Osteogenesis Imperfecta in Childhood: Impairment and Disability

Total Page:16

File Type:pdf, Size:1020Kb

Osteogenesis Imperfecta in Childhood: Impairment and Disability Osteogenesis Imperfecta in Childhood: Impairment and Disability R. H. H. Engelbert, PhD*; Y. van der Graaf, MD, PhD‡; R. van Empelen, MA*; F. A. Beemer, MD, PhD§; and P. J. M. Helders, MSc, PhD* ABSTRACT. Objective. To determine clinical charac- perfecta, pediatrics, muscle strength, range of joint motion, teristics in children with osteogenesis imperfecta (OI) impairment, disability, functional outcome. regarding impairment (range of joint motion and muscle strength) and disability (functional skills) in relation to the different types of the disease, and to study the cor- ABBREVIATIONS. OI, osteogenesis imperfecta; JAM, alignment relation between characteristics of impairment and dis- and motion (scale); PEDI, Pediatric Evaluation of Disability Inven- ability. tory; MMT, manual muscle testing. Methods. In a cross-sectional study 54 children with OI (OI type I: 24; OI type III: 15; OI type IV: 15), the range Osteogenesis imperfecta (OI) is a congenital con- of joint motion, muscle strength, and functional ability nective tissue disorder. In all its forms OI probably were measured in a standardized way and analyzed sta- affects 1 in 5000 to 10 000 individuals without racial tistically. 1 Results. The range of joint motion in almost all joints or ethnic preference. Major clinical characteristics of differed significantly with respect to the different dis- OI include fragility of bone, osteopenia, variable de- ease types. In OI type I patients, generalized hypermo- grees of short stature, and progressive skeletal defor- bility of the joints was present, without decrease in joint mities. Additional clinical manifestations are blue motion. In OI type III the extremities were severely ma- sclerae, dentinogenesis imperfecta, joint laxity, and ligned, especially the lower limbs. In type IV the upper maturity-onset deafness.2 The nonlethal OI syn- and lower extremities were equally maligned. Muscle dromes are subdivided into six types (IA, IB, II, III, strength differed significantly with respect to the differ- 3,4 ent types of OI. In type I patients, muscle strength was IVA, and IVB). The most common type, OI type I, normal except for the periarticular hip muscles. In type is characterized by osteopenia leading to fractures, III, especially in the lower extremities, muscle strength distinctly blue sclerae, and a high incidence of adult- was severely decreased, with a muscular imbalance onset conductive hearing loss. Within type I are two around the hip joint. In type IV, muscle strength was subgroups, IA characterized by normal teeth, and IB mainly decreased in the proximal muscles of the upper with dentinogenesis imperfecta. OI type II is usually and lower extremities. In children 7.5 years of age, lethal in the perinatal period. OI type III is charac- significant differences existed among the different dis- terized by severe osteopenia leading to multiple frac- ease types in functional skills regarding mobility. No tures, progressive deformity of bones and spine, and significant difference was observed in self-care and so- cial function, although the most severely affected chil- severely decreased height. dren showed a tendency to score better with social func- OI type IV is rare and is characterized by osteope- tion. Older children differed significantly concerning nia leading to fractures. Sclerae are normal. Short mobility and self-care items. In children 7.5 years old, a stature and deformity of the long bones and spine correlation was sometimes observed between impair- tend to be more marked in type IV than in type I. ment and disability items, although in older children a Some patients have normal teeth (type IVA). Others moderate to good correlation was always present (r > .6). have dentinogenesis imperfecta (type IVB). Conclusion. In OI, severity-related profiles exist, Although these clinical features provide a basis for within the different subtypes of the disease, regarding classification, a significant proportion of patients range of joint motion, muscle strength, and functional 4 skills. In younger children, impairment parameters do cannot be classified in this way. Studies on collagen not sufficiently correlate for disability. Rehabilitation I genes and their mutations in OI are numerous. strategies in younger children should therefore focus on Smith5 states that within the last two decades bio- improvement of functional skills and not only