Cumulative Author Index (Print)

Total Page:16

File Type:pdf, Size:1020Kb

Cumulative Author Index (Print) PHYSICAL REVIEW A VOLUME 54, NUMBER 6 DECEMBER 1996 Cumulative Author Index All authors of papers published in this volume are listed alphabetically. A complete list of authors and the full title are printed after each ®rst author's name with subsequent authors cross-referenced. For Rapid Communications an R precedes the page number. The letters (C) and (BR) fol- lowing the page number indicate that a paper is a Comment or Brief Report, respectively. References with (E) are to Errata. Abdallah, M. — ͑see Kravis, S. D.͒ A 54, 1394 Allen, L. J. — ͑see Huber, H.͒ A 54, 1363 Abe, Sumiyoshi — Angular velocity operator and q-deformation Alston, Steven — Modified Faddeev treatment of electron capture. structure. A 54, 93 A 54, 2011 Ableev, V. G. — ͑see Bertin, A.͒ A 54, 5441͑BR͒ Alt, E. O., A. S. Kadyrov, and A. M. Mukhamedzhanov — Triangle Abraham, E. R. I. — ͑see McAlexander, W. I.͒ A 54, R5 amplitude with off-shell Coulomb T matrix for exchange reactions Abraham, Michael, Barak Galanti, and Zeev Olami — Effect of a in atomic and nuclear physics. A 54, 4091 rotating potential on a quantum particle. A 54, 2659 Alvarellos, J. E. — ͑see Garcı´a-Gonza´lez, P.͒ A 54, 1897 Abram, I. and G. Bourdon — Photonic-well microcavities for Alvarez, I. — ͑see Domı´nguez, I.͒ A 54, 506 spontaneous emission control. A 54, 3476 Alvarez, J. M. — ͑see Valle´s, J. A.͒ A 54, 977͑BR͒ Abril, Isabel — ͑see Pe´rez-Pe´rez, F. Javier͒ A 54, 4145 Alvarez, M. — Calculation of the Aharonov-Bohm wave function. Ackermann, J. and J. Shertzer — Finite-element calculations for the A 54, 1128 three-body Coulomb problem with two equal masses. A 54, 365 Alzetta, G. — ͑see Xu, J. H.͒ A 54, 3146 Adam, G. — ͑see Buzˇek, V.͒ A 54, 804 Amaral, Orlando A. V. — ͑see Medeiros, Renato͒ A 54, 3661͑BR͒ Adam, P. — ͑see Kis, Z.͒ A 54, 5110 Amitay, Z., D. Zajfman, P. Forck, U. Hechtfischer, B. Seidel, M. af Ugglas, M. — ͑see Semaniak, J.͒ A 54, R4617 Grieser, D. Habs, R. Repnow, D. Schwalm, and A. Wolf Agarwal, Ashish and S. Chopra — Spatial correlation effects in a — Dissociative recombination of CHϩ: Cross section and final states. laser. A 54, 2503͑BR͒ A 54, 4032 Agarwal, G. S. — Control-laser-induced subnatural linewidths and ͑see Semaniak, J.͒ A 54, R4617 quenching of spontaneous emission. A 54, R3734 Amos, K. — ͑see Huber, H.͒ A 54, 1363 ͑see Vemuri, Gautam͒ A 54, 3394 An, Z., T. H. Li, L. M. Wang, X. Y. Xia, and Z. M. Luo ͑see Vemuri, Gautam͒ A 54, 3695͑BR͒ — Correction of substrate effect in the measurement of 8–25-keV Agarwal, Girish S. and Emil Wolf — Correlation-induced spectral electron-impact K-shell ionization cross sections of Cu and Co changes and energy conservation. A 54, 4424 elements. A 54, 3067 Agnello, M. — ͑see Bertin, A.