, 11.06.2010. 103 ♂♂ - l, 18.06.2010. 1 ♂ - e, 14.07.2010. 14 ♂♂ - l, 27.08.2010. 17 ♂♂ - l, K2: 29.06.2010. 1 ♂ - l, K3: 29.06.2010. 1 ♂ - l, KK: 15.07.2010. 3 ♂♂ - l. Hydropsyche instabilis (Curtis, 1834) D2: 12.06.2010. 1 ♂ - l, D7: 18.08.2010. 7 ♂♂ - l, K1: 24.08.2010. 2 ♂♂ - l, K2: 24.08.2010. 1 ♂ - l, KK: 17.08.2010. 1 ♂ - l. Hydropsyche sp. D1: 12.06.2010. 1 ♀ - e, 12.06.2010. 1 ♀ - l, 12.07.2010. 2 ♀♀ - l, 22.08.2010. 2 ♀♀ - l, D2: 30.07.2010. 4 ♀♀ - e, 30.07.2010. 24 ♀♀ - l, 22.08.2010. 16 ♀♀ - l, D3: 25.05.2010. 19 ♀♀ - l, 23.06.2010. 2 ♀♀ - e, 23.06.2010. 6 ♀♀ - l, 29.08.2010. 1 ♀ - l, D4: 29.04.2010. 1 ♀ - l, 24.05.2010. 3 ♀♀ - e, 24.05.2010. 31 ♀♀ - l, 28.06.2010. 4 ♀♀ - e, 28.06.2010. 41 ♀♀ - l, D5: 15.06.2010. 9 ♀♀ - e, 15.06.2010. 24 ♀♀ - l, 8.07.2010. 25 ♀♀ - l, 27.08.2010. 3 ♀♀ - l, D6: 26.04.2010. 4 ♀♀ - l, 19.05.2010. 14 ♀♀ - l, 10.06.2010. 36 ♀♀ - l, 6.07.2010. 8 ♀♀ - l, 19.08.2010. 1 ♀ - e, D7: 24.05.2010. 2 ♀♀ - l, 9.06.2010. 4 ♀♀ - l, 7.07.2010. 33 ♀♀ - l, 18.08.2010. 10 ♀♀ - l, 16.09.2010. 7 ♀♀ - l, 26.10.2010. 4 ♀♀ - l, D8: 27.04.2010. 20 ♀♀ - e, 27.04.2010. 52 ♀♀ - l, 14.05.2010. 4 ♀♀ - e, 11.06.2010. 269 ♀♀ - l, 18.06.2010. 13 ♀♀ - e, 14.07.2010. 1 ♀ - l, 27.08.2010. 87 ♀♀ - l, 13.09.2010. 6 ♀♀ - l, K1: 30.06.2010. 6 ♀♀ - l, 31.07.2010. 5 ♀♀ - l, K2: 27.05.2010. 15 ♀♀ - l, 29.06.2010. 4 ♀♀ - l, 31.07.2010. 11 ♀♀ - l, K3: 28.04.2010. 18 ♀♀ - l, 27.05.2010. 2 ♀♀ - l, 29.06.2010. 5 ♀♀ - l, 27.07.2010. 16 ♀♀ - l, 31.08.2010. 1 ♀ - l, KK: 14.05.2010. 5 ♀♀ - l, 18.06.2010. 70 ♀♀ - l, 15.07.2010. 4 ♀♀ - l, 17.08.2010. 1 ♀ - e, 17.08.2010. 28 ♀♀ - l, 21.09.2010. 1 ♀ - l. Genus: Cheumatopsyche Wallengren, 1891 Cheumatopsyche lepida, Pictet, 1834 D4: 24.05.2010. 2 ♂♂ - l, D5: 8.07.2010. 1 ♂, 1 ♀ - l, D6: 10.06.2010. 1 ♀ - l, D8: 11.06.2010. 823 ♂♂, 279 ♀♀ - l, 18.06.2010. 56 ♂♂ - e, 14.07.2010. 25 ♂♂, 57 ♀♀ - l, 27.08.2010. 28 ♂♂, 1 ♀ - l, KK: 18.06.2010. 1 ♂ - l.

