Laboratoire Collisions Agrégats Réactivité Université Toulouse 3 Paul Sabatier CNRS UMR 5589 Rapport D'activité 2009

Total Page:16

File Type:pdf, Size:1020Kb

Laboratoire Collisions Agrégats Réactivité Université Toulouse 3 Paul Sabatier CNRS UMR 5589 Rapport D'activité 2009 IRSAMC - LCAR LABORATOIRE COLLISIONS AGREGATS REACTIVITES UMR 5589 (CNRS-Université Toulouse III) Laboratoire Collisions Agrégats Réactivité Université Toulouse 3 Paul Sabatier CNRS UMR 5589 Rapport d’activité 2009 - 2014 _______________________________________________________________________________________________ Laboratoire CAR - UMR 5589, IRSAMC, Université Paul Sabatier - 118 Route de Narbonne, Bat. 3R1 B4 - 31062 Toulouse Cedex - Téléphone : (33) 05.61.55.60.23 - Télécopie : (33) 05.61.55.83.17 Section des unités de recherche VAGUE A : CAMPAGNE D’EVALUATION 2014 - 2015 UNITE DE RECHERCHE Dossier d’évaluation Nom de l’unité : Laboratoire Collisions Agrégats Réactivité Acronyme : LCAR Nom du directeur pour le contrat en cours : Mme Béatrice CHATEL Nom du directeur pour le contrat à venir : Mme Béatrice CHATEL Type de demande : Renouvellement à l’identique X Restructuration □ Création ex nihilo □ Choix de l’évaluation interdisciplinaire1 de l’unité de recherche : Oui □ Non X 1 L'évaluation interdisciplinaire concerne les unités de recherche dont les activités relèvent au minimum de deux disciplines appartenant à des domaines scientifiques différents (SHS, ST, SVE). 1 Vague A : campagne d’évaluation 2014-2015 Section des unités de recherche Table des matières 1. Présentation de l’unité.................................................................................................................................. 4 Introduction ............................................................................................................................................................ 4 Politique scientifique pour le contrat en cours ....................................................................................................... 4 Insertion dans les stratégies régionales, nationales et internationales .................................................................. 5 Profil d’activité ........................................................................................................................................................ 6 Organisation et vie de l’unité de recherche ............................................................................................................ 7 Structuration et evolution des personnels .......................................................................................................... 7 Administration et tutelles : ................................................................................................................................. 7 Equipements et matériels : ................................................................................................................................. 8 Instance de pilotage de l’unité : .......................................................................................................................... 8 Hygiène et Sécurité/ logistique : ......................................................................................................................... 8 Faits marquants....................................................................................................................................................... 9 2. Réalisations/Results (Part in english) ...................................................................................................... 18 SC Technical staff .................................................................................................................................................. 18 E1 – Cold atoms ..................................................................................................................................................... 20 E2 – Atom interferometry ..................................................................................................................................... 21 E2 bis – Optics for fundamental tests ................................................................................................................... 22 E3 – Femto group .................................................................................................................................................. 23 E4 – Ion-Matter Interaction .................................................................................................................................. 24 E5 – Clusters .......................................................................................................................................................... 25 E6 – Theory ........................................................................................................................................................... 26 3. Implication de l’unité dans la formation par la recherche ............................................................. 28 Ecole doctorale et docteurs au laboratoire....................................................................................................... 28 Implication dans les formations de master, accueil de stagiaires M1-M2 ........................................................ 28 Accueil de stagiaires licences, BTS, DUT, TIPE ................................................................................................... 29 4. Stratégie et perspectives scientifiques pour le futur contrat ........................................................... 29 Auto-évaluation et analyse des activités passées : ............................................................................................... 