on impair- chemical advances have been so rapid that at one ment parameters. Pediatrics 1997;99(2). URL: http://www. time it seemed that OI could be explained entirely in pediatrics.org/cgi/content/full/99/2/e3; osteogenesis im- molecular terms. Current work suggests that this is not the case and that we still have much to learn about the relationship between phenotype and geno- From the *Department of Pediatric Physical Therapy, University Hospital type.5 for Children and Youth, “Wilhelmina Children’s Hospital”; ‡Department of 6 Clinical Epidemiology, Utrecht University Hospital; and §Clinical Genetics In 1965, Nagi introduced a scheme that delineated Center Utrecht, Utrecht, The Netherlands. the major pathways from disease or active pathology Received for publication Feb 20, 1996; accepted Aug 7, 1996. to various functional implications. This scheme con- Reprint requests to (R.H.H.E.) Department of Pediatric Physical Therapy, sisted of four domains: active pathology, impair- University Hospital for Children and Youth, “Wilhelmina Children’s Hos- ment, functional limitation, and disability. In 1980 pital,” P.O. Box 18009, 3501 CA Utrecht, The Netherlands. PEDIATRICS (ISSN 0031 4005). Copyright © 1997 by the American Acad- the World Health Organization introduced the Inter- emy of Pediatrics. national Classification of Impairments, Disabilities http://www.pediatrics.org/cgi/content/full/99/2/Downloaded from www.aappublications.org/newse3 by guestPEDIATRICS on September Vol. 27, 2021 99 No. 2 February 1997 1of7 and Handicaps,7 a system that classified the conse- testing criteria of the Medical Research Council using a 6-point quences of disease in three levels. Both schemes have scale (range: 0–5).14 Children , 5 years of age were excluded from muscle strength measurements because no reliable measurement guided disability research during the past 25 years could be performed. Muscle strength of the anteflexors and ab- and have undergone various modifications through ductors of the shoulder, flexors and extensors of the elbow, flexors the years. and extensors of the wrist, and flexors of the fingers were tested in Studies on impairment and disability issues in OI the upper extremities. In the lower extremities, flexors, abductors, patients are scarce. Rehabilitation approaches focus and extensors of the hip joint, flexors and extensors of the knee joint, and dorsal flexors and plantar flexors of the ankle joint were on improving range of motion of the joints as well as tested. muscle strength of trunk and extremity muscles. Im- Functional abilities regarding ambulation were scored accord- provement of functional abilities is mainly focused ing to the criteria of Bleck.15 He classified the possibility for am- on sitting, standing, and ambulation.8,9 bulation in a nonwalker, exercise walker, household walker, neighborhood walker, and community walker. Our purpose was to investigate impairment pat- Functional abilities and the amount of parental assistance were terns in OI, such as range of joint motion and muscle scored using a translated version of the Pediatric Evaluation of strength, as well as disability or functional limitation Disability Inventory (PEDI).16 The PEDI consists of two major items, such as functional skills and the amount of dimensions (functional skills scales and caregiver assistance parental assistance, in correlation to the different scales) in the content domains of self-care, mobility, and social function. The performance of functional tasks and activities is disease types. We also investigated correlations be- measured by the functional skills scale, which samples a set of tween impairment and disability items. behaviors that are believed to be important for daily functioning. The amount of help required to accomplish daily tasks is mea- METHODS sured by the caregiver assistance scales. Reference values are In this cross-sectional study, we examined 54 patients (27 boys provided for children between 0.5 and 7.5 years. Normal values . and 27 girls) with OI who were treated in our hospital, a national are defined in the range of 2 SD. Results of children 7.5 years are . referral center for children with OI. Children were included in this calculated as a scaled score. In healthy children 7.5 years of age, study only if the diagnosis of OI was definite. Children who had the normal score is 100%. recent fractures needing immobilization and children who had intramedullary stabilization of the long bones within the previous STATISTICS half year were excluded from the protocol because of the possible influence on range of motion, muscle strength, and functional The total score for muscle strength in the upper ability. All measurements were performed by the first author and lower extremities was calculated by adding the (R.H.H.E.). strength of all tested muscles and dividing by the Range of joint motion was measured in a standardized way number of tested muscles. In this way, the mean ratio with a standard two-legged goniometer, using the anatomical for muscle strength in the upper and lower extrem- landmark method. This method was found to be highly reproduc-