Family: POLYCENTROPODIDAE Ulmer, 1903 Genus: Cyrnus Stephens, 1836 Cyrnus trimaculatus Curtis, 1834 D8: 11.06.2010. 1 ♂ - l, KK: 18.06.2010. 1 ♂, 6 ♀♀ - e, 18.06.2010. 13 ♂♂ - l, 17.08.2010. 1 ♂, 1 ♀ - l. Genus: Polycentropus Curtis, 1835 Polycentropus irroratus Curtis, 1835 D3: 25.05.2010. 2 ♂♂ - l, 23.06.2010. 1 ♂ - l, D4: 24.05.2010. 1 ♂, 2 ♀♀ - e, 24.05.2010. 5 ♂♂ - l, 28.06.2010. 2 ♂♂ - e, 28.06.2010. 5 ♂♂ - l, D5: 26.05.2010. 2 ♂♂ - l, 15.06.2010. 1 ♂ - e, 15.06.2010. 1 ♂ - l, 8.07.2010. 1 ♂ - l, 27.08.2010. 8 ♂♂ - l, D6: 19.05.2010. 1 ♂ - l, 10.06.2010. 2 ♂♂ - l, 6.07.2010. 1 ♂ - l, D7: 14.05.2010. 1 ♂ - e, 7.07.2010. 2 ♂♂ - l, D8: 11.06.2010. 2 ♂♂ - l, K3: 29.06.2010. 1 ♂ - l, KK: 18.06.2010. 3 ♀♀ - e, 15.07.2010. 1 ♂ - l. Genus: Plectrocnemia Stephens, 1836 Plectrocnemia brevis McLachlan, 1871 D1: 22.08.2010. 2 ♂♂ - l, K2: 1 ♂ - l. Plectrocnemia conspersa (Curtis, 1834)

34

CADDISFLIES IN DIFFERENT TYPES OF HABITATS IN THE DINARIC KARST

D1: 12.06.2010. 1 ♂ - l, 12.07.2010. 17 ♂♂ - l, D2: 30.07.2010. 1 ♂ - l, K2: 24.08.2010. 1 ♂ - l.

Family: ECNOMIDAE Ulmer, 1903 Genus: Ecnomus McLachlan, 1864 Ecnomus tenellus Rambur, 1842 KK: 17.08.2010. 1 ♂, 3 ♀♀ - l.