29 2 Vague A : campagne d’évaluation 2014-2015 Section des unités de recherche Prospective, objectif et évolution à moyen terme ................................................................................................ 31 • La thématique « physique moléculaire » ............................................................................................... 31 • La thématique « Atomes et lasers » ....................................................................................................... 32 • L’équipe Théorie ...................................................................................................................................... 32 Positionnement national et international ............................................................................................................. 33 Choix stratégiques ................................................................................................................................................. 33 3 Vague A : campagne d’évaluation 2014-2015 Section des unités de recherche 1. PRESENTATION DE L’UNITE Période concernée : 1er Janvier 2009-30 Juin 2014 INTRODUCTION Le LCAR a été créé en 1992 sous l’impulsion du CNRS et du ministère de l’Enseignement Supérieur et de la Recherche qui souhaitaient qu’une activité expérimentale en physique atomique, moléculaire et sur les agrégats se développe sur le campus toulousain, en attirant des personnes de la région parisienne et lyonnaise pour renforcer le laboratoire des collisions atomiques de Toulouse. Il a été dirigé par Pierre Benoit-Cattin (1992-1995), Jacques Vigué (1996-2004 ; 2008-2012) et Bertrand Girard (2005-2008). Béatrice Chatel a pris la direction du laboratoire en janvier 2013. Le laboratoire est situé dans le bâtiment 3R1 du campus de l’université Paul Sabatier qui abrite aussi le Laboratoire de Physique Théorique (LPT) et le Laboratoire de Chimie et Physique Quantique (LCPQ). Ces trois laboratoires constituent avec le Laboratoire de Physique et Chimie des Nano-Objets (LPCNO), situé sur le campus de l’INSA, la fédération IRSAMC (Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes). Le LCAR est également partie prenante du labex NEXT qui rassemble, en plus de l’IRSAMC, le CEMES et le LNCMI. Le LCAR est un laboratoire principalement dédié à la physique fondamentale et centré autour de deux axes : l’étude de l’interaction laser-matière et celle de structures et dynamiques moléculaires. L’axe «interaction laser-matière» se focalise sur la manipulation d’ondes de matières et l’étude d’effets fondamentaux dans l’interaction en particulier en champ fort, tandis que l’axe « Structures et dynamiques moléculaires » développe l’étude et la mesure de propriétés de systèmes complexes tels que des molécules, des agrégats, ou des nanoparticules dans leur environnement. La grande majorité des enseignants-chercheurs et chercheurs du LCAR appartient soit à la section 30 du CNU soit à la section 04 du CoNRS. Une chercheuse dépend de la section 13 du CoNRS et un enseignant-chercheur de la section 28 du CNU. Les projets expérimentaux visent à repousser les limites de nos connaissances en physique par le développement de dispositifs expérimentaux originaux. Les projets théoriques, qui s’articulent autour du développement de méthodes numériques et de codes de calcul, utilisent des moyens informatiques conséquents. POLITIQUE SCIENTIFIQUE POUR LE CONTRAT EN COURS Durant la période 2009-2014, les sujets de recherche expérimentale étudiés au LCAR se sont répartis de la façon suivante : • Physique des agrégats : Thermodynamique et collisions, en particulier des agrégats d’eau. • Interaction ion-matière : Interaction de particules ionisées avec des molécules biologiques. • Dynamique femtoseconde : Femtochimie, Contrôle cohérent sur différents systèmes, étude de champ fort. • Atomes froids : Condensats de Bose-Einstein, laser à atomes, optique atomique, chaos. • Interférométrie avec des ondes de matière et avec la lumière. Ces travaux expérimentaux représentent environ 80% des travaux du LCAR, tandis
Recommended publications
  • What Is the Shape of the Helium Trimer? a Comparison with the Neon and Argon Trimers Dario Bressanini* and Gabriele Morosi
    ARTICLE pubs.acs.org/JPCA What Is the Shape of the Helium Trimer? A Comparison with the Neon and Argon Trimers Dario Bressanini* and Gabriele Morosi Dipartimento di Scienze Chimiche e Ambientali, Universita' dell'Insubria, Via Lucini 3, 22100 Como, Italy ABSTRACT: Despite its apparent simplicity and extensive theoretical investiga- tions, the issue of what is the shape of the helium trimer is still debated in the literature. After reviewing previous conflicting interpretations of computational studies, we introduce the angleÀangle distribution function as a tool to discuss in a simple way the shape of any trimer. We compute this function along with many different geometrical distributions using variational and diffusion Monte Carlo methods. We compare them with the corresponding ones for the neon and argon fl trimers. Our analysis shows that while Ne3 and Ar3 uctuate around an 4 equilibrium structure that is an equilateral triangle, He3 shows an extremely broad angleÀangle distribution function, and all kinds of three-atom configura- 4 tions must be taken into account in its description. Classifying He3 as either equilateral or linear or any other particular shape, as was done in the past, is not sensible, because in this case the intuitive notion of equilibrium structure is ill defined. Our results could help the interpretation of future experiments aimed at measuring the geometrical properties of the helium trimer. ’ INTRODUCTION candidate for the Efimov effect, first discussed in nuclear physics. 1 Weakly bound van der Waals noble gases clusters in the last The recent paper of Kolganova et al. provides a nice review of the literature of this field of research.