Recommended publications
  • Differential Diagnosis: Brittle Bone Conditions Other Than OI
    Facts about Osteogenesis Imperfecta Differential Diagnosis: Brittle Bone Conditions Other than OI Fragile bones are the hallmark feature of osteogenesis imperfecta (OI). The mutations that cause OI lead to abnormalities within bone that result in increased bone turnover; reduced bone mineral content and decreased bone mineral density. The consequence of these changes is brittle bones that fracture easily. But not all cases of brittle bones are OI. Other causes of brittle bones include osteomalacia, disuse osteoporosis, disorders of increased bone density, defects of bone, and tumors. The following is a list of conditions that share fragile or brittle bones as a distinguishing feature. Brief descriptions and sources for further information are included. Bruck Syndrome This autosomal recessive disorder is also referred to as OI with contractures. Some people now consider this to be a type of OI. National Library of Medicine Genetics Home Reference: http://ghr.nlm.nih.gov Ehlers-Danlos Syndrome (EDS) Joint hyperextensibility with fractures; this is a variable disorder caused by several gene mutations. Ehlers-Danlos National Foundation http://www.ednf.org Fibrous Dysplasia Fibrous tissue develops in place of normal bone. This weakens the affected bone and causes it to deform or fracture. Fibrous Dysplasia Foundation: https://www.fibrousdysplasia.org ‎ Hypophosphatasia This autosomal recessive disorder affects the development of bones and teeth through defects in skeletal mineralization. Soft Bones: www.softbones.org; National Library of Medicine Genetics Home Reference: http://ghr.nlm.nih.gov/condition Idiopathic Juvenile Osteoporosis A non-hereditary transient form of childhood osteoporosis that is similar to mild OI (Type I) National Osteoporosis Foundation: www.nof.org McCune-Albright Syndrome This disorder affects the bones, skin, and several hormone-producing tissues.
    [Show full text]
  • Genetic Causes and Underlying Disease Mechanisms in Early-Onset Osteoporosis
    From DEPARTMENT OF MOLECULAR MEDICINE AND SURGERY Karolinska Institutet, Stockholm, Sweden GENETIC CAUSES AND UNDERLYING DISEASE MECHANISMS IN EARLY-ONSET OSTEOPOROSIS ANDERS KÄMPE Stockholm 2020 All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by Eprint AB 2020 © Anders Kämpe, 2020 ISBN 978-91-7831-759-2 Genetic causes and underlying disease mechanisms in early-onset osteoporosis THESIS FOR DOCTORAL DEGREE (Ph.D.) By Anders Kämpe Principal Supervisor: Opponent: Professor Outi Mäkitie Professor André Uitterlinden Karolinska Institutet Erasmus Medical Centre, Rotterdam Department of Molecular Medicine and Surgery Department of Internal Medicine Laboratories Genetic Laboratory / Human Genomics Facility (HuGe-F) Co-supervisor(s): Examination Board: Associate Professor Anna Lindstrand Professor Marie-Louise Bondeson Karolinska Institutet Uppsala University Department of Molecular Medicine and Surgery Department of Immunology, Genetics and Pathology Associate Professor Giedre Grigelioniene Professor Göran Andersson Karolinska Institutet Karolinska Institutet Department of Molecular Medicine and Surgery Department of Laboratory Medicine Professor Ann Nordgren Minna Pöyhönen Karolinska Institutet University of Helsinki Department of Molecular Medicine and Surgery Department of Medical Genetics Associate Professor Hong Jiao Karolinska Institutet Department of Biosciences and Nutrition ABSTRACT Adult-onset osteoporosis is a disorder that affects a significant proportion of the elderly population worldwide and entails a substantial disease burden for the affected individuals. Childhood-onset osteoporosis is a rare condition often associating with a severe bone disease and recurrent fractures already in early childhood. Both childhood-onset and adult-onset osteoporosis have a large genetic component, but in children the disorder is usually genetically less complex and often caused by a single gene variant.
