Fundação Getulio Vargas Escola De Ciências Sociais
Total Page:16
File Type:pdf, Size:1020Kb
FUNDAÇÃO GETULIO VARGAS ESCOLA DE CIÊNCIAS SOCIAIS – FGV CPDOC PROGRAMA DE PÓS-GRADUAÇÃO EM HISTÓRIA, POLÍTICA E BENS CULTURAIS DOUTORADO EM HISTÓRIA, POLÍTICA E BENS CULTURAIS ALL THE ROADS LEAD TO IMPEACHMENT: AGENDA SETTING AND DILMA ROUSSEFF’S PRESIDENTIAL CRISIS (2013-2016) APRESENTADA POR ANA ANGÉLICA RODRIGUES DE ANDRADE SOARES PROFESSOR ORIENTADOR ACADÊMICO SÉRGIO RODRIGO MARCHIORI PRAÇA Rio de Janeiro, Setembro de 2020 FUNDAÇÃO GETULIO VARGAS ESCOLA DE CIÊNCIAS SOCIAIS – FGV CPDOC PROGRAMA DE PÓS-GRADUAÇÃO EM HISTÓRIA, POLÍTICA E BENS CULTURAIS DOUTORADO EM HISTÓRIA, POLÍTICA E BENS CULTURAIS ALL THE ROADS LEAD TO IMPEACHMENT: AGENDA SETTING AND DILMA ROUSSEFF’S PRESIDENTIAL CRISIS (2013-2016) APRESENTADA POR ANA ANGÉLICA RODRIGUES DE ANDRADE SOARES Rio de Janeiro, Setembro de 2020 FUNDAÇÃO GETULIO VARGAS ESCOLA DE CIÊNCIAS SOCIAIS – FGV CPDOC PROGRAMA DE PÓS-GRADUAÇÃO EM HISTÓRIA, POLÍTICA E BENS CULTURAIS DOUTORADO EM HISTÓRIA, POLÍTICA E BENS CULTURAIS PROFESSOR ORIENTADOR ACADÊMICO SÉRGIO RODRIGO MARCHIORI PRAÇA ANA ANGÉLICA RODRIGUES DE ANDRADE SOARES ALL THE ROADS LEAD TO IMPEACHMENT: AGENDA SETTING AND DILMA ROUSSEFF’S PRESIDENTIAL CRISIS (2013-2016) Tese de Doutorado apresentada à Escola de Ciências Sociais FGV CPDOC como requisito parcial para a obtenção do grau de Doutor em História, Política e Bens Culturais. Rio de Janeiro, Setembro de 2020 Dados Internacionais de Catalogação na Publicação (CIP) Ficha catalográfica elaborada pelo Sistema de Bibliotecas/FGV Soares, Ana Angélica Rodrigues de Andrade All the roads lead to impeachment : agenda setting and Dilma Rousseff’s presidential crisis (2013-2016) / Ana Angélica Rodrigues de Andrade Soares. – 2020. 162 f. Tese (doutorado) – Escola de Ciências Sociais da Fundação Getulio Vargas, Programa de Pós-Graduação em História, Política e Bens Culturais. Orientador: Sérgio Rodrigo Marchiori Praça. Inclui bibliografia. 1. Opinião pública - Brasil. 2. Brasil. Presidente (2011-2016 : Dilma Rousseff). 3. Rousseff, Dilma, 1947- - Impedimentos. 4. Processamento de linguagem natural (Computação). 5. Redes sociais on-line. I. Praça, Sérgio. II. Escola de Ciências Sociais da Fundação Getulio Vargas. Programa de Pós-Graduação em História, Política e Bens Culturais. III. Título. CDD – 303.38 Elaborada por Rafaela Ramos de Moraes – CRB-7/6625 Abstract On August 31, 2016, Dilma Rousseff, then President of Brazil, was definitively ousted after an impeachment proceeding that began in December 2015, removing her from the mandate for which she was re-elected in October 2014. The crisis that precipitated her ousting, however, began at least three years before, in the June 2013 protests. This thesis aims to evaluate how and to what extent public opinion discourses contributed to the historical event of Dilma Rousseff’s impeachment as an outcome for the presidential crisis – based on the theoretical support of agenda-setting and using Natural Language Processing (NLP) tools for analysing the linguistic corpus extracted both from the media and Twitter from January 2013 to December 2016. Keywords: public opinion, agenda setting, presidential crisis, discourse analysis, Natural Language Processing (NLP) AcknowLedgements To the institutions that welcomed me for this doctorate: Instituto de Ciencia Politica | Universidad Católica de Chile, Santiago, Chile; SWPS University of Social Sciences and Humanities, Warszawa, Poland; Cologne Center for Comparative Politics (CCCP) | University of Cologne, Köln, Germany. To the Chilean government, represented by the Núcleo Milenio para el estudio de la Estatalidad y la Democracia en América Latina. To the European Union, represented by the Erasmus Mundus program – which made my stay in Poland possible and unforgettable. To professor Dr. Igor Lyubashenko, from SWPS’ Center for the Study of Democracy. To professor Dr. Ingo Rohlfing, who mentored and encouraged me during my stay as a guest researcher at CCCP. To the IFS | Mentoring (Mentoring Program for International Female Scholars) at University of Cologne. To my friends Janek, Kalina Dabrowska, Veronica Cruciani, Stella Richetti and Érica Kokay, who gave my stay abroad and my life a special meaning. Agradecimentos Às instituições brasileiras que enriqueceram minha jornada: ao IESP-UERJ | Instituto de Estudos Sociais e Políticos, nas pessoas dos professores Nelson do Valle, Fernando Guarnieri e Ricardo Ceneviva, e do colega Tiago Ventura; ao Departamento de Ciência da Computação | Universidade Federal de Minas Gerais (UFMG), na pessoa do professor Renato Souza; à Fiocruz, nas pessoas dos professores Francisco Braga, Simone Ferreira, Silvio Valle e da colega Lara D’Almeida, representando o Observatório de Política e Gestão Hospitalar (OPGH) e a Escola Politécnica de Saúde Joaquim Venâncio (EPSJV). E meu maior agradecimento à FGV e ao CPDOC, pela minha formação profissional, cidadã e acadêmica. Aos professores Celso Castro, Marcelo Neri, Américo Freire, Sérgio Praça, Renato Souza, Flávio Codeço e Angela Moreira. Aos amigos Lucas Almada, Cecília Soares, Juliana Marques, Fernanda Cimini, Matias López, Viktor Chagas, Marcela Casarin. Aos meus pais. TABLE OF FIGURES Figure 1 - Protesters occupy the Planalto Palace. Brasília, June 2013. Photo: Maria Luiza Ribeiro Pereira ........ 