Environmental Services Ofbiodiversity

Total Page:16

File Type:pdf, Size:1020Kb

Environmental Services Ofbiodiversity Proc. Natl. Acad. Sci. USA Vol. 93, pp. 2764-2769, April 1996 Ecology Environmental services of biodiversity NORMAN MYERS Green College, Oxford University, United Kingdom OX3 8SZ Contributed by Norman Myers, September 29, 1995 ABSTRACT Humans derive many utilitarian benefits and they occur in every last segment of the biosphere. So the from the environmental services of biotas and ecosystems. paper is perforce restricted to an illustrative selection of the This is often advanced as a prime argument to support more significant services. conservation of biodiversity. There is much to be said for this viewpoint, as is documented in this paper through a summary II. Conceptual Background assessment of several categories of environmental services, including regulation of climate and biogeochemical cycles, Biodiversity embraces the totality of life forms, from the hydrological functions, soil protection, crop pollination, pest planetary spectrum of species to subunits of species (races, control, recreation and ecotourism, and a number of miscel- populations) together with ecosystems and their ecological laneous services. It is shown that the services are indeed processes. The species component includes all plants, animals, significant, whether in ecological or economic senses. Partic- and microorganisms, of which there are between 8 million and ularly important is the factor of ecosystem resilience, which 30 million (conceivably 100 million) (12). The subspecies appears to underpin many of the services. It should not be component includes populations, ofwhich there could be many supposed, however, that environmental services stem necessarily billions (13). Spanning both these main categories are various and exclusively from biodiversity. While biodiversity often plays subdivisions, including community diversity, food web diver- a key role, the services can also derive from biomass and other sity, keystone diversity, and functional diversity. attributes of biotas. The paper concludes with a brief overview Environmental services are also known as ecosystem ser- assessment of economic values at issue and an appraisal of the vices,* both terms reflecting environmental functions and implications for conservation planning. ecological processes. They can be defined as any functional attribute of natural ecosystems that are demonstrably benefi- I. Introduction cial to humankind (15). Theycomprise the main indirect values of biodiversity, as opposed to direct values in the form of Conservation biologists increasingly face the question, What is material goods such as timber, fish, plant-based pharmaceu- biodiversity good for? Naive as this may seem to some, it is a ticals, and germ-plasm infusions for major crops. They include valid question. There is no longer enough room for a complete generating and maintaining soils, converting solar energy into stock of biodiversity on an overcrowded planet with almost six plant tissue, sustaining hydrological cycles, storing and cycling billion humans and their multifarious activities, let alone a essential nutrients (notably in the form of nitrogen fixation), projected doubling of human numbers and a tripling or supplying clean air and water, absorbing and detoxifying quadrupling of salient activities. So biodiversity must stake its pollutants, decomposing wastes, pollinating crops and other claims for living space in competition with other causes. plants, controlling pests, running biogeochemical cycles (of Generally speaking, biodiversity must urge the merits of its such vital elements as carbon, nitrogen, phosphorus, and cause through what it contributes to human welfare, preferably sulfur), controlling the gaseous mixture of the atmosphere doing it in the way that most appeals to political leaders and (which helps to determine climate), and regulating weather the general public, namely in economic terms. and climate at both macro and micro levels. Thus they basically In response to the question above, conservation biologists include three forms of processing, namely of minerals, energy, proclaim the many significant contributions of biodiversity to and water (16). In addition, biodiversity provides sites for the human cause. There are two categories of contributions: research, recreation, tourism, and inspiration (1, 17, 18). material goods and environmental services. The first has been The bulk of this paper will be given over to describing and frequently and widely documented (1-4), principally in the evaluating certain of these services. But first, a couple of form of new and improved foods, medicines and drugs, raw caveats. It is far from true that all forms of biodiversity can materials for industry, and sources of bioenergy. The second contribute all environmental services or that similar forms of has been far less documented even though the issue was biodiversity can perform similar tasks with similar efficiency. identified as unusually significant almost two decades ago (5) How far do environmental services depend upon biodiversity and even though its total value is surely far greater than that per se? Recent research suggests that they are highly resilient of the first (1, 6-9). The main reasons for this lamentable to some loss of species and they can keep on supplying their lacuna are that scientists find it much harder to demonstrate services even in highly modified states. A sugarcane plantation the precise nature of the services, and it is still harder to may be more efficient at producing organic material than the quantify them economically. Whereas the benefits of material natural vegetation it replaced, and a tree farm may be more goods tend to accrue to individuals, often as producers or capable