͒ A 54, 5441͑BR͒ Andersen, J. U., J. Chevallier, G. C. Ball, W. G. Davies, J. S. Ågren, Hans — ͑see Gelmukhanov, Faris͒ A 54, 379 Forster, J. S. Geiger, J. A. Davies, H. Geissel, and E. P. Kanter ͑see Gel’mukhanov, Faris͒ A 54, 3960 — Dielectronic recombination and energy loss for He-like 79Br Ahn, Changrim, Kong-Ju-Bock Lee, and Soonkeon Nam ions channeled in a thin single crystal of Si. A 54, 624 — Nonrelativistic factorizable scattering theory and the Calogero- Andersen, N. — ͑see Dowek, D.͒ A 54, 970͑BR͒ Sutherland model. A 54, 4943 Anderson, D. Z. — ͑see Mamaev, A. V.͒ A 54, 870 Ai, B. — ͑see Glassner, D. S.͒ A 54, 3335 Anderson, W. — ͑see Veale, J. R.͒ A 54, 1430 Aichele, K. — ͑see Hathiramani, D.͒ A 54, 587 Andra¨, H. J. — ͑see Pesnelle, A.͒ A 54, 4051 Ait-Tahar, S., I. P. Grant, and P. H. Norrington — Electron Andra¨, H. J. — ͑see Westphal, P.͒ A 54, 4577͑BR͒ scattering by Fe XXII within the Dirac R-matrix approach. A 54, 3984 Andreis, M. — ͑see Baraldi, C.͒ A 54, 4947 Akgu¨ngo¨r, K. — ͑see Kamber, E. Y.͒ A 54, 1452 Andriamonje, S., M. Chevallier, C. Cohen, N. Cue, D. Dauvergne, J. Aksela, H., J. Jauhiainen, E. No˜mmiste, S. Aksela, S. Sundin, A. Dural, F. Fujimoto, R. Kirsch, A. L’Hoir, J.-C. Poizat, Y. Ausmees, and S. Svensson — Angular anisotropy of the Kr Que´re´, J. Remillieux, C. Ro¨hl, H. Rothard, J. P. Rozet, D. Ϫ1 → Ϫ2 3d3/2,5/25p 4p 5p resonant Auger decay studied by utilizing the Schmaus, M. Toulemonde, and D. Vernhet — K-shell Auger resonant Raman effect. A 54, 605 radiative electron capture with bare 60-MeV/u Kr ions channeled in a , J. Jauhiainen, E. No˜mmiste, O.-P. Sairanen, J. Karvonen, E. Si crystal: Experiments and simulations. A 54, 1404 Kukk, and S. Aksela — Angular distribution of Auger electrons Antoine, Ph., B. Piraux, D. B. Milosˇevic´, and M. Gajda — Generation Ϫ1 in the decay of resonantly excited 4d3/2,5/2 6p states in Xe. of ultrashort pulses of harmonics. A 54, R1761 A 54, 2874 Antropov, V. P. — ͑see Katsnelson, M. I.͒ A 54, 4802 and J. Mursu — Electron correlation in the 3p44s state of Ar Arakaki, Y. — ͑see Tanabe, T.͒ A 54, 4069 studied via the 2p54s resonant Auger spectra. A 54, 2882 Arecchi, F. T. — ͑see Ramazza, P. L.͒ A 54, 3472 ͑see Kukk, E.͒ A 54, 2121 Arik, M. — ͑see Hakiog˘lu, T.͒ A 54, 52 ͑see Sairanen, O.-P.͒ A 54, 2834 Arimondo, Ennio — Relaxation processes in coherent-population Aksela, S. — ͑see Aksela, H.͒ A 54, 605 trapping. A 54, 2216 ͑see Aksela, H.͒ A 54, 2874 ͑see Cerboneschi, Elena͒ A 54, 5400 ͑see Kukk, E.͒ A 54, 2121 Arista, N. R. — ͑see Martı´nez-Tamayo, G.͒ A 54, 3131 ͑see Sairanen, O.-P.͒ A 54, 2834 Arista, Ne´stor R. — ͑see Pe´rez-Pe´rez, F. Javier͒ A 54, 4145 Alber, G. — ͑see Zobay, O.͒ A 54, 5361 Arndt, Markus — ͑see Desbiolles, Pierre͒ A 54, 4292 Al-Dossary, O., M. Babiker, and N. Enfati — Quantum optics of Arp, U. — ͑see Shaw, P. S.͒ A 54, 1463 plasmon polaritons and velocity sum rules. A 54, 2419 Artemev, A. Y. — Environment dependence of spectral and dissipative Allegrini, M. — ͑see Jabbour, Z. J.