Structure of Exoplanets

Total Page:16

File Type:pdf, Size:1020Kb

Structure of Exoplanets Structure of exoplanets David S. Spiegela,1, Jonathan J. Fortneyb, and Christophe Sotinc aSchool of Natural Sciences, Astrophysics Department, Institute for Advanced Study, Princeton, NJ 08540; bDepartment of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064; and cJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 Edited by Adam S. Burrows, Princeton University, Princeton, NJ, and accepted by the Editorial Board December 4, 2013 (received for review July 24, 2013) The hundreds of exoplanets that have been discovered in the entire radius of the planet in which opacities are high enough past two decades offer a new perspective on planetary structure. that heat must be transported via convection; this region is Instead of being the archetypal examples of planets, those of our presumably well-mixed in chemical composition and specific solar system are merely possible outcomes of planetary system entropy. Some gas giants have heavy-element cores at their centers, formation and evolution, and conceivably not even especially although it is not known whether all such planets have cores. common outcomes (although this remains an open question). Gas-giant planets of roughly Jupiter’s mass occupy a special Here, we review the diverse range of interior structures that are region of the mass/radius plane. At low masses, liquid or rocky both known and speculated to exist in exoplanetary systems—from planetary objects have roughly constant density and suffer mostly degenerate objects that are more than 10× as massive as little compression from the overlying material. In such cases, 1=3 Jupiter, to intermediate-mass Neptune-like objects with large cores Rp ∝ Mp , where Rp and Mp are the planet’s radius mass. At high and moderate hydrogen/helium envelopes, to rocky objects with masses, for objects that have had time to cool, electron de- roughly the mass of Earth. generacy pressure becomes significant, and the mass/radius re- −1=3 lation changes such that the radius scales as Rp ∝ MP . Note gas giants | hot Jupiters | super-Earths that the H/He comp. curve in Fig. 1 does not display this be- havior at low masses, because this curve is calculated for highly ow can we, from many light years away, learn about the irradiated objects that are a mere 0.045 a.u. from their Sun-like Hinterior structure of exoplanets? Radial velocity observa- star, which prevents them from reaching their zero-temperature tions provide minimum masses of exoplanets; transit observa- radius in 3 billion years (3 Gyr). For cold spheres of H/He, it has tions provide planet radii, and taken singly, neither is especially long been appreciated that the maximum in the mass/radius re- informative about planet structure. However, when we know lation occurs near 4× Jupiter’s mass (9, 10), with a broad peak at both the mass and the radius of a planet we may learn much just over 1 RJ (where RJ is Jupiter’s radius), extending from ∼1/ more about the interior structure. The Kepler satellite (1, 2) is 10th of Jupiter’s mass to ∼100× Jupiter’s mass. For a planet to be a space-based, transit-detecting mission that, as of early 2013, smaller than the H/He minimum radius requires the presence of has identified ∼100 planets and ∼3,000 planet candidates, of a significant heavy-element component, in the form of a core in which the vast majority are almost certainly real (3, 4). Thanks to the object’s center or high-metallicity material well mixed Kepler and ground-based efforts such as the Hungarian Auto- throughout the envelope (where “metals” is taken to mean ele- mated Telescope (HAT) and Super Wide Angle Search for ments heavier than helium). For a planet to be larger than the Planets (SuperWASP) transit surveys (5, 6), there are now more zero-temperature radius (∼1 RJ) requires it to have a high enough than 200 known planets with measured masses and radii, span- temperature that pressure from ions becomes a significant frac- ning a range of irradiation conditions. tion of that due to electrons. Fig. 1 portrays how planet radii relate to masses and incident Before the discovery of transiting planets, it was assumed that fluxes, among the known planets (including the solar system approximately billion-year-old planets—even ones on close-in Kepler Kepler planets) and the candidates [ objects of interest orbits around their stars (so-called “hot Jupiters,” with orbits (KOI)] (7, 8). Several trends are apparent in the data: planets with the largest radii tend to be near Jupiter’s mass and highly Significance irradiated, and Kepler seems to find low-radius planets at a wide range of orbital separations, including some small planets that are extremely highly irradiated. Planets around other stars, or exoplanets, are now known to In the remainder of this paper, we discuss what is known of the be common in our galaxy. Exoplanets span a much wider range structure of the most massive planets (gas giants), of intermediate- of physical conditions than the planets in our solar system, and mass planets (Neptunes), and of low-mass planets (terrestrial include extremely puffy gas giants to compact rocky planets and ocean planets). We conclude by considering how our that can have densities as high as that of iron. The diversity of knowledge of exoplanet structure might improve over course exoplanets allows us to place the planets of our solar system in of the next decade. a broader perspective, and invites further research in the na- scent field of comparative exoplanetology. Here we review the Gas Giants continuum of detected planets, from the gas giants, which are Jupiter and Saturn are essentially giant spheres of hydrogen and composed mostly of hydrogen, to smaller worlds where water helium (H/He) with smaller contributions from heavier elements may provide more of their mass, to rock-iron worlds in some and complex molecules. Many of the known exoplanets have ways similar to Earth. similar mass and similar radius to our local gas giants, and Author contributions: D.S.S., J.J.F., and C.S. designed research, performed research, con- probably have roughly similar bulk structure. The atmosphere, or tributed new reagents/analytic tools, analyzed data, and wrote the paper. weather layer, of such an object is a thin outer region that is of The authors declare no conflict of interest. roughly the same relative depth as the skin of a grapefruit, and is – This article is a PNAS Direct Submission. A.S.B. is a guest editor invited by the Editorial typically defined as the region above the radiative convective Board. boundary,* which can be at pressures on the order of kilobars 1To whom correspondence should be addressed. E-mail: [email protected]. (kbar) for the most strongly irradiated planets and which occurs – in the vicinity of ∼1 kbar in gas giants subjected to lower irra- *The radiative convective boundary is the region bounding the convective interior of – a planet in which heat transport is dominated by convective eddies. This boundary diation, such as Jupiter and Saturn. Below the radiative con