of fixing atmospheric carbon than a natural forest. At consumers in the marketplace, the values of environmental the same time, many natural ecosystems with low biodiversity services generally pertain to society, and hence they mostly (e.g., tropical freshwater swamps) have a high capacity to fix remain unmarketed (10, 11). carbon. This paper reviews our knowledge and understanding of the principal services at issue. The services are extremely diverse, *The term environmental services is preferred since it embraces the larger-scale and often more important services, such as the albedo The publication costs of this article were defrayed in part by page charge stabilization supplied by the Amazonia and Zaire forests (14). These payment. This article must therefore be hereby marked "advertisement" in forest regions are too large to conform to the category of ecosystems accordance with 18 U.S.C. §1734 solely to indicate this fact. as conventionally understood. Downloaded by guest on September 28, 2021 2764 Ecology: Myers Proc. Natl. Acad. Sci. USA 93 (1996) 2765 Similarly, the services supplied by one form of biodiversity and parts of the Philippines among other areas-rainfall in one locality may not necessarily be supplied by a similar form regimes have been disrupted if not depleted in the wake of of biodiversity in another locality. Just because a wetland on deforestation (28). the Louisiana coast performs a particular suite of functions, it 2. Biogeochemical Cycles. The Earth's biotas are prime cannot be assumed that a wetland on the Georgia coast will pumps in the major biogeochemical cycles (29-31). It is perform the same functions, still less an inland wetland in debatable, however, how far this function is impaired by loss Massachusetts or California, and still less again a montane of biodiversity in itself, rather than by loss of vegetation and wetland in Sweden or a forest wetland in Thailand. Services other biomass (32, 33). tend to be quite site-specific. This makes it much more difficult A notable illustration lies with the carbon cycle and, hence, for conservation biologists to demonstrate the intrinsic value with climate change in the form of global warming. Roughly of wetlands or any other biotopes. half of global warming is due to build-up of anthropogenic Biodiversity plays two critical roles. (i) It provides the carbon dioxide in the global atmosphere. More carbon dioxide biospheric medium for energy and material flows, which in is released than remains in the atmosphere, the rest being turn provide ecosystems with their functional properties; and absorbed by the oceans and terrestrial biotas. (ii) it supports and fosters ecosystem resilience (17, 19-24). As While vegetation can serve as a major sink of carbon biodiversity is depleted, there is usually a shift and often dioxide, we do not know how much, nor how far, the function (though not always) a decline in the integrity of ecosystem depends on biodiversity. Preliminary evidence shows that processes that supply environmental services. species-rich ecosystems can often (though not always) con- The second caveat is that we should distinguish between sume carbon dioxide at a faster rate than less diverse ecosys- what can be called the ecologist's and the economist's mode of tems; and in turn this suggests that biodiversity decline may calculation of values at issue. The first favors estimating promote the build-up of carbon dioxide (34). In addition, to biodiversity's values "in themselves," i.e., the worth of a the extent that species-rich ecosystems produce more biomass, biodiversity attribute as manifested by its role in ecosystem they consume more carbon dioxide, thereby reducing the workings (for example, the part played by forest cover in build-up of carbon dioxide. watershed functions). The second approach prefers
Recommended publications
  • 1 Restoring Scientific Integrity in Policy Making February 18, 2004
    Restoring Scientific Integrity in Policy Making February 18, 2004 Science, like any field of endeavor, relies on freedom of inquiry; and one of the hallmarks of that freedom is objectivity. Now, more than ever, on issues ranging from climate change to AIDS research to genetic engineering to food additives, government relies on the impartial perspective of science for guidance. President George H.W. Bush, April 23, 1990 Successful application of science has played a large part in the policies that have made the United States of America the world’s most powerful nation and its citizens increasingly prosperous and healthy. Although scientific input to the government is rarely the only factor in public policy decisions, this input should always be weighed from an objective and impartial perspective to avoid perilous consequences. Indeed, this principle has long been adhered to by presidents and administrations of both parties in forming and implementing policies. The administration of George W. Bush has, however, disregarded this principle. When scientific knowledge has been found to be in conflict with its political goals, the administration has often manipulated the process through which science enters into its decisions. This has been done by placing people who are professionally unqualified or who have clear conflicts of interest in official posts and on scientific advisory committees; by disbanding existing advisory committees; by censoring and suppressing reports by the government’s own scientists; and by simply not seeking independent scientific advice. Other administrations have, on occasion, engaged in such practices, but not so systematically nor on so wide a front. Furthermore, in advocating policies that are not scientifically sound, the administration has sometimes misrepresented scientific knowledge and misled the public about the implications of its policies.