͒ A 54, 1372 properties of an open spin system. A 54, 2779 Allen, L., M. Babiker, W. K. Lai, and V. E. Lembessis — Atom Artoni, M. and R. Marani — Squeezed states in multiple atomic dynamics in multiple Laguerre-Gaussian beams. A 54, 4259 fluorescence. A 54, 2280 ͑see Dholakia, K.͒ A 54, R3742 Asimov, R. — ͑see Lawson-Daku, B. J.͒ A 54, 5042 54 5460 54 CUMULATIVE AUTHOR INDEX 5461 Asp, S. — ͑see Gao, H.͒ A 54, 3005 Bapat, Bhas, E. Krishnakumar, C. P. Safvan, M. J. Singh, S. K. Assion, A., M. Geisler, J. Helbing, V. Seyfried, and T. Baumert Goel, and R. Shanker — Two-electron processes in the — Femtosecond pump-probe photoelectron spectroscopy: ionization of H2 and D2 by fast protons. A 54, 2925 Mapping of vibrational wave-packet motion. A 54, R4605 Baraldi, C., E. Casnati, A. Tartari, M. Andreis, and B. Singh Atutov, S. N., K. A. Nasyrov, S. P. Pod’yachev, A. M. Shalagin, and — Measurements of anomalous elastic scattering of 59.54-keV O. A. Vostrikov — Light-induced current in plasma. A 54, 4279 photons. A 54, 4947 Aumayr, F. — ͑see Horvath, G.͒ A 54, 3022 Barbe´, R. — ͑see Gorris-Neveux, M.͒ A 54, 3386 Ausmees, A. — ͑see Aksela, H.͒ A 54, 605 Barbiellini, B. — ͑see Harju, A.͒ A 54, 4849 ͑see Kukk, E.͒ A 54, 2121 Barbosa, G. A. — Quantum images in double-slit experiments with Auth, C. — ͑see Winter, H.͒ A 54, 2486͑BR͒ spontaneous down-conversion light. A 54, 4473 Avaldi, L., P. Bolognesi, R. Camilloni, E. Fainelli, R. A. Multari, and ͑see Souto Ribeiro, P. H.͒ A 54, 3489 G. Stefani — Formation and decay of Xe 4dϪ1 vacancies studied Bardin, S. — ͑see Briand, J.-P.͒ A 54, 4136 via electron-electron coincidence experiments. A 54, 2930 Barenco, Adriano, Artur Ekert, Kalle-Antti Suominen, and Pa¨ivi ¨ ¨ ͑see Velotta, R.͒ A 54, 2482͑BR͒ Torma — Approximate quantum Fourier transform and Averbukh, I. Sh. — ͑see Leichtle, C.͒ A 54, 5299 decoherence. A 54, 139 Avetissian, H. K. and S. V. Movsissian — Theory of elastic scattering ͑see Vedral, Vlatko͒ A 54, 147 of particles in a static potential field. A 54, 3036 Barenghi, Carlo F. — Vortex waves in a cloud of Bose-Einstein- Avgoustoglou, E. and Z. W. Liu — Relativistic many-body calculations condensed, trapped alkali-metal atoms. A 54, 5445͑BR͒ 5 Barnum, Howard, Christopher A. Fuchs, Richard Jozsa, and of ͓2p 3d͔Jϭ1 excited-state energy levels for neonlike ions. A 54, 1351 Benjamin Schumacher — General fidelity limit for quantum channels. A 54, 4707 Bar-Shalom, A. — ͑see Behar, E.͒ A 54, 3070 Bartschat, K., E. T. Hudson, M. P. Scott, P. G. Burke, and V. M. Babb, James F. — ͑see Yan, Zong-Chao͒ A 54, 2824 Burke — Convergent R matrix with pseudostates calculation Babiker, M. — ͑see Al-Dossary, O.͒ A 54, 2419 for eϪ-He collisions. A 54, R998 ͑see Allen, L.͒ A 54, 4259 Bartschat, Klaus and Igor Bray — S-wave model for electron- Bachor, Hans-A. — ͑see Harb, Charles C.͒ A 54, 4370 hydrogen scattering. A 54, R1002 ͑see Ralph, Timothy C.͒ A 54, 4359 and Igor Bray — Calculation of electron-Cs scattering at ͑see White, Andrew G.͒ A 54, 3400 intermediate energies.