Family: PSYCHOMYIIDAE Walker, 1852 Genus: Psychomyia Latreille, 1829 Psychomyia klapaleki Malicky, 1995 D3: 23.06.2010. 1 ♂ - l, D4: 24.05.2010. 1 ♂ - l, K1: 30.06.2010. 1 ♂ - l, K3: 29.06.2010. 2 ♂♂ - l, 27.07.2010. 7 ♂♂ - l. Psychomyia pusilla Fabricius, 1781 D3: 25.05.2010. 1 ♂ - l, 23.06.2010. 2 ♂♂ - l, 11.07.2010. 1 ♂ - l, D4: 24.05.2010. 2 ♂♂ - l, 28.06.2010. 2 ♂♂ - l, D5: 26.05.2010. 4 ♂♂ - l, 15.06.2010. 4 ♂♂ - l, 8.07.2010. 1 ♂ - l, D6: 19.08.2010. 10 ♂♂ - l, D7: 18.08.2010. 1 ♂ - l, 16.09.2010. 1 ♂ - l, D8: 27.04.2010. 4 ♂♂ - l, 14.05.2010. 10 ♂♂ - l, 11.06.2010. 8 ♂♂ - l, 14.07.2010. 318 ♂♂ - l, 27.08.2010. 43 ♂♂ - l, 13.09.2010. 1 ♂ - l, K1: 30.06.2010. 1 ♂ - l, K2: 29.06.2010. 10 ♂♂ - l, K3: 29.06.2010. 2 ♂♂ - l, 27.07.2010. 25 ♂♂ - l, ZM: 25.06.2010. 1 ♂ - e, KK: 27.04.2010. 5 ♂♂ - l, 14.05.2010. 2 ♂♂ - l, 18.06.2010. 35 ♂♂ - l, 15.07.2010. 172 ♂♂ - l, 17.08.2010. 16 ♂♂ - l. Psychomyia sp. D3: 25.05.2010. 1 ♀ - l, 23.06.2010. 1 ♀ - e, 23.06.2010. 9 ♀♀ - l, 11.07.2010. 3 ♀♀ - l, D4: 24.05.2010. 40 ♀♀ - l, 26.07.2010. 1 ♀ - l, 25.08.2010. 1 ♀ - l, D5: 26.05.2010. 61 ♀♀ - l, 15.06.2010. 13 ♀♀ - l, 8.07.2010. 4 ♀♀ - l, D6: 19.05.2010. 1 ♀ - l, 6.07.2010. 2 ♀♀ - l, 19.08.2010. 51 ♀♀ - l, D7: 24.05.2010. 29 ♀♀ - l, 9.06.2010. 3 ♀♀ - l, 7.07.2010. 14 ♀♀ - l, 18.08.2010. 16 ♀♀ - l, 16.09.2010. 3 ♀♀ - l, D8: 14.05.2010. 7 ♀♀ - e, 14.05.2010. 850 ♀♀ - l, 11.06.2010. 606 ♀♀ - l, 18.06.2010. 2 ♀♀ - e, 14.07.2010. 2339 ♀♀ - l, 27.08.2010. 118 ♀♀ - l, 13.09.2010. 198 ♀♀ - l, K1: 30.06.2010. 6 ♀♀ - l, K2: 29.06.2010. 52 ♀♀ - l, 31.07.2010. 1 ♀ - l, K3: 29.06.2010. 27 ♀♀ - l, 27.07.2010. 177 ♀♀ - l, 31.08.2010. 1 ♀ - l, ZM: 22.07.2010. 1 ♀ - l, KK: 27.04.2010. 69 ♀♀ - l, 18.06.2010. 13 ♀♀ - e, 18.06.2010. 147 ♀♀ - l, 15.07.2010. 916 ♀♀ - l, 17.08.2010. 46 ♀♀ - l. Genus: Lype McLachlan, 1878 Lype phaeopa Stephens, 1836 D7: 14.05.2010. 1 ♂ - e. Lype reducta (Hagen, 1868) D3: 29.04.2010. 2 ♂♂ - l, 25.05.2010. 3 ♂♂ - l, 23.06.2010. 1 ♂ - e, D6: 19.05.2010. 1 ♂ - l. Lipe sp. D7: 14.05.2010. 1 ♀ - e, 9.06.2010. 1 ♀ - l. Genus: Tinodes McLachlan, 1878 Tinodes braueri McLachlan, 1878 D1: 12.06.2010. 4 ♂♂ - e. Tinodes dives Pictet, 1834 K3: 27.05.2010. 1 ♂ - l. Tinodes rostocki McLachlan, 1878 D1: 10.06.2010. 1 ♂ - e, K2: 31.07.2010. 1 ♂ - l. Tinodes sp. D1: 12.06.2010. 2 ♀♀ - e, 29.08.2010. 1 ♀ - e, D3: 25.05.2010. 1 ♀ - l, D7: 16.09.2010. 1 ♀ - l, K2: 24.08.2010. 1 ♀ - l, KK: 18.06.2010. 2 ♀♀ - l.

Suborder: INTEGRIPALPIA Superfamily: PHRYGANEOIDEA Leach, 1815 Family: PHRYGANEIDAE Leach, 1815 Genus: Agrypnia Curtis, 1835 Agrypnia varia Fabricius, 1793 SR: 27.06.2010. 2 ♀♀ - l, 23.08.2010. 2 ♂♂, 1 ♀ - l.

Ecologica Montenegrina, 36, 2020, 6-39 35

CERJANEC ET AL.