    [Show full text]
  • Skeletal Dysplasias
    Skeletal Dysplasias North Carolina Ultrasound Society Keisha L.B. Reddick, MD Wilmington Maternal Fetal Medicine Development of the Skeleton • 6 weeks – vertebrae • 7 weeks – skull • 8 wk – clavicle and mandible – Hyaline cartilage • Ossification – 7-12 wk – diaphysis appears – 12-16 wk metacarpals and metatarsals – 20+ wk pubis, calus, calcaneus • Visualization of epiphyseal ossification centers Epidemiology • Overall 9.1 per 1000 • Lethal 1.1 per 10,000 – Thanatophoric 1/40,000 – Osteogenesis Imperfecta 0.18 /10,000 – Campomelic 0.1 /0,000 – Achondrogenesis 0.1 /10,000 • Non-lethal – Achondroplasia 15 in 10,000 Most Common Skeletal Dysplasia • Thantophoric dysplasia 29% • Achondroplasia 15% • Osteogenesis imperfecta 14% • Achondrogenesis 9% • Campomelic dysplasia 2% Definition/Terms • Rhizomelia – proximal segment • Mezomelia –intermediate segment • Acromelia – distal segment • Micromelia – all segments • Campomelia – bowing of long bones • Preaxial – radial/thumb or tibial side • Postaxial – ulnar/little finger or fibular Long Bone Segments Counseling • Serial ultrasound • Genetic counseling • Genetic testing – Amniocentesis • Postnatal – Delivery center – Radiographs Assessment • Which segment is affected • Assessment of distal extremities • Any curvatures, fracture or clubbing noted • Are metaphyseal changes present • Hypoplastic or absent bones • Assessment of the spinal canal • Assessment of thorax. Skeletal Dysplasia Lethal Non-lethal • Thanatophoric • Achondroplasia • OI type II • OI type I, III, IV • Achondrogenesis • Hypochondroplasia
    [Show full text]
  • Fetal Skeletal Dysplasias
    There’s a Short Long Bone, What Now? Fetal Skeletal Dysplasias TERRY HARPER, MD DIVISION CHIEF CLINICAL ASSOCIATE PROFESSOR MATERNAL FETAL MEDICINE UNIVERSITY OF COLORADO Over 450 types of Skeletal Dysplasias X-linked Spondyloepiphyseal Tarda Thanatophoric dysplasia Osteogenesis Imperfecta Hypochondrogenesis Achondrogenesis Achondroplasia Otospondylomegaepiphyseal dysplasia Fibrochondrogenesis (OSMED) Hypochondroplasia Campomelic dysplasia Spondyloepiphyseal dysplasia congenita (SEDC) How will we come across this diagnosis? Third trimester size less than dates ultrasound at 33 4/7 weeks shows: What should our goal be at the initial visit? A. Genetic definitive diagnosis B. Termination of pregnancy C. Detailed anatomic survey including all long bones D. Assessment of likely lethality from pulmonary hypoplasia E. Amniocentesis or Serum Testing/Genetics Referral F. Referral to a Fetal Care Center What should our goal be at the initial visit? A. Genetic definitive diagnosis B. Termination of pregnancy C. Detailed anatomic survey including all long bones D. Assessment of likely lethality secondary to pulmonary hypoplasia E. Amniocentesis or Serum Testing/Genetics Referral F. Referral to a Fetal Care Center Detailed Ultrasound Technique Long bones Thorax Hands/feet Skull Spine Face Long bones Measure all including distal Look for missing bones Mineralization, curvature, fractures If limbs disproportional…. Does the abnormality effect: Proximal (rhizomelic) Middle (mesomelic) Distal (acromelic) Long bones Measure all extremities
    [Show full text]
  • Current Overview of Osteogenesis Imperfecta
    medicina Review Current Overview of Osteogenesis Imperfecta Mari Deguchi *, Shunichiro Tsuji , Daisuke Katsura , Kyoko Kasahara, Fuminori Kimura and Takashi Murakami Department of Obstetrics & Gynecology, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; [email protected] (S.T.); [email protected] (D.K.); [email protected] (K.K.); [email protected] (F.K.); [email protected] (T.M.) * Correspondence: [email protected] Abstract: Osteogenesis imperfecta (OI), or brittle bone disease, is a heterogeneous disorder charac- terised by bone fragility, multiple fractures, bone deformity, and short stature. OI is a heterogeneous disorder primarily caused by mutations in the genes involved in the production of type 1 collagen. Severe OI is perinatally lethal, while mild OI can sometimes not be recognised until adulthood. Severe or lethal OI can usually be diagnosed using antenatal ultrasound and confirmed by various imaging modalities and genetic testing. The combination of imaging parameters obtained by ultrasound, computed tomography (CT), and magnetic resource imaging (MRI) can not only detect OI accurately but also predict lethality before birth. Moreover, genetic testing, either noninvasive or invasive, can further confirm the diagnosis prenatally. Early and precise diagnoses provide parents with more time to decide on reproductive options. The currently available postnatal treatments for OI are not curative, and individuals with severe OI suffer multiple fractures and bone deformities throughout their lives. In utero mesenchymal stem cell transplantation has been drawing attention as a promising therapy for severe OI, and a clinical trial to assess the safety and efficacy of cell therapy is currently ongoing.