Recommended publications
  • What Is the Shape of the Helium Trimer? a Comparison with the Neon and Argon Trimers Dario Bressanini* and Gabriele Morosi
    ARTICLE pubs.acs.org/JPCA What Is the Shape of the Helium Trimer? A Comparison with the Neon and Argon Trimers Dario Bressanini* and Gabriele Morosi Dipartimento di Scienze Chimiche e Ambientali, Universita' dell'Insubria, Via Lucini 3, 22100 Como, Italy ABSTRACT: Despite its apparent simplicity and extensive theoretical investiga- tions, the issue of what is the shape of the helium trimer is still debated in the literature. After reviewing previous conflicting interpretations of computational studies, we introduce the angleÀangle distribution function as a tool to discuss in a simple way the shape of any trimer. We compute this function along with many different geometrical distributions using variational and diffusion Monte Carlo methods. We compare them with the corresponding ones for the neon and argon fl trimers. Our analysis shows that while Ne3 and Ar3 uctuate around an 4 equilibrium structure that is an equilateral triangle, He3 shows an extremely broad angleÀangle distribution function, and all kinds of three-atom configura- 4 tions must be taken into account in its description. Classifying He3 as either equilateral or linear or any other particular shape, as was done in the past, is not sensible, because in this case the intuitive notion of equilibrium structure is ill defined. Our results could help the interpretation of future experiments aimed at measuring the geometrical properties of the helium trimer. ’ INTRODUCTION candidate for the Efimov effect, first discussed in nuclear physics. 1 Weakly bound van der Waals noble gases clusters in the last The recent paper of Kolganova et al. provides a nice review of the literature of this field of research.
    [Show full text]
  • Fantasy Versus Reality in Fragment-Based Quantum Chemistry
    The Journal PERSPECTIVE of Chemical Physics scitation.org/journal/jcp Fantasy versus reality in fragment-based quantum chemistry Cite as: J. Chem. Phys. 151, 170901 (2019); doi: 10.1063/1.5126216 Submitted: 31 August 2019 • Accepted: 6 October 2019 • Published Online: 4 November 2019 John M. Herberta) AFFILIATIONS Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA a)[email protected] ABSTRACT Since the introduction of the fragment molecular orbital method 20 years ago, fragment-based approaches have occupied a small but growing niche in quantum chemistry. These methods decompose a large molecular system into subsystems small enough to be amenable to electronic structure calculations, following which the subsystem information is reassembled in order to approximate an otherwise intractable supersys- tem calculation. Fragmentation sidesteps the steep rise (with respect to system size) in the cost of ab initio calculations, replacing it with a distributed cost across numerous computer processors. Such methods are attractive, in part, because they are easily parallelizable and there- fore readily amenable to exascale computing. As such, there has been hope that distributed computing might offer the proverbial “free lunch” in quantum chemistry, with the entrée being high-level calculations on very large systems. While fragment-based quantum chemistry can count many success stories, there also exists a seedy underbelly of rarely acknowledged problems. As these methods begin to mature, it is time to have a serious conversation about what they can and cannot be expected to accomplish in the near future. Both successes and challenges are highlighted in this Perspective.