Superfamily: Kolenati, 1848 Family: BRACHYCENTRIDAE Ulmer, 1903 Genus: Micrasema, McLachlan, 1876 Micrasema minimum McLachlan, 1876 D3: 29.04.2010. 16 ♀♀ - l, 25.05.2010. 114 ♀♀ - l, D4: 29.04.2010. 7 ♂♂, 10 ♀♀ - l, 24.05.2010. 6 ♀♀ - l, D5: 25.04.2010. 12 ♂♂, 312 ♀♀ - l, 26.05.2010. 1 ♂, 5 ♀♀ - l, D6: 26.04.2010. 7 ♂♂, 795 ♀♀ - l, 19.05.2010. 10 ♀♀ - l, D7: 26.10.2010. 8 ♂♂, 14 ♀♀ - l, D8: 27.04.2010. 17 ♂♂, 212 ♀♀ - l, K2: 29.06.2010. 1 ♀ - l, K3: 28.04.2010. 6 ♂♂, 230 ♀♀ - l, 29.06.2010. 1 ♀ - e, 27.07.2010. 1 ♀ - l, SR: 12.05.2010. 4 ♀♀ - l, 27.06.2010. 1 ♀ - l, KK: 27.04.2010. 8 ♂♂, 256 ♀♀ - l. Micrasema sericeum Klapálek, 1902 K2: 27.05.2010. 1 ♂ - e. Micrasema sp. K3: 27.05.2010. 21 ♀♀ - l. Family: LIMNEPHILIDAE Kolenati, 1848 Genus: Drusus, Stephens, 1837 Drusus chrysotus (Rambur, 1842) D1: 30.04.2010. 1 ♂ - l. Drusus croaticus Marinković-Gospodnetić, 1971 K1: 30.09.2010. 2 ♀♀ - l, 29.10.2010. 1 ♂, 2 ♀♀ - l. Drusus discolor (Rambur, 1842) D1: 30.04.2010. 1 ♂ - l. Genus: Limnephilus Leach, 1815 Limnephilus auricula Curtis, 1834 D2: 23.10.2010. 1 ♀ - e, ZM: 15.09.2010. 1 ♂ - l. Limnephilus hirsutus (Pictet, 1864) ZM: 23.08.2010. 1 ♂ - l. Limnephilus lunatus Curtis, 1834 D4: 24.05.2010. 1 ♀ - l, 23.09.2010. 1 ♀ - l, K3: 23.10.2010. 1 ♀ - l, SR: 22.07.2010. 1 ♀ - l. Limnephilus rhombicus (Linnaeus, 1758) D4: 24.05.2010. 1 ♂ - l, ZM: 25.06.2010. 1 ♀ - e, 25.06.2010. 5 ♀♀ - l, 22.07.2010. 1 ♂, 2 ♀♀ - l, SR: 22.07.2010. 1 ♀ - l. Genus: Grammotaulius Retzius, 1873 Grammotaulius nigropunctatus (Retzius, 1873) K3: 31.08.2010. 1 ♂ - l. Genus: Glyphotaelius Stephens, 1837 Glyphotaelius pellucidus (Retzius, 1783) SR: 15.09.2010. 2 ♂♂ - l. Genus: Anabolia Stephens, 1837 Anabolia furcata Brauer, 1857 D5: 23.09.2010. 1 ♂ - e, D6: 13.10.2010. 1 ♂ - l, D8: 14.10.2010. 1 ♂ - l, KK: 16.10.2010. 1 ♂ - l. Genus: Potamophylax Wallengren, 1891 Potamophylax latipennis Curtis, 1834 D3: 23.09.2010. 2 ♀♀ - l, K1: 27.05.2010. 7 ♀♀ - l, 30.06.2010. 5 ♀♀ - l, 31.07.2010. 7 ♀♀ - l, 24.08.2010. 1 ♀ - e, 24.08.2010. 4 ♂♂, 23 ♀♀ - l, K2: 27.05.2010. 1 ♂ - e, 27.05.2010. 2 ♂♂, 1 ♀ - l, 31.07.2010. 1 ♀ - l, 24.08.2010. 2 ♂♂, 1 ♀ - l, 30.09.2010. 1 ♂, 8 ♀♀ - l, 23.10.2010. 1 ♂ - l, K3: 24.01.2010. 1 ♂ - e, 31.08.2010. 1 ♀ - l, 29.09.2010. 2 ♂♂, 5 ♀♀ - l, 30.09.2010. 4 ♀♀ - e, 23.10.2010. 1 ♀ - l. Potamophylax pallidus (Klapálek, 1899) D1: 28.09.2010. 1 ♀ - l, 31.10.2010. 1 ♀ - l, D8: 27.08.2010. 1 ♂ - l, ZM: 15.09.2010. 1 ♀ - l, KK: 7.11.2010. 1 ♂ - l. Genus: Halesus Stephens, 1836 Halesus digitatus (Schrank, 1781) K2: 30.09.2010. 1 ♂ - l, K3: 29.09.2010. 1 ♂ - l, 30.09.2010. 1 ♂ - e. Halesus tesselatus (Rambur, 1842) K3: 30.09.2010. 1 ♂ - e.