    [Show full text]
  • Binbin Li Assistant Professor in Environmental Sciences, Duke Kunshan University
    Binbin Li Assistant Professor in Environmental Sciences, Duke Kunshan University Phone: +8613810251904, Email: [email protected] EDUCATION Duke University, Nicholas School of the Environment (Durham, NC, USA) • Ph.D, Environment, Aug 2012 – May 2017. • Major Advisor: Stuart Pimm • Committee members: Jeff Vincent, Alex Pfaff, Jennifer Swenson University of Michigan, School of Natural Resources and Environment (Ann Arbor, MI, USA) • Master of Science, Natural Resources and Environment: Conservation biology and Environmental Informatics, Aug 2010 - April 2012 • Thesis: Effects of feral cats on the evolution of antipredator behaviors in the Aegean island lizard Podarcis erhardii. Peking University (Beijing, China) • Bachelor of Arts, Life Sciences with dual degree in Economics, Sep 2006 - Jul 2010 • Peking University Student Government, President of Dept. of International Communication Student Government of School of Environmental Sciences, President of Dept. of Activity, planning student orientation and social events • Thesis: Influence of Monoculture on Fauna diversity - Comparison of biodiversity in Japanese Larch (Larix kaempferi) monoculture and native secondary forest. WORK EXPERIENCE Duke Kunshan University, Environmental Research Center (Kunshan, Jiangsu, China) Assistant Professor of Environmental Sciences, Jul 2017-now • Responsible for teaching in Environmental Policy Master Program at Duke Kunshan University • Research on conservation biology AWARDS AND FUNDING • Young Conservation Leader, Birdlife International (2018) • Candidate
    [Show full text]
  • Laudatio Stuart Pimm
    The Dr A.H. Heineken Prize for Environmental Sciences 2006 The work of Professor Stuart L. Pimm presented by Professor Gert Jan F. van Heijst, Chairperson of the Jury of the Dr A.H. Heineken Prize for Environmental Sciences Prize citation: for 'his research on species extinction and conservation' Professor Pimm, The jury of the Dr A.H. Heineken Prize for Environmental Sciences has unanimously decided to award you the prize for 2006 for your research on species extinction and conservation. You are one of the leading and most influential biologists working in the field of biodiversity and its preservation, which is evident from the enviable number of times your name is quoted in publications of interest to us scientists, such as New Scientist, Nature and Science. Even at an early stage in your career, you aroused controversy in your publication Food Webs, in which you explained that the extinction of species within an ecological system has repercussions for the preservation of other species in that system. Biodiversity consists overwhelmingly of organisms at the higher trophic levels. In the abundant group of insects, for example, over 95% have been found to be at the higher trophic levels, so that any loss at the lower trophic levels has very serious consequences for the higher, more specialised levels. In other words, if a species at the bottom of the food chain extincts, the repercussions are felt throughout the food web. It was you who coined the term 'food chain' and used it in scientific models that have gone on to inspire many scientists.
    [Show full text]
  • The Biodiversity–Ecosystem Function Debate in Ecology
    Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Handbook of The Philosophy of Science: Philosophy of Ecology. The copy attached is provided by Elsevier for the author’s benefit and for the benefit of the author’s institution, for non-commercial research, and educational use. This includes without limitation use in instruction at your institution, distribution to specific colleagues, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From deLaplante Kevin, and Picasso Valentin, The Biodiversity-Ecosystem Function Debate in Ecology. In: Dov M. Gabbay, Paul Thagard and John Woods, editors, Handbook of The Philosophy of Science: Philosophy of Ecology. San Diego: North Holland, 2011, pp. 169-200. ISBN: 978-0-444-51673-2 © Copyright 2011 Elsevier B. V. North Holland. Author's personal copy THE BIODIVERSITY–ECOSYSTEM FUNCTION DEBATE IN ECOLOGY Kevin deLaplante and Valentin Picasso 1 INTRODUCTION Population/community ecology and ecosystem ecology present very different per- spectives on ecological phenomena. Over the course of the history of ecology there has been relatively little interaction between the two fields at a theoretical level, despite general acknowledgment that many ecosystem processes are both influ- enced by and constrain population- and community-level phenomena.