    [Show full text]
  • Few-Body Approach to Diffraction of Small Helium Clusters by Nanostructures
    Few-body approach to diffraction of small helium clusters by nanostructures1 Gerhard C. Hegerfeldt2 Institut f¨ur Theoretische Physik, Universit¨at G¨ottingen Bunsenstr. 9, 37073 G¨ottingen, Germany and Thorsten K¨ohler3 Max-Planck-Institut f¨ur Str¨omungsforschung Bunsenstr. 10, D-37073 G¨ottingen, Germany Abstract We use few-body methods to investigate the diffraction of weakly bound systems by a transmission grating. For helium dimers, He2, we obtain explicit expressions for the transition amplitude in the elastic channel. 1 1. Introduction In recent years typical optics experiments have been carried over to atoms, among them diffraction by double slits [1] and by transmission gratings which were produced by nanostructure techniques [2, 3]. The usual wave-theoretical methods of classical optics (Huygens, Kirchhoff) seem to give excellent descriptions of these experiments [4] so that apparently not much more than a good textbook on classical optics seems to be needed. This simple picture, however, has changed. Recently Sch¨ollkopf and Toennies [2, 5, 6] have performed impressive diffraction experiments with helium dimers and helium clusters consisting of up to 26 atoms. A typical diffraction pattern arXiv:quant-ph/9809031v1 11 Sep 1998 is shown in Fig. 1. The helium dimer He2, discovered a few years ago [8, 2], has an extremely low binding energy of −0.11 µeV [7], with no excited states. The binding energy is much smaller than the incident kinetic energy of typical experiments. Its diameter is estimated to be about 6 nm [9]. Present day slit widths are as low as 50 nm and a further reduction is expected.
    [Show full text]
  • Multielectron Effects in Strong Field Processes in Molecules
    Multielectron effects in strong field processes in molecules by Yuqing Xia B.A., University of Science and Technology of China, 2010 M.S., University of Colorado at Boulder, 2013 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Physics 2016 This thesis entitled: Multielectron effects in strong field processes in molecules written by Yuqing Xia has been approved for the Department of Physics Prof. Agnieszka Jaro´n-Becker Prof. Andreas Becker Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. iii Xia, Yuqing (University of Colorado at Boulder) Multielectron effects in strong field processes in molecules Thesis directed by Prof. Agnieszka Jaro´n-Becker Laser technology has experienced a rapid evolution in available intensities, frequencies, and pulse durations over the last three decades. Many new laser induced phenomena in atoms have been discovered, such as multiphoton ionization, above-threshold ionization, high-order harmonic generation etc. For the interaction with atoms, usually only one electron in the outermost shell is assumed to be active (called single-active-electron approximation) while all other electrons are considered to remain frozen in their initial states. Due to the extra degrees of freedom (vibration and rotation) and the more complex structures, the interaction of molecules with intense laser pulses reveals many new features. Recent experiments have indicated that electrons from inner valence orbitals of molecules can have significant contributions to ionization and high harmonic generation.
    [Show full text]
  • Table of Contents (Print)
    PERIODICALS PHYSICAL REVIEW A Postmaster send address changes to: For editorial and subscription correspondence, American Institute of Physics please see inside front cover Suite 1NO1 (ISSN: 1050-2947) 2 Huntington Quadrangle Melville, NY 11747-4502 THIRD SERIES, VOLUME 69, NUMBER 6 CONTENTS JUNE 2004 RAPID COMMUNICATIONS Atomic and molecular collisions and interactions − Observation of interference effects in ejected electrons from 16.0-keV e -SF6 collisions (4 pages) .......... 060701(R) S. Mondal and R. Shanker Photon, electron, atom, and molecule interactions with solids and surfaces Ion-induced low-energy electron diffraction (4 pages) .............................................. 060901(R) T. Bernhard, Z. L. Fang, and H. Winter Atomic and molecular processes in external fields Measurement of 129Xe-Cs binary spin-exchange rate coefficient (4 pages) .............................. 061401(R) Yuan-Yu Jau, Nicholas N. Kuzma, and William Happer Matter waves Self-energy and critical temperature of weakly interacting bosons (4 pages) ............................ 061601(R) Sascha Ledowski, Nils Hasselmann, and Peter Kopietz Quantum optics, physics of lasers, nonlinear optics Scattering of dark-state polaritons in optical lattices and quantum phase gate for photons (4 pages) ......... 061801(R) M. Mašalas and M. Fleischhauer Dynamic optical bistability in resonantly enhanced Raman generation (4 pages) ......................... 061802(R) I. Novikova, A. S. Zibrov, D. F. Phillips, A. André, and R. L. Walsworth Temporal characterization of ultrashort x-ray pulses using x-ray anomalous transmission (4 pages) .......... 061803(R) A. Nazarkin, A. Morak, I. Uschmann, E. Förster, and R. Sauerbrey ARTICLES Fundamental concepts Nonperturbative approach to Casimir interactions in periodic geometries (18 pages) ...................... 062101 Rauno Büscher and Thorsten Emig Correction to the Casimir force due to the anomalous skin effect (12 pages) ...........................