    [Show full text]
  • Mechanisms of Bone Fragility: from Osteogenesis Imperfecta to Secondary Osteoporosis
    International Journal of Molecular Sciences Review Mechanisms of Bone Fragility: From Osteogenesis Imperfecta to Secondary Osteoporosis Ahmed El-Gazzar and Wolfgang Högler * Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Krankenhausstraße 26-30, 4020 Linz, Austria; [email protected] * Correspondence: [email protected]; Tel.: +43-(0)5-7680-84-22001; Fax: +43-(0)5-7680-84-22004 Abstract: Bone material strength is determined by several factors, such as bone mass, matrix composi- tion, mineralization, architecture and shape. From a clinical perspective, bone fragility is classified as primary (i.e., genetic and rare) or secondary (i.e., acquired and common) osteoporosis. Understanding the mechanism of rare genetic bone fragility disorders not only advances medical knowledge on rare diseases, it may open doors for drug development for more common disorders (i.e., postmenopausal osteoporosis). In this review, we highlight the main disease mechanisms underlying the development of human bone fragility associated with low bone mass known to date. The pathways we focus on are type I collagen processing, WNT-signaling, TGF-ß signaling, the RANKL-RANK system and the osteocyte mechanosensing pathway. We demonstrate how the discovery of most of these pathways has led to targeted, pathway-specific treatments. Keywords: bone fragility; type I collagen; post-translational modifications; extracellular matrix; osteogenesis imperfecta; Juvenile Paget disease; osteomalacia; osteopetrosis 1. Introduction Citation: El-Gazzar, A.; Högler, W. Mechanisms of Bone Fragility: From Developing bones consist of cartilaginous joints, the epiphysis, the growth plate carti- Osteogenesis Imperfecta to Secondary lage with adjacent osteogenesis and the cortical and cancellous bone mineralized structure.
    [Show full text]
  • Child Abuse Or Osteogenesis Imperfecta?
    Child Abuse or Osteogenesis Imperfecta? A child is brought into the emergency room with a fractured leg. The parents are unable to explain how the leg fractured. X-rays reveal several other fractures in various stages of healing. The parents say they did not know about these fractures, and cannot explain what might have caused them. Hospital personnel call child welfare services to report a suspected case of child abuse. The child is taken away from the parents and placed in foster care. Scenes like this occur in emergency rooms every day. But in this case, the cause of the fractures is not child abuse. It is osteogenesis imperfecta, or OI. OI is a genetic disorder characterized by bones that break easily— often from little or no apparent cause. A person with OI may sustain just a few or as many as several hundred fractures in a lifetime. What Is Osteogenesis Imperfecta? Osteogenesis imperfecta is a genetic disorder. Most cases involve a defect in type 1 collagen—the protein “scaffolding” of bone and other connective tissues. People with OI have a faulty gene that instructs their bodies to make either too little type 1 collagen or poor quality type 1 collagen. The result is bones that break easily plus other connective tissue symptoms. Most cases of OI are caused by a dominant genetic defect. Most children with OI inherit the disorder from a parent who has OI. Some adults with very mild OI may not have been diagnosed as children. Approximately 25% of children with OI are born into a family with no history of the disorder.