    [Show full text]
  • Fantasy Versus Reality in Fragment-Based Quantum Chemistry
    The Journal PERSPECTIVE of Chemical Physics scitation.org/journal/jcp Fantasy versus reality in fragment-based quantum chemistry Cite as: J. Chem. Phys. 151, 170901 (2019); doi: 10.1063/1.5126216 Submitted: 31 August 2019 • Accepted: 6 October 2019 • Published Online: 4 November 2019 John M. Herberta) AFFILIATIONS Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA a)[email protected] ABSTRACT Since the introduction of the fragment molecular orbital method 20 years ago, fragment-based approaches have occupied a small but growing niche in quantum chemistry. These methods decompose a large molecular system into subsystems small enough to be amenable to electronic structure calculations, following which the subsystem information is reassembled in order to approximate an otherwise intractable supersys- tem calculation. Fragmentation sidesteps the steep rise (with respect to system size) in the cost of ab initio calculations, replacing it with a distributed cost across numerous computer processors. Such methods are attractive, in part, because they are easily parallelizable and there- fore readily amenable to exascale computing. As such, there has been hope that distributed computing might offer the proverbial “free lunch” in quantum chemistry, with the entrée being high-level calculations on very large systems. While fragment-based quantum chemistry can count many success stories, there also exists a seedy underbelly of rarely acknowledged problems. As these methods begin to mature, it is time to have a serious conversation about what they can and cannot be expected to accomplish in the near future. Both successes and challenges are highlighted in this Perspective.
    [Show full text]
  • Few-Body Approach to Diffraction of Small Helium Clusters by Nanostructures
    Few-body approach to diffraction of small helium clusters by nanostructures1 Gerhard C. Hegerfeldt2 Institut f¨ur Theoretische Physik, Universit¨at G¨ottingen Bunsenstr. 9, 37073 G¨ottingen, Germany and Thorsten K¨ohler3 Max-Planck-Institut f¨ur Str¨omungsforschung Bunsenstr. 10, D-37073 G¨ottingen, Germany Abstract We use few-body methods to investigate the diffraction of weakly bound systems by a transmission grating. For helium dimers, He2, we obtain explicit expressions for the transition amplitude in the elastic channel. 1 1. Introduction In recent years typical optics experiments have been carried over to atoms, among them diffraction by double slits [1] and by transmission gratings which were produced by nanostructure techniques [2, 3]. The usual wave-theoretical methods of classical optics (Huygens, Kirchhoff) seem to give excellent descriptions of these experiments [4] so that apparently not much more than a good textbook on classical optics seems to be needed. This simple picture, however, has changed. Recently Sch¨ollkopf and Toennies [2, 5, 6] have performed impressive diffraction experiments with helium dimers and helium clusters consisting of up to 26 atoms. A typical diffraction pattern arXiv:quant-ph/9809031v1 11 Sep 1998 is shown in Fig. 1. The helium dimer He2, discovered a few years ago [8, 2], has an extremely low binding energy of −0.11 µeV [7], with no excited states. The binding energy is much smaller than the incident kinetic energy of typical experiments. Its diameter is estimated to be about 6 nm [9]. Present day slit widths are as low as 50 nm and a further reduction is expected.
    [Show full text]
  • Multielectron Effects in Strong Field Processes in Molecules
    Multielectron effects in strong field processes in molecules by Yuqing Xia B.A., University of Science and Technology of China, 2010 M.S., University of Colorado at Boulder, 2013 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Physics 2016 This thesis entitled: Multielectron effects in strong field processes in molecules written by Yuqing Xia has been approved for the Department of Physics Prof. Agnieszka Jaro´n-Becker Prof. Andreas Becker Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. iii Xia, Yuqing (University of Colorado at Boulder) Multielectron effects in strong field processes in molecules Thesis directed by Prof. Agnieszka Jaro´n-Becker Laser technology has experienced a rapid evolution in available intensities, frequencies, and pulse durations over the last three decades. Many new laser induced phenomena in atoms have been discovered, such as multiphoton ionization, above-threshold ionization, high-order harmonic generation etc. For the interaction with atoms, usually only one electron in the outermost shell is assumed to be active (called single-active-electron approximation) while all other electrons are considered to remain frozen in their initial states. Due to the extra degrees of freedom (vibration and rotation) and the more complex structures, the interaction of molecules with intense laser pulses reveals many new features. Recent experiments have indicated that electrons from inner valence orbitals of molecules can have significant contributions to ionization and high harmonic generation.