    [Show full text]
  • Theoretical Studies of Van Der Waals Clusters
    Durham E-Theses Theoretical studies of Van der Waals clusters Bryan, Robert How to cite: Bryan, Robert (1997) Theoretical studies of Van der Waals clusters, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/4712/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk Theoretical Studies of Van der Waals Clusters Robert Bryan Ph.D Thesis Chemistry Department University of Durham November 1997 The copyright of this thesis rests with the author. No quotation from it should be published without the written consent of the author and information derived from it should be acknowledged. f I FEB m Abstract of Ph.D thesis "Theoretical Studies of Van der Waals Clusters" Robert Bryan, Durham University, November 1997 The vibrational energy levels of various rare gas trimers, Ar3, Ne3, He3, Ar2Ne and Ne2Ar, have been calculated using a coupled channel approach.
    [Show full text]
  • A Theoretical Study of Atomic Trimers in the Critical Stability Region
    A Theoretical Study of Atomic Trimers in the Critical Stability Region MOSES SALCI Doctoral Thesis in Physics at Stockholm University, Sweden 2006 A Theoretical Study of Atomic Trimers in the Critical Stability Region Moses Salci Thesis for the Degree of Doctor in Philosophy in Physics Department of Physics Stockholm University SE-106 91 Stockholm Sweden Cover: The Borromean rings with wire, are taken from: http://www.popmath.org.uk/sculpmath/pagesm/borings.html c Moses Salci 2006 (pp, 1-56) Universitetsservice US-AB, Stockholm ISBN 91-7155-336-3 pp, 1-56 Abstract When studying the structure formation and fragmentation of complex atomic and nuclear systems it is preferable to start with simple systems where all details can be explored. Some of the knowledge gained from studies of atomic dimers can be generalised to more complex systems. Adding a third atom to an atomic dimer gives a first chance to study how the binding between two atoms is affected by a third. Few-body physics is an intermediate area which helps us to understand some but not all phenomena in many-body physics. Very weakly bound, spatially very extended quantum systems with a wave function reaching far beyond the classical forbidden region and with low angular momentum are characterized as halo systems. These unusual quantum systems, first discovered in nuclear physics may also exist in systems of neutral atoms. Since the first clear theoretical prediction in 1977, of a halo system possessing an Efimov state, manifested in the excited state of the bosonic van der Waals he- 4 lium trimer 2He3, small helium and different spin-polarised halo hydrogen clusters and their corresponding isotopologues have been intensively studied the last three decades.
    [Show full text]
  • Examination of 4He Droplets and Droplets Containing Impurities at Zero Kelvin Using a Density Functional Approach
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2011 Examination of 4He droplets and droplets containing impurities at zero Kelvin using a density functional approach Ellen Brown [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Physical Chemistry Commons Recommended Citation Brown, Ellen, "Examination of 4He droplets and droplets containing impurities at zero Kelvin using a density functional approach. " Master's Thesis, University of Tennessee, 2011. https://trace.tennessee.edu/utk_gradthes/951 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Ellen Brown entitled "Examination of 4He droplets and droplets containing impurities at zero Kelvin using a density functional approach." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Chemistry. Robert J. Hinde, Major Professor We have read this thesis and recommend its acceptance: Robert J. Harrison, Jon P. Camden Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a thesis written by Ellen Cofer Brown entitled ―Examination of 4He droplets and droplets containing impurities at zero Kelvin using a density functional approach.‖ I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Chemistry.