    [Show full text]
  • Human Impacts on the Rates of Recent, Present, and Future Bird Extinctions
    Human impacts on the rates of recent, present, and future bird extinctions Stuart Pimm*†, Peter Raven†‡, Alan Peterson§, Çag˘anH.S¸ ekerciog˘lu¶, and Paul R. Ehrlich¶ *Nicholas School of the Environment and Earth Sciences, Duke University, Box 90328, Durham, NC 27708; ‡Missouri Botanical Garden, P.O. Box 299, St. Louis, MO 63166; §P.O. Box 1999, Walla Walla, WA 99362; and ¶Center for Conservation Biology, Department of Biological Sciences, Stanford University, 371 Serra Mall, Stanford, CA 94305-5020 Contributed by Peter Raven, June 4, 2006 Unqualified, the statement that Ϸ1.3% of the Ϸ10,000 presently ‘‘missing in action,’’ not recently recorded in its native habitat known bird species have become extinct since A.D. 1500 yields an that human actions have largely destroyed. This assumption estimate of Ϸ26 extinctions per million species per year (or 26 prevents terminating conservation efforts prematurely, even as E͞MSY). This is higher than the benchmark rate of Ϸ1E͞MSY it again underestimates the total number of extinctions. Finally, before human impacts, but is a serious underestimate. First, rapidly declining species will lose most of their populations and Polynesian expansion across the Pacific also exterminated many thus their functional roles within ecosystems long before their species well before European explorations. Second, three factors actual demise (3, 4). increase the rate: (i) The number of known extinctions before 1800 We explore the often-unstated assumptions about extinction is increasing as taxonomists describe new species from skeletal numbers to understand the various estimates. Starting before remains. (ii) One should calculate extinction rates over the years 1500 and the period of first human contact with bird species, we since taxonomists described the species.
    [Show full text]
  • Planetary Boundaries for Biodiversity José Montoya, Ian Donohue, Stuart Pimm
    Planetary Boundaries for Biodiversity José Montoya, Ian Donohue, Stuart Pimm To cite this version: José Montoya, Ian Donohue, Stuart Pimm. Planetary Boundaries for Biodiversity: Implau- sible Science, Pernicious Policies. Trends in Ecology & Evolution, 2018, 33 (2), pp.71-73. 10.1016/j.tree.2017.10.004. hal-02404725v2 HAL Id: hal-02404725 https://hal-univ-tlse3.archives-ouvertes.fr/hal-02404725v2 Submitted on 26 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Forum 10-fold background. Despite widespread To address concerns that extinction rates Planetary Boundaries criticisms, the tipping-point claim per- are an inappropriate metric, the biodiver- for Biodiversity: sists, with recent reproduction of the orig- sity boundary is renamed as ‘biosphere ii inal claim [1] and statements that the integrity’ [3]. Two static measures of bio- Implausible Science, threshold is ‘not arbitrary’, emerges from diversity replace rates: phylogenetic vari- Pernicious Policies ‘massive amounts of data’ from many ability and functional diversity. Problems 1, fields, and that ‘no one is saying that of definition apart, reliable estimates for José M. Montoya, * ’ ‘ 2 the idea is wrong , despite massive anything resembling these are impossible Ian Donohue, and ’ 3 breakthroughs in counting extinctions .
    [Show full text]
  • The Sixth Great Extinction Donations Events "Soon a Millennium Will End
    The Rewilding Institute, Dave Foreman, continental conservation Home | Contact | The EcoWild Program | Around the Campfire About Us Fellows The Pleistocene-Holocene Event: Mission Vision The Sixth Great Extinction Donations Events "Soon a millennium will end. With it will pass four billion years of News evolutionary exuberance. Yes, some species will survive, particularly the smaller, tenacious ones living in places far too dry and cold for us to farm or graze. Yet we Resources must face the fact that the Cenozoic, the Age of Mammals which has been in retreat since the catastrophic extinctions of the late Pleistocene is over, and that the Anthropozoic or Catastrophozoic has begun." --Michael Soulè (1996) [Extinction is the gravest conservation problem of our era. Indeed, it is the gravest problem humans face. The following discussion is adapted from Chapters 1, 2, and 4 of Dave Foreman’s Rewilding North America.] Click Here For Full PDF Report... or read report below... Many of our reports are in Adobe Acrobat PDF Format. If you don't already have one, the free Acrobat Reader can be downloaded by clicking this link. The Crisis The most important—and gloomy—scientific discovery of the twentieth century was the extinction crisis. During the 1970s, field biologists grew more and more worried by population drops in thousands of species and by the loss of ecosystems of all kinds around the world. Tropical rainforests were falling to saw and torch. Wetlands were being drained for agriculture. Coral reefs were dying from god knows what. Ocean fish stocks were crashing. Elephants, rhinos, gorillas, tigers, polar bears, and other “charismatic megafauna” were being slaughtered.