    [Show full text]
  • Table of Contents (Print)
    PERIODICALS PHYSICAL REVIEW A Postmaster send address changes to: For editorial and subscription correspondence, American Institute of Physics please see inside front cover Suite 1NO1 (ISSN: 1050-2947) 2 Huntington Quadrangle Melville, NY 11747-4502 THIRD SERIES, VOLUME 69, NUMBER 6 CONTENTS JUNE 2004 RAPID COMMUNICATIONS Atomic and molecular collisions and interactions − Observation of interference effects in ejected electrons from 16.0-keV e -SF6 collisions (4 pages) .......... 060701(R) S. Mondal and R. Shanker Photon, electron, atom, and molecule interactions with solids and surfaces Ion-induced low-energy electron diffraction (4 pages) .............................................. 060901(R) T. Bernhard, Z. L. Fang, and H. Winter Atomic and molecular processes in external fields Measurement of 129Xe-Cs binary spin-exchange rate coefficient (4 pages) .............................. 061401(R) Yuan-Yu Jau, Nicholas N. Kuzma, and William Happer Matter waves Self-energy and critical temperature of weakly interacting bosons (4 pages) ............................ 061601(R) Sascha Ledowski, Nils Hasselmann, and Peter Kopietz Quantum optics, physics of lasers, nonlinear optics Scattering of dark-state polaritons in optical lattices and quantum phase gate for photons (4 pages) ......... 061801(R) M. Mašalas and M. Fleischhauer Dynamic optical bistability in resonantly enhanced Raman generation (4 pages) ......................... 061802(R) I. Novikova, A. S. Zibrov, D. F. Phillips, A. André, and R. L. Walsworth Temporal characterization of ultrashort x-ray pulses using x-ray anomalous transmission (4 pages) .......... 061803(R) A. Nazarkin, A. Morak, I. Uschmann, E. Förster, and R. Sauerbrey ARTICLES Fundamental concepts Nonperturbative approach to Casimir interactions in periodic geometries (18 pages) ...................... 062101 Rauno Büscher and Thorsten Emig Correction to the Casimir force due to the anomalous skin effect (12 pages) ...........................
    [Show full text]
  • Theoretical Studies of Van Der Waals Clusters
    Durham E-Theses Theoretical studies of Van der Waals clusters Bryan, Robert How to cite: Bryan, Robert (1997) Theoretical studies of Van der Waals clusters, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/4712/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk Theoretical Studies of Van der Waals Clusters Robert Bryan Ph.D Thesis Chemistry Department University of Durham November 1997 The copyright of this thesis rests with the author. No quotation from it should be published without the written consent of the author and information derived from it should be acknowledged. f I FEB m Abstract of Ph.D thesis "Theoretical Studies of Van der Waals Clusters" Robert Bryan, Durham University, November 1997 The vibrational energy levels of various rare gas trimers, Ar3, Ne3, He3, Ar2Ne and Ne2Ar, have been calculated using a coupled channel approach.
    [Show full text]
  • A Theoretical Study of Atomic Trimers in the Critical Stability Region
    A Theoretical Study of Atomic Trimers in the Critical Stability Region MOSES SALCI Doctoral Thesis in Physics at Stockholm University, Sweden 2006 A Theoretical Study of Atomic Trimers in the Critical Stability Region Moses Salci Thesis for the Degree of Doctor in Philosophy in Physics Department of Physics Stockholm University SE-106 91 Stockholm Sweden Cover: The Borromean rings with wire, are taken from: http://www.popmath.org.uk/sculpmath/pagesm/borings.html c Moses Salci 2006 (pp, 1-56) Universitetsservice US-AB, Stockholm ISBN 91-7155-336-3 pp, 1-56 Abstract When studying the structure formation and fragmentation of complex atomic and nuclear systems it is preferable to start with simple systems where all details can be explored. Some of the knowledge gained from studies of atomic dimers can be generalised to more complex systems. Adding a third atom to an atomic dimer gives a first chance to study how the binding between two atoms is affected by a third. Few-body physics is an intermediate area which helps us to understand some but not all phenomena in many-body physics. Very weakly bound, spatially very extended quantum systems with a wave function reaching far beyond the classical forbidden region and with low angular momentum are characterized as halo systems. These unusual quantum systems, first discovered in nuclear physics may also exist in systems of neutral atoms. Since the first clear theoretical prediction in 1977, of a halo system possessing an Efimov state, manifested in the excited state of the bosonic van der Waals he- 4 lium trimer 2He3, small helium and different spin-polarised halo hydrogen clusters and their corresponding isotopologues have been intensively studied the last three decades.