36

CADDISFLIES IN DIFFERENT TYPES OF HABITATS IN THE DINARIC KARST

Halesus sp. D2: 15.11.2010. 1 ♀ - l, D3: 22.11.2009. 2 ♀♀ - l, D7: 12.10.2010. 1 ♀ - l, K2: 23.10.2010. 1 ♀ - l, K3: 15.11.2009. 1 ♀ - l. Genus: Stenophylax Kolenati, 1848 Stenophylax permistus McLachlan, 1895 ZM: 12.05.2010. 1 ♀ - l, 15.09.2010. 1 ♀ - l, SR: 24.10.2010. 1 ♀ - l. Genus: Micropterna Stein, 1874

Micropterna lateralis Stephens, 1837 K1: 27.05.2010. 1 ♂, 1 ♀ - l. Micropterna testacea (Gemlin, 1879) ZM: 24.10.2010. 1 ♂ - l. Genus: Allogamus Schmid, 1955 Allogamus uncatus (Braur, 1857) K1: 29.10.2010. 2 ♂♂, 2 ♀♀- l, 25.11.2010. 1 ♀ - e, 25.11.2010. 4 ♀♀ - l. Genus: Chaetopteryx Stephens, 182 Chaetopteryx fusca Brauer, 1857 D4: 14.11.2009. 1 ♀ - e, K3: 24.01.2010. 1 ♂ - e, 15.11.2010. 2 ♂♂, 3 ♀♀ - e, 15.11.2010. 2 ♂♂, 1 ♀ - l, ZM: 16.11.2009. 2 ♂♂ - e, 30.12.2009. 1 ♂, 7 ♀♀ - l, 17.01.2010. 1 ♂ - l, 24.10.2010. 1 ♂ - l, 6.11.2010. 1 ♂, 1 ♀ - e, 6.11.2010. 18 ♂♂, 5 ♀♀ - l. Chaetopteryx gonospina Marinković-Gospodnetić, 1966 D1: 21.11.2009. 1 ♂ - l. Genus: Annitella Klapálek, 1907 Annitella apfelbecki (Klapálek, 1899) K1: 15.11.2009. 1 ♂, 1 ♀ - e, 15.11.2009. 2 ♂♂, 1 ♀ - l, 29.10.2010. 6 ♂♂, 1♀ - l, K3: 15.11.2009. 1 ♂ - l, 25.12.2009. 1 ♂ - l, 24.01.2010. 3 ♂♂ - e, 23.10.2010. 1 ♂ - l, 15.11.2010. 3 ♂♂ - l.