    [Show full text]
  • Biodiversity
    BiodiveBrsiiotyd: iversity Its Importance to Human Health Interim Executive Summary Editor Eric Chivian M.D. A Project of the Center for Health and the Global Environment Harvard Medical School under the auspices of the World Health Organization and the United Nations Biodiversity Environment Programme 5 The project Biodiversity: Its Importance to Human Health has been made possible through the generous support of several individuals and the following foundations: Bristol-Myers Squibb Company Nathan Cummings Foundation Richard & Rhoda Goldman Fund Clarence E. Heller Charitable Foundation Johnson & Johnson John D. and Catherine T. MacArthur Foundation The New York Community Trust The Pocantico Conference Center of the Rockefeller Brothers Fund V. Kann Rasmussen Foundation Wallace Genetic Foundation Wallace Global Fund The Winslow Foundation Biodiversity: Its Importance to Human Health Interim Executive Summary A Project of the Center for Health and the Global Environment Harvard Medical School under the auspices of the World Health Organization and the United Nations Environment Programme Editor Eric Chivian M.D. Associate Editors Maria Alice dos Santos Alves Ph.D. (Brazil) Robert Bos M.Sc. (WHO) Paul Epstein M.D., MPH (USA) Madhav Gadgil Ph.D. (India) Hiremagular Gopalan Ph.D. (UNEP) Daniel Hillel Ph.D. (Israel) John Kilama Ph.D. (USA/Uganda) Jeffrey McNeely Ph.D. (IUCN) Jerry Melillo Ph.D. (USA) David Molyneux Ph.D., Dsc (UK) Jo Mulongoy Ph.D. (CBD) David Newman Ph.D. (USA) Richard Ostfeld Ph.D. (USA) Stuart Pimm Ph.D. (USA) Joshua Rosenthal Ph.D. (USA) Cynthia Rosenzweig Ph.D. (USA) Osvaldo Sala Ph.D. (Argentina) 1 Biodiversity Introduction that as many as two thirds of all species on Earth could be lost by the end of this century, a E.O.
    [Show full text]
  • The Description and Number of Undiscovered Mammal Species
    Received: 10 April 2017 | Revised: 10 November 2017 | Accepted: 20 November 2017 DOI: 10.1002/ece3.3724 ORIGINAL RESEARCH The description and number of undiscovered mammal species Molly A. Fisher | John E. Vinson | John L. Gittleman | John M. Drake Odum School of Ecology, University of Georgia, Athens, GA, USA Abstract Global species counts are a key measure of biodiversity and associated metrics of Correspondence Molly A. Fisher, Odum School of Ecology, conservation. It is both scientifically and practically important to know how many spe- University of Georgia, Athens, GA, USA. cies exist, how many undescribed species remain, and where they are found. We mod- Email: [email protected] ify a model for the number of undescribed species using species description data and incorporating taxonomic information. We assume a Poisson distribution for the num- ber of species described in an interval and use maximum likelihood to estimate param- eter values of an unknown intensity function. To test the model’s performance, we performed a simulation study comparing our method to a previous model under condi- tions qualitatively similar to those related to mammal species description over the last two centuries. Because our model more accurately estimates the total number of spe- cies, we predict that 5% of mammals remain undescribed. We applied our model to determine the biogeographic realms which hold these undescribed species. KEYWORDS biodiversity, conservation, taxonomic effort, total number of species, unknown species 1 | INTRODUCTION to ~13 million for the total number of species (Costello et al., 2012; Scheffers, Joppa, Pimm, & Laurance, 2012). The routine description of biological species not previously known Rather than modeling how many species remain to be described, to science shows clearly that the project to catalog life on earth may some researchers have used species descriptions since the last check- be only two- thirds complete (Costello, Wilson, & Houlding, 2012; list (Hoffmann et al., 1993; Wilson & Reeder, 2005) to analyze the Pimm et al., 2014).