    [Show full text]
  • Interatomic Coulombic Decay Widths of Helium Trimer: Ab Initio Calculations Přemysl Kolorenč and Nicolas Sisourat
    Interatomic Coulombic decay widths of helium trimer: Ab initio calculations Přemysl Kolorenč and Nicolas Sisourat Citation: The Journal of Chemical Physics 143, 224310 (2015); doi: 10.1063/1.4936897 View online: http://dx.doi.org/10.1063/1.4936897 View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/143/22?ver=pdfcov Published by the AIP Publishing Articles you may be interested in Ab initio lifetimes in the interatomic Coulombic decay of neon clusters computed with propagators J. Chem. Phys. 126, 164110 (2007); 10.1063/1.2723117 Calculation of interatomic decay widths of vacancy states delocalized due to inversion symmetry J. Chem. Phys. 125, 094107 (2006); 10.1063/1.2244567 Ab initio investigation of the autoionization process Ar * ( 4 s P 2 3 , P 0 3 ) + Hg → ( Ar – Hg ) + + e − : Potential energy curves and autoionization widths, ionization cross sections, and electron energy spectra J. Chem. Phys. 122, 184309 (2005); 10.1063/1.1891666 The effect of intermolecular interactions on the electric properties of helium and argon. I. Ab initio calculation of the interaction induced polarizability and hyperpolarizability in He 2 and Ar 2 J. Chem. Phys. 111, 10099 (1999); 10.1063/1.480361 An accurate potential energy curve for helium based on ab initio calculations J. Chem. Phys. 107, 914 (1997); 10.1063/1.474444 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 93.99.226.1 On: Wed, 09 Dec 2015 18:14:27 THE
    [Show full text]
  • PUBLICATIONS of KRZYSZTOF SZALEWICZ 1. G. Chalasinski, B. Jeziorski, and K. Szalewicz “On the Convergence Properties of the Ra
    PUBLICATIONS OF KRZYSZTOF SZALEWICZ 1. G. Chalasinski, B. Jeziorski, and K. Szalewicz “On the Convergence Properties of the Rayleigh- Schr¨odinger and Hirschfelder-Silbey Perturbation Expansions for Molecular Interaction Ener- gies”, Int. J. Quantum Chem. 11, 247–257 (1977). 2. G. Chalasinski, B. Jeziorski, J. Andzelm, and K. Szalewicz “On the Multipole Structure of Exchange Dispersion Energy in the Interaction of Two Helium Atoms”, Mol. Phys. 33, 971–977 (1977). 3. B. Jeziorski, K. Szalewicz, and G. Chalasinski “Symmetry Forcing and Convergence Properties of Perturbation Expansions for Molecular Interaction Energies”, Int. J. Quantum Chem. 14, 271–287 (1978). 4. B. Jeziorski, K. Szalewicz, and M. Jaszunski “Pade Approximants and the Convergence Problem in the Perturbation Theory of Intermolecular Interactions”, Chem. Phys. Lett. 61, 391–395 (1979). 5. K. Szalewicz, L. Adamowicz, and A.J. Sadlej “Molecular Electric Polarizabilities. CI and Ex- plicitly Correlated Electric-Field-Variant Functions. Calculation of the Polarizability of H2”, Chem. Phys. Lett. 61, 548–552 (1979). 6. B. Jeziorski and K. Szalewicz “High-Accuracy Compton Profile of Molecular Hydrogen from Explicitly Correlated Gaussian Wave Function”, Phys. Rev. A 19, 2360–2365 (1979). 7. K. Szalewicz and B. Jeziorski “Symmetry-Adapted Double-Perturbation Analysis of Intramolec- ular Correlation Effects in Weak Intermolecular Interactions”, Mol. Phys. 38, 191–208 (1979). 8. G. Chalasinski and K. Szalewicz “Degenerate Symmetry-Adapted Perturbation Theory. Con- + vergence Properties of Perturbation Expansions for Excited States of H2 Ion”, Int. J. Quantum Chem. 18, 1071–1089 (1980). 9. B. Jeziorski, W.A. Schwalm, and K. Szalewicz “Analytic Continuation in Exchange Perturbation Theory”, J. Chem.
    [Show full text]
  • Fritz-Haber-Institut Der Max-Planck-Gesellschaft Berlin
    Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin 19th Meeting of the Fachbeirat Berlin, November 28th – 30th, 2017 Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin 19th Meeting of the Fachbeirat Berlin, November 28th – 30th, 2017 Reports Members of the Fachbeirat 2017 Prof. Dr. Roberto Car Prof. Dr. Hans-Peter Steinrück Princeton University Universität Erlangen-Nürnberg Department of Chemistry Physikalische Chemie II Frick Laboratory, 153 Egerlandstr. 3 Princeton, NJ 08544-1009 91058 Erlangen USA Germany +1 609-258-2534 +49 9131 85-27343 [email protected] [email protected] Prof. Dr. Tony Heinz Prof. Dr. Wataru Ueda Columbia University Kanagawa University Departments of Physics and Electrical Department of Material and Life Chemistry Engineering Faculty of Engineering 500 West 120th St. 3-27-1, Rokkakubashi, Kanagawa-ku New York, NY 10027 Yokohama, 221-8686 USA Japan +1 212 854 6564 +81-45-481-5661 [email protected] [email protected] Prof. Dr. Manfred Kappes Prof. Dr. Evan R. Williams Karlsruhe Institut für Technologie (KIT) University of California, Berkeley Institut für Physikalische Chemie Department of Chemistry Fritz-Haber-Weg 2 B84 Hildebrand Hall 76131 Karlsruhe Berkeley, CA 94720-1460 Germany USA +49 721 608-42094 +1 510-643-7161 [email protected] [email protected] Prof. Dr. Maki Kawai Prof. Dr. Weitao Yang Institute for Molecular Science Duke University 38 Nishigo-Naka, Myodaiji, Department of Chemistry Okazaki, 444-8585 5310 French Family Science Center Japan Durham, NC 27708-0346 +81-564-55-7103 USA [email protected] +1 919 660- 1562 [email protected] Prof.
    [Show full text]
  • Qunatum Halo States in Helium Tetramers
    Qunatum Halo States in Helium Tetramers Petar Stipanović,∗,y Leandra Vranješ Markić,y and Jordi Boronatz Faculty of Science, University of Split, Ruđera Boškovića 33, HR-21000 Split, Croatia, and Departament de Física, Campus Nord B4-B5, Universitat Politècnica de Catalunya, E-08034 Barcelona, Spain E-mail: [email protected] ∗To whom correspondence should be addressed yFaculty of Science, University of Split, Ruđera Boškovića 33, HR-21000 Split, Croatia zDepartament de Física, Campus Nord B4-B5, Universitat Politècnica de Catalunya, E-08034 Barcelona, Spain 1 Abstract Universality of quantum halo states enables comparison of systems from different fields of physics, as demonstrated in two- and three-body clusters. In the present work, we studied weakly-bound helium tetramers in order to test whether some of these four-body realistic systems qualify as halos. Their ground-state binding energies and structural properties were thoroughly estimated using the diffusion Monte Carlo method with pure estimators. Helium tetramer properties proved to be less sensitive on the potential model than previously evaluated trimer properties. We predict the 4 3 4 4 3 existence of the realistic four-body halo He2 He2, while He4 and He3 He are close to the border and thus can be used as prototypes of quasi-halo systems. Our results could be tested by experimental determination of tetramers’ structural properties, using a similar setup to the one developed for the study of helium trimers. Keywords halo states, tetramers, helium clusters, quantum Monte Carlo Introduction Quantum mechanics predicts universal features of weakly bound and spatially extended few- body systems. The Efimov effect1 in the quantum three-body problem is probably one of the most famous.
    [Show full text]