Family: GOERIDAE Ulmer, 1903 Genus: Goera Stephens, 1829 Goera pilosa Fabricius, 1775 D1: 12.07.2010. 1 ♀ - l, D8: 27.04.2010. 1 ♀ - l, 14.05.2010. 1 ♀ - e, 11.06.2010. 3 ♀♀ - l, 14.07.2010. 2 ♂♂, 8 ♀♀ - l, 27.08.2010. 7 ♂♂, 2 ♀♀ - l, K3: 27.05.2010. 1 ♀ - e, 29.06.2010. 1 ♀ - l, KK: 27.04.2010. 1 ♀ - l, 18.06.2010. 2 ♂♂ - l, 15.07.2010. 1 ♂ - l, 17.08.2010. 1 ♀ - l, 21.09.2010. 1 ♀ - l. Genus: Silo Curtis.1830 Silo piceus (Brauer, 1857) D1: 12.07.2010. 1 ♂ - l, D2: 12.06.2010. 4 ♂♂, 2 ♀♀ - l, 30.07.2010. 5 ♀♀ - l, 29.08.2010. 1 ♀ - e, D3: 25.05.2010. 2 ♂♂, 3 ♀♀ - l, D5: 26.05.2010. 5 ♂♂, 4 ♀♀ - l, 15.06.2010. 1 ♀ - e, 15.06.2010. 1 ♂ - l, 8.07.2010. 1 ♀ - l, D6: 19.05.2010. 1 ♂ - l, 10.06.2010. 1 ♀ - l, D7: 14.05.2010. 1 ♀ - e, 24.05.2010. 31 ♀♀ - l, 9.06.2010. 4 ♀♀ - l, 7.07.2010. 2 ♀♀ - l, D8: 27.04.2010. 1 ♂, 1 ♀ - e, 27.04.2010. 79 ♂♂, 7 ♀♀ - l, 14.05.2010. 4 ♂♂, 3 ♀♀ - e, 14.05.2010. 3 ♂♂ - l, K1: 30.06.2010. 1 ♂, 1 ♀ - l, K2: 27.05.2010. 1 ♂, 1 ♀ - l, 30.06.2010. 1 ♀ - e, K3: 27.05.2010. 1 ♂, 1 ♀ - e, 27.05.2010. 7 ♂♂ - l, 29.06.2010. 1 ♂, 1 ♀ - l, KK: 14.05.2010. 6 ♂♂, 1 ♀ - l. Family: LEPIDOSTOMATIDAE Ulmer, 1903 Genus: Lepidostoma Rambur, 1842 Lepidostoma hirtum (Fabricius, 1775) D2: 30.05.2010. 1 ♂ - l, 22.08.2010. 1 ♀ - l, D3: 25.05.2010. 3 ♂♂, 10 ♀♀ - l, 23.06.2010. 196 ♀♀ - l, 11.07.2010. 5 ♂♂, 102 ♀♀ - l, D4: 29.04.2010. 1 ♀ - l, 24.05.2010. 2 ♀♀ - e, 24.05.2010. 1 ♂, 65 ♀♀ - l, 28.06.2010. 1 ♀ - e, 28.06.2010. 18 ♂♂, 380 ♀♀ - l, 26.07.2010. 33 ♀♀ - l, 25.08.2010. 69 ♀♀ - l, 23.09.2010. 1 ♀ - l, D5: 25.04.2010. 2 ♀♀ - l, 26.05.2010. 3 ♂♂, 685 ♀♀ - l, 15.06.2010. 9 ♀♀ - e, 15.06.2010. 1 ♂, 686 ♀♀ - l, 8.07.2010. 15 ♂♂, 1003 ♀♀ - l, 27.08.2010. 5 ♀♀ - l, 25.09.2010. 1 ♀ - l, D6: 26.04.2010. 20 ♀♀ - l, 19.05.2010. 2 ♂♂, 2 ♀♀ - l, 10.06.2010. 10 ♂♂, 441 ♀♀ - l, 6.07.2010. 1 ♂, 356 ♀♀ - l, 19.08.2010. 1 ♀ - e, 19.08.2010. 28 ♂♂, 1187 ♀♀ - l, D7: 14.05.2010. 2 ♂♂, 3 ♀♀ - e, 24.05.2010. 6 ♂, 672 ♀♀ - l, 9.06.2010. 6 ♂♂, 448 ♀♀ - l, 7.07.2010. 1 ♂, 24 ♀♀ - l, 18.08.2010. 2 ♂♂, 14 ♀♀ - l, 16.09.2010. 18 ♀♀ - l, 26.10.2010. 1 ♀ - l, D8:

Ecologica Montenegrina, 36, 2020, 6-39 37

CERJANEC ET AL.

14.05.2010. 1 ♂ - e, 14.05.2010. 1 ♂, 2 ♀♀ - l, 14.07.2010. 1 ♂ - l, 27.08.2010. 1 ♂, 1 ♀ - l, K1: 31.07.2010. 1 ♀ - l, K3: 27.07.2010. 64 ♀♀ - l, KK: 18.06.2010. 3 ♀♀ - l, 15.07.2010. 1 ♀ - l, 17.08.2010. 1 ♀ - e, 17.08.2010. 7 ♀♀ - l.