    [Show full text]
  • Osteogenesis Imperfecta
    Osteogenesis imperfecta Description Osteogenesis imperfecta (OI) is a group of genetic disorders that mainly affect the bones. The term "osteogenesis imperfecta" means imperfect bone formation. People with this condition have bones that break (fracture) easily, often from mild trauma or with no apparent cause. Multiple fractures are common, and in severe cases, can occur even before birth. Milder cases may involve only a few fractures over a person's lifetime. There are at least 19 recognized forms of osteogenesis imperfecta, designated type I through type XIX. Several types are distinguished by their signs and symptoms, although their characteristic features overlap. Increasingly, genetic causes are used to define rarer forms of osteogenesis imperfecta. Type I (also known as classic non- deforming osteogenesis imperfecta with blue sclerae) is the mildest form of osteogenesis imperfecta. Type II (also known as perinatally lethal osteogenesis imperfecta) is the most severe. Other types of this condition, including types III ( progressively deforming osteogenesis imperfecta) and IV (common variable osteogenesis imperfecta with normal sclerae), have signs and symptoms that fall somewhere between these two extremes. The milder forms of osteogenesis imperfecta, including type I, are characterized by bone fractures during childhood and adolescence that often result from minor trauma, such as falling while learning to walk. Fractures occur less frequently in adulthood. People with mild forms of the condition typically have a blue or grey tint to the part of the eye that is usually white (the sclera), and about half develop hearing loss in adulthood. Unlike more severely affected individuals, people with type I are usually of normal or near normal height.
    [Show full text]
  • Osteogenesis Imperfecta: Recent Findings Shed New Light on This Once Well-Understood Condition Donald Basel, Bsc, Mbbch1, and Robert D
    COLLABORATIVE REVIEW Genetics in Medicine Osteogenesis imperfecta: Recent findings shed new light on this once well-understood condition Donald Basel, BSc, MBBCh1, and Robert D. Steiner, MD2 TABLE OF CONTENTS Overview ...........................................................................................................375 Differential diagnosis...................................................................................380 Clinical manifestations ................................................................................376 In utero..........................................................................................................380 OI type I ....................................................................................................376 Infancy and childhood................................................................................380 OI type II ...................................................................................................377 Nonaccidental trauma (child abuse) ....................................................380 OI type III ..................................................................................................377 Infantile hypophosphatasia ....................................................................380 OI type IV..................................................................................................377 Bruck syndrome .......................................................................................380 Newly described types of OI .....................................................................377
    [Show full text]
  • Subbarao K Skeletal Dysplasia (Non - Sclerosing Dysplasias – Part II)
    REVIEW ARTICLE Skeletal Dysplasia (Non - Sclerosing dysplasias – Part II) Subbarao K Padmasri Awardee Prof. Dr. Kakarla Subbarao, Hyderabad, India Introduction Out of 70 dwarfism syndromes, the most In continuation with Sclerosing Dysplasias common form of dwarfism is (Part I), non sclerosing dysplasias constitute achondroplasia. It is a proportionate a major group of skeletal lesions including dwarfism and is rhizomelic in 70% of the dwarfism syndromes. The following list patients. It is autosomal dominant. There is includes most of the common dysplasias rhizomelic type of short limbs with increased either involving epiphysis, metaphysis, spinal curvature. Skull abnormalities are also diaphysis or epimetaphysis. These include noted. The radiographic features are multiple epiphyseal dysplasia, spondylo- mentioned in Table I. epiphyseal dysplasia, metaphyseal dysplasia, spondylometaphyseal dysplasia and Table I: Achondroplasia- Radiographic epimetaphyseal dysplasia (Hindigodu features Syndrome). These are included in dwarfism Large skull with prominent frontal syndromes. bones and a narrow base. The interpedicular distance decreases Dwarfism indicates a short person in stature caudally in lumbar region but with due to genetic or acquired causes. It is normal vertebral height. defined as an adult height of less than Posterior scalloping 147 cm (4 feet 10 inches). The pelvis is square with small sciatic notches and the inlet The average height of Indians is men- 5ft 3 configuration with classical ½ inches and women–5 ft 0 inches much less champagne glass appearance than average American or Chinese people. Trident hands Delayed appearance of carpal bones Dwarfism syndromes consist of 200 distinct Dumb bell shaped limb bones medical entities. In Proportionate Dwarfism, the body appears normally proportioned, but is unusually small.