75 Figure 2 - Michel Temer and Dilma Rousseff at a presidential ceremony. Photo: Pedro Ladeira/Folhapress .... 101 Figure 3 - Histogram - distribution of Tweets for the parameters governo_Dilma (government_Dilma) from January 2013 to December 2016. ................................................................................................................ 104 Figure 4 - 5 most influential Twitter players for the June 2013 protests range .................................................... 107 Figure 5 - 5 most influential Twitter players for the launch of Car Wash Operation range ................................. 109 Figure 6 - 5 most influential Twitter players for 2014 general elections range ................................................... 110 Figure 7 - 5 most influential Twitter players for March 2015 protests range ...................................................... 111 Figure 8 - 5 most influential Twitter players for August 2015 protests range ..................................................... 112 Figure 9 - 5 most influential Twitter players for the impeachment approval range ............................................. 113 Figure 10 - Twitter 40 most common words for the June 2013 protests range .................................................... 115 Figure 11 - Twitter centrality and term co-occurrence graph for the June 2013 protests range .......................... 117 Figure 12 - Twitter 40 most common words for the Launch of Car Wash Operation range ............................... 118 Figure 13 - Twitter centrality and term co-occurrence graph for the Launch of Car Wash Operation range ..... 119 Figure 14 - Twitter 40 most common words for the OctoBer 2014 general elections range ................................ 120 Figure 15 - Twitter centrality and term co-occurrence graph for the October 2014 general elections range ...... 121 Figure 16 - Twitter 40 most common words for the March 2015 protests range ................................................. 122 Figure 17 - Twitter centrality and term co-occurrence graph for the March 2015 protests range ....................... 123 Figure 18 - Twitter 40 most common words for the August 2015 protests range ................................................ 124 Figure 19 - Twitter centrality and term co-occurrence graph for the August 2015 protests range ...................... 126 Figure 20 - Twitter 40 most common words for the impeachment approval range ............................................. 127 Figure 21 - Twitter centrality and term co-occurrence graph for the impeachment approval range .................... 129 Figure 22 - Media 40 most common words for the June 2013 protests range ..................................................... 130 Figure 23 - Media centrality and term co-occurrence graph for the June 2013 protests range ............................ 131 Figure 24 - Media 40 most common words for Launch of Car Wash Operation range ....................................... 132 Figure 25 - Media centrality and term co-occurrence graph for Launch of Car Wash Operation range ............. 133 Figure 26 - Twitter 40 most common words for the OctoBer 2014 general elections range ................................ 134 Figure 27 - Media centrality and term co-occurrence graph for October 2014 general elections range .............. 135 Figure 28 - Media 40 most common words for March 2015 protests range ........................................................ 136 Figure 29 - Media centrality and term co-occurrence graph for March 2015 protests range ............................... 137 Figure 30 - Media 40 most common words for August 2015 protests range ....................................................... 138 Figure 31 - Media centrality and term co-occurrence graph for August 2015 protests range .............................. 139 Figure 32 - Media 40 most common words for Impeachment range ................................................................... 140 Figure 33 - Media centrality and term co-occurrence graph for Impeachment range .......................................... 141 Figure 34 - Twitter longitudinal analysis for polarity. The red line is for negative Tweets, the Blue one, for positive Tweets ..........................................................................................................................................