Superfamily: LEPTOCEROIDEA Leach, 1815 Family: LEPTOCERIDAE Leach, 1815 Genus: Atripsodes Billberg, 1820

Athripsodes sp. D3: 11.07.2010. 7 ♀♀ - l, D5: 27.08.2010. 1 ♀ - l, D7: 7.07.2010. 3 ♀♀ - l, KK: 15.07.2010. 1 ♀ - l. Genus: Ceraclea Stephens, 1829 Ceraclea albimacula (Rambur, 1842) D6: 6.07.2010. 6 ♂♂, 9 ♀♀ - l, 19.08.2010. 10 ♀♀ - e, 19.08.2010. 2 ♀♀ - l, D7: 7.07.2010. 2 ♂♂, 1 ♀ - l, 18.08.2010. 1 ♀ - l. Ceraclea dissimilis (Stephens, 1836) D3: 23.06.2010. 1 ♂ - e, 11.07.2010. 172 ♂♂, 253 ♀♀ - l, D4: 28.06.2010. 62 ♂♂, 54 ♀♀ - l, 26.07.2010. 1 ♂, 9 ♀♀ - l, 25.08.2010. 2 ♂♂, 8 ♀♀ - l, D5: 8.07.2010. 4 ♂♂, 5 ♀♀ - l, D6: 10.06.2010. 102 ♂♂, 80 ♀♀ - l, 6.07.2010. 574 ♂♂, 468 ♀♀ - l, 19.08.2010. 1 ♀ - e, 19.08.2010. 78 ♂♂, 41 ♀♀ - l, D7: 9.06.2010. 8 ♂♂, 13 ♀♀ - l, 7.07.2010. 78 ♂♂, 76 ♀♀ - l, 18.08.2010. 8 ♂♂, 1 ♀ - l, D8: 11.06.2010. 10 ♂♂, 3 ♀♀ - l, 18.06.2010. 1 ♂ - e, 14.07.2010. 11 ♂♂, 2 ♀♀ - l, 27.08.2010. 4 ♀♀ - l, K3: 29.06.2010. 1 ♂ - l, KK: 18.06.2010. 12 ♂♂, 2 ♀♀ - l, 15.07.2010. 31 ♂♂, 2 ♀♀ - l, 17.08.2010. 20 ♂♂, 8 ♀♀ - l. Ceraclea riparia Albarda, 1874 D6: 10.06.2010. 2 ♂♂, 3 ♀♀ - l, 19.08.2010. 10 ♂♂, 135 ♀♀ - l. Genus: Leptocerus Leach, 1815 Leptocerus interruptus Fabricius, 1775 D3: 11.07.2010. 1 ♀ - l, D6: 11.07.2010. 1 ♂ - l, KK: 18.06.2010. 1 ♂ - l. Genus: Mystacides Berthold, 1827 Mystacides azurea (Linnaeus, 1761) D4: 24.05.2010. 2 ♀♀ - l, D5: 27.08.2010. 4 ♀♀ - l, D6: 19.05.2010. 1 ♂ - l, 10.06.2010. 1 ♂, 1 ♀ - e, 6.07.2010. 1 ♂ - l, D7: 9.06.2010. 1 ♂, 1 ♀ - l, 7.07.2010. 1 ♂ - l, 18.08.2010. 1 ♂ - l, D8: 14.07.2010. 1 ♂, 1 ♀ - l, KK: 17.05.2010. 5 ♂♂, 2 ♀♀ - e. Genus: Setodes Rambur, 1842 Setodes punctatus Fabricius, 1793 D6: 6.07.2010. 1 ♀ - l, 19.08.2010. 9 ♂♂, 22 ♀♀ - l, D7: 7.07.2010. 1 ♂ - l, D8: 11.06.2010. 1 ♂ - l, 14.07.2010. 10 ♂♂, 14 ♀♀ - l. Setodes bulgaricus Kumanski, 1967 D6: 19.08.2010. 8 ♂, 12 ♀♀ - l, D8: 14.07.2010. 4 ♂, 3 ♀♀ - l, KK: 15.07.2010. 3 ♂, 2 ♀♀ - l. Genus: Oecetis (Curtis, 1834) Oecetis notata Rambur, 1842 D8: 14.07.2010. 1 ♂ - l, 27.08.2010. 5 ♂♂ - l, KK: 17.08.2010. 2 ♂♂, 9 ♀♀ - l. Oecetis testacea (Curtis, 1834) D6: 19.08.2010. 6 ♀♀ - l, D7: 18.08.2010. 1 ♀ - l, SR: 27.06.2010. 1 ♀ - l, KK: 17.08.2010. 1 ♀ - e.