    [Show full text]
  • Prenatal Diagnosis, Management and Outcomes of Skeletal Dysplasia
    logy & Ob o st ec e tr n i Alouini et al., Gynecol Obstet (Sunnyvale) 2019, y c s G 9:4 Gynecology & Obstetrics ISSN: 2161-0932 Research Article Open Access Prenatal Diagnosis, Management and Outcomes of Skeletal Dysplasia Souhail Alouini1*, Jean Gabriel Martin1, Pascal Megier1 and Olga Esperandieu2 1Department of Obstetrics and Gynecology, Maternal-Foetal Medicine Unit Regional Hospital Center of Orleans, 45000, Orléans, France 2Department of Anatomie et Cytologie Pathologiques, Regional Hospital Center Of Orleans, 45000, Orléans, France *Corresponding author: Souhail Alouini, Department of Obstetrics and Gynecologic Surgery, Regional Hospital Center of Orleans, 14 Avenue de l’hospital, Orleans, 45100, France, Tel: +33688395759; E-mail: [email protected] Received date: March 02, 2019; Accepted date: May 02, 2019; Published date: May 09, 2019 Copyright: © 2019 Alouini S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Objective: To evaluate prenatal ultrasound findings of Skeletal Dysplasia (SD) and examine the contribution of radiological, histological and genetic exams. Methods: Retrospective study including all cases of SD managed in a tertiary maternity center between 1996 and 2010. Results: Eight cases of SD were diagnosed (1.4/10,000 births) by ultrasonography (USE). Three (38%) cases of SD were discovered in the first trimester, and five in the second trimester. We found short femurs in all cases. Anomalies consisted of the thickness of the femoral diaphysis, broad epiphysis, short and squat long bones, costal fractures, thinned coasts, anomalies of the profile and vertebrae, and a short and narrow thorax.
    [Show full text]
  • Anesthesia for a Patient with Osteogenesis Imperfecta, Achondroplastic Dwarfism and History of Malignant Hyperthermia
    anesthesia for a Patient with osteogenesis imPerfecta, achondroPlastic dwarfism and history of malignant hyPerthermia Jaclyn Harvey SRNA AbstrAct A primary goal for anesthesia providers is to maintain patient safety. This is an even greater concern when taking care of a patient with a complicated medical history. This case report, discusses the care of a 47 year-old female patient who presented to a tertiary care center for an orthopedic procedure. Her medical history included osteogenesis imperfecta (OI), achondro- plastic dwarfism and suspicion of malignant hyperthermia (MH). There were multiple anesthetic implications to ensure safety for this patient during the perioperative period. OI concerns include bone fragility and potential for multiple fractures even after inoffensive trauma. Achondroplastic dwarfism concerns include abnormalities of the upper airway and difficulty with visual- izing the glottic opening during direct laryngoscopy.1 Malignant Hyperthermia is a life threatening disorder, which places the patient at risk for a hypermetabolic reaction if exposed to select anesthetic agents. IntroductIon: Patients with osteogenesis imperfect (OI) are placed at high risk during anesthesia for both physiological and anatomical reasons. Complications include osteoporosis, joint laxity, and tendon weakness.2 Pulmonary compromise may also occur if the patient displays thoracic distortion. These patients have an elevated basal metabolic rate that causes an increase in core body temper- ature and can mistaken to be MH. No consistent evidence has shown that OI is always associated with MH.2 Achondroplastic dwarfism is the most common form of dwarfism occurring at the rate of 1:30,000 live births. Airway abnormalities such as macroglossia, micrognathia, small oral opening and temporo- mandibular joint immobility can make mask ventilation and intubation challenging for anesthesia providers.
    [Show full text]