    [Show full text]
  • 2019 (27Th) International COSMOS Prize Awarded to STUART L
    2019 (27th) International COSMOS Prize awarded to STUART L. PIMM Professor of Conservation Ecology, Duke University, U.S.A. Pimm’ pioneering work clarified the complexities of food webs that sustain life on earth and calculated rates of species extinction using quantitative mathematical models. Building on these foundations, he went on to empirically verify his theoretical findings in the field. Through such work, he has been an influential figure, contributing greatly to the shaping of policies to conserve biological diversity globally and to ecological habitat conservation practice in many parts of the world. He has further extended the global outreach of hs work by establishing the international non‐profit foundation, “Saving Nature” (formerly “Saving Species”), which supports local conservation groups across the world, empowering them to reduce the risk of species extinction and better manage ecological habitats under threat. His considerable achievements, integrating science with practice, mark Stewart Pimm as a true giant in the field of conservation biology, whose contributions to the “Harmony of Man and Nature” make him a most worthy winner of the International COSMOS Prize for 2019. 2019 (27th) International COSMOS Prize: Prizewinner Stuart Leonard Pimm Professor of Conservation Ecology, Duke University, U.S.A. • Date of Birth: ‐ 27 February 1949 (70 yrs) ‐ Born in Derbyshire, U.K. • Nationality: • Academic Background: ‐ U.S. Citizen ‐ 1971: B.Sc. Oxford University, U.K. ‐ 1974: Ph.D. New Mexico State • Current Position: University ‐ Professor (Conservation Ecology), Duke University • Major International Awards Received: ‐ 2006: Heineken Prize for the • Major: Environment ‐ Conservation Ecology ‐ 2010: Tyler Prize for the Environment THE GREAT OUTDOORS With Oxford University field A PERSONAL SKETCH studies team 1970, Band-e-Amir, Afghanistan PIMM’S EARLY YEARS School photograph taken when Pimm started bird watching 1962, Bemrose School, Derby.
    [Show full text]
  • Diversity, Productivity, and Stability in Perennial Polycultures Used for Grain, Forage, and Biomass Production Valentín Daniel Picasso Risso Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2008 Diversity, productivity, and stability in perennial polycultures used for grain, forage, and biomass production Valentín Daniel Picasso Risso Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agricultural Science Commons, Agronomy and Crop Sciences Commons, Ecology and Evolutionary Biology Commons, and the Horticulture Commons Recommended Citation Picasso Risso, Valentín Daniel, "Diversity, productivity, and stability in perennial polycultures used for grain, forage, and biomass production" (2008). Retrospective Theses and Dissertations. 15849. https://lib.dr.iastate.edu/rtd/15849 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Diversity, productivity, and stability in perennial polycultures used for grain, forage, and biomass production by Valentín Daniel Picasso Risso A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Sustainable Agriculture Program of Study Committee: E. Charles Brummer, Co-major Professor Matt Liebman, Co-major Professor Philip Dixon Brian Wilsey Kevin de Laplante Iowa State University Ames, Iowa 2008 Copyright ©Valentín Daniel Picasso Risso, 2008. All rights reserved UMI Number: 3291999 UMI Microform 3291999 Copyright 2008 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.
    [Show full text]
  • Science, Like Any Field of Endeavor, Relies on Freedom of Inquiry; and One of the Hallmarks of That Freedom Is Objectivity
    Restoring Scientific Integrity in Policy Making February 18, 2004 Science, like any field of endeavor, relies on freedom of inquiry; and one of the hallmarks of that freedom is objectivity. Now, more than ever, on issues ranging from climate change to AIDS research to genetic engineering to food additives, government relies on the impartial perspective of science for guidance. President George H.W. Bush, April 23, 1990 Successful application of science has played a large part in the policies that have made the United States of America the world’s most powerful nation and its citizens increasingly prosperous and healthy. Although scientific input to the government is rarely the only factor in public policy decisions, this input should always be weighed from an objective and impartial perspective to avoid perilous consequences. Indeed, this principle has long been adhered to by presidents and administrations of both parties in forming and implementing policies. The administration of George W. Bush has, however, disregarded this principle. When scientific knowledge has been found to be in conflict with its political goals, the administration has often manipulated the process through which science enters into its decisions. This has been done by placing people who are professionally unqualified or who have clear conflicts of interest in official posts and on scientific advisory committees; by disbanding existing advisory committees; by censoring and suppressing reports by the government’s own scientists; and by simply not seeking independent scientific advice. Other administrations have, on occasion, engaged in such practices, but not so systematically nor on so wide a front. Furthermore, in advocating policies that are not scientifically sound, the administration has sometimes misrepresented scientific knowledge and misled the public about the implications of its policies.
    [Show full text]