Family: ODONTOCERIDAE Wallengren, 1891 Genus: Odontocerum Leach, 1815 Odontocerum albicorne (Scopoli, 1769) D1: 12.07.2010. 1 ♂ - l, D2: 30.07.2010. 1 ♂ - l, 22.08.2010. 1 ♂ - l, D3: 29.04.2010. 1 ♂, 1 ♀ - l, 25.05.2010. 3 ♂♂, 3 ♀♀ - l, 23.06.2010. 1 ♂ - e, 23.06.2010. 1 ♂ - l, D4: 24.05.2010. 1 ♂, 7 ♀♀ - l, 28.06.2010. 1 ♂ - l, K2: 29.06.2010. 3 ♂♂ - l, 30.06.2010. 1 ♀ - e, K3: 27.05.2010. 1 ♂, 7 ♀♀ - e, 27.05.2010. 1 ♂, 2 ♀♀ - l, 29.06.2010. 1 ♂, 21 ♀♀ - e, 29.06.2010. 14 ♂♂, 4 ♀♀ - l, 27.07.2010. 5 ♀♀ - e, 27.07.2010. 15 ♂♂, 2 ♀♀ - l, 23.08.2010. 1 ♂ - e, 31.08.2010. 1 ♂ - l.

Superfamily: Stephens, 1836 Family: SERICOSTOMATIDAE Stephens, 1836

38

CADDISFLIES IN DIFFERENT TYPES OF HABITATS IN THE DINARIC KARST

Genus: Sericostoma Latreille 1825 Sericostoma flavicorne Schneider, 1845 D1: 12.06.2010. 1 ♀ - l, D3: 25.05.2010. 1 ♂, 2 ♀♀ - l, K1: 30.06.2010. 1 ♂, 1 ♀ - l, K3: 27.05.2010. 1 ♀ - l, 29.06.2010. 1 ♂ - e, 29.06.2010. 1 ♀ - l.

Appendix 2. List of specimens used in phylogenetic analysis. Specimen ID from sequences obtained in this study are written with bold letters.

BOLD Sequence Sample ID Country Location ID Setodes bulgaricus CROTR137-19 TSBUL_1 Croatia Dobra River, Jarce polje (D6) CROTR117-19 TSBUL_2 Croatia Dobra River, Jarce polje (D6) Setodes punctatus CROTR134-19 TSPUN_3 Croatia Dobra River, Priselci (D8) FBAQU113-09 BC ZSM AQU 00113 Germany Ammersee bei Stegen KKUMN401-10 09MNKK0393 Spain Rio Ulla, 1 km (air) S Pontevea MGCAD248-08 ID-04802 Mongolia Selenge River, near Hyalgant Bridge MGCAD249-08 ID-04803 Mongolia Selenge River, near Hyalgant Bridge MGCAD250-08 ID-04804 Mongolia Selenge gol 7.8 km NW Zuunburen MGCAD252-08 ID-04806 Mongolia Selenge gol 7.8 km NW Zuunburen MGCAD253-08 ID-04807 Mongolia Selenge gol 7.8 km NW Zuunburen MGCAD254-08 ID-04808 Mongolia Selenge gol 7.8 km NW Zuunburen TRIFI675-12 JSlk-2011F135 Finland Kokonkoski TRIFI676-12 JSlk-2011F136 Finland Kokonkoski FBAQU113-09 BC ZSM AQU 00113 Ammersee bei Stegen (Gde. Inning Germany am Ammersee) KKUMN401-10 09MNKK0393 Spain Rio Ulla, 1 km (air) S Pontevea MGCAD248-08 ID-04802 Mongolia Selenge gol 7.8 km NW Zuunburen Setodes viridis Amper bei Teilungsbank, Fkm 25,0 FBAQU1234-12 BCZSMAQU00949 Germany Hoehe Moos, verei TRIRA030-13 12IQTRA-0030 Iraq Tabin Stream, Saburawa Old Village TRIRA031-13 12IQTRA-0031 Iraq Tabin Stream, Saburawa Old Village Mystacides azurea CROTR126-19 TMAZU_3 Croatia Cetina River, Radmanove mlinice

Ecologica Montenegrina, 36, 2020, 6-39 39