    [Show full text]
  • Examination of 4He Droplets and Droplets Containing Impurities at Zero Kelvin Using a Density Functional Approach
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2011 Examination of 4He droplets and droplets containing impurities at zero Kelvin using a density functional approach Ellen Brown [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Physical Chemistry Commons Recommended Citation Brown, Ellen, "Examination of 4He droplets and droplets containing impurities at zero Kelvin using a density functional approach. " Master's Thesis, University of Tennessee, 2011. https://trace.tennessee.edu/utk_gradthes/951 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Ellen Brown entitled "Examination of 4He droplets and droplets containing impurities at zero Kelvin using a density functional approach." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Chemistry. Robert J. Hinde, Major Professor We have read this thesis and recommend its acceptance: Robert J. Harrison, Jon P. Camden Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a thesis written by Ellen Cofer Brown entitled ―Examination of 4He droplets and droplets containing impurities at zero Kelvin using a density functional approach.‖ I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Chemistry.
    [Show full text]
  • Interatomic Coulombic Decay Widths of Helium Trimer: Ab Initio Calculations Přemysl Kolorenč and Nicolas Sisourat
    Interatomic Coulombic decay widths of helium trimer: Ab initio calculations Přemysl Kolorenč and Nicolas Sisourat Citation: The Journal of Chemical Physics 143, 224310 (2015); doi: 10.1063/1.4936897 View online: http://dx.doi.org/10.1063/1.4936897 View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/143/22?ver=pdfcov Published by the AIP Publishing Articles you may be interested in Ab initio lifetimes in the interatomic Coulombic decay of neon clusters computed with propagators J. Chem. Phys. 126, 164110 (2007); 10.1063/1.2723117 Calculation of interatomic decay widths of vacancy states delocalized due to inversion symmetry J. Chem. Phys. 125, 094107 (2006); 10.1063/1.2244567 Ab initio investigation of the autoionization process Ar * ( 4 s P 2 3 , P 0 3 ) + Hg → ( Ar – Hg ) + + e − : Potential energy curves and autoionization widths, ionization cross sections, and electron energy spectra J. Chem. Phys. 122, 184309 (2005); 10.1063/1.1891666 The effect of intermolecular interactions on the electric properties of helium and argon. I. Ab initio calculation of the interaction induced polarizability and hyperpolarizability in He 2 and Ar 2 J. Chem. Phys. 111, 10099 (1999); 10.1063/1.480361 An accurate potential energy curve for helium based on ab initio calculations J. Chem. Phys. 107, 914 (1997); 10.1063/1.474444 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 93.99.226.1 On: Wed, 09 Dec 2015 18:14:27 THE
    [Show full text]
  • PUBLICATIONS of KRZYSZTOF SZALEWICZ 1. G. Chalasinski, B. Jeziorski, and K. Szalewicz “On the Convergence Properties of the Ra
    PUBLICATIONS OF KRZYSZTOF SZALEWICZ 1. G. Chalasinski, B. Jeziorski, and K. Szalewicz “On the Convergence Properties of the Rayleigh- Schr¨odinger and Hirschfelder-Silbey Perturbation Expansions for Molecular Interaction Ener- gies”, Int. J. Quantum Chem. 11, 247–257 (1977). 2. G. Chalasinski, B. Jeziorski, J. Andzelm, and K. Szalewicz “On the Multipole Structure of Exchange Dispersion Energy in the Interaction of Two Helium Atoms”, Mol. Phys. 33, 971–977 (1977). 3. B. Jeziorski, K. Szalewicz, and G. Chalasinski “Symmetry Forcing and Convergence Properties of Perturbation Expansions for Molecular Interaction Energies”, Int. J. Quantum Chem. 14, 271–287 (1978). 4. B. Jeziorski, K. Szalewicz, and M. Jaszunski “Pade Approximants and the Convergence Problem in the Perturbation Theory of Intermolecular Interactions”, Chem. Phys. Lett. 61, 391–395 (1979). 5. K. Szalewicz, L. Adamowicz, and A.J. Sadlej “Molecular Electric Polarizabilities. CI and Ex- plicitly Correlated Electric-Field-Variant Functions. Calculation of the Polarizability of H2”, Chem. Phys. Lett. 61, 548–552 (1979). 6. B. Jeziorski and K. Szalewicz “High-Accuracy Compton Profile of Molecular Hydrogen from Explicitly Correlated Gaussian Wave Function”, Phys. Rev. A 19, 2360–2365 (1979). 7. K. Szalewicz and B. Jeziorski “Symmetry-Adapted Double-Perturbation Analysis of Intramolec- ular Correlation Effects in Weak Intermolecular Interactions”, Mol. Phys. 38, 191–208 (1979). 8. G. Chalasinski and K. Szalewicz “Degenerate Symmetry-Adapted Perturbation Theory. Con- + vergence Properties of Perturbation Expansions for Excited States of H2 Ion”, Int. J. Quantum Chem. 18, 1071–1089 (1980). 9. B. Jeziorski, W.A. Schwalm, and K. Szalewicz “Analytic Continuation in Exchange Perturbation Theory”, J. Chem.
    [Show full text]
  • Fritz-Haber-Institut Der Max-Planck-Gesellschaft Berlin
    Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin 19th Meeting of the Fachbeirat Berlin, November 28th – 30th, 2017 Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin 19th Meeting of the Fachbeirat Berlin, November 28th – 30th, 2017 Reports Members of the Fachbeirat 2017 Prof. Dr. Roberto Car Prof. Dr. Hans-Peter Steinrück Princeton University Universität Erlangen-Nürnberg Department of Chemistry Physikalische Chemie II Frick Laboratory, 153 Egerlandstr. 3 Princeton, NJ 08544-1009 91058 Erlangen USA Germany +1 609-258-2534 +49 9131 85-27343 [email protected] [email protected] Prof. Dr. Tony Heinz Prof. Dr. Wataru Ueda Columbia University Kanagawa University Departments of Physics and Electrical Department of Material and Life Chemistry Engineering Faculty of Engineering 500 West 120th St. 3-27-1, Rokkakubashi, Kanagawa-ku New York, NY 10027 Yokohama, 221-8686 USA Japan +1 212 854 6564 +81-45-481-5661 [email protected] [email protected] Prof. Dr. Manfred Kappes Prof. Dr. Evan R. Williams Karlsruhe Institut für Technologie (KIT) University of California, Berkeley Institut für Physikalische Chemie Department of Chemistry Fritz-Haber-Weg 2 B84 Hildebrand Hall 76131 Karlsruhe Berkeley, CA 94720-1460 Germany USA +49 721 608-42094 +1 510-643-7161 [email protected] [email protected] Prof. Dr. Maki Kawai Prof. Dr. Weitao Yang Institute for Molecular Science Duke University 38 Nishigo-Naka, Myodaiji, Department of Chemistry Okazaki, 444-8585 5310 French Family Science Center Japan Durham, NC 27708-0346 +81-564-55-7103 USA [email protected] +1 919 660- 1562 [email protected] Prof.
    [Show full text]
  • Qunatum Halo States in Helium Tetramers
    Qunatum Halo States in Helium Tetramers Petar Stipanović,∗,y Leandra Vranješ Markić,y and Jordi Boronatz Faculty of Science, University of Split, Ruđera Boškovića 33, HR-21000 Split, Croatia, and Departament de Física, Campus Nord B4-B5, Universitat Politècnica de Catalunya, E-08034 Barcelona, Spain E-mail: [email protected] ∗To whom correspondence should be addressed yFaculty of Science, University of Split, Ruđera Boškovića 33, HR-21000 Split, Croatia zDepartament de Física, Campus Nord B4-B5, Universitat Politècnica de Catalunya, E-08034 Barcelona, Spain 1 Abstract Universality of quantum halo states enables comparison of systems from different fields of physics, as demonstrated in two- and three-body clusters. In the present work, we studied weakly-bound helium tetramers in order to test whether some of these four-body realistic systems qualify as halos. Their ground-state binding energies and structural properties were thoroughly estimated using the diffusion Monte Carlo method with pure estimators. Helium tetramer properties proved to be less sensitive on the potential model than previously evaluated trimer properties. We predict the 4 3 4 4 3 existence of the realistic four-body halo He2 He2, while He4 and He3 He are close to the border and thus can be used as prototypes of quasi-halo systems. Our results could be tested by experimental determination of tetramers’ structural properties, using a similar setup to the one developed for the study of helium trimers. Keywords halo states, tetramers, helium clusters, quantum Monte Carlo Introduction Quantum mechanics predicts universal features of weakly bound and spatially extended few- body systems. The Efimov effect1 in the quantum three-body problem is probably one of the most famous.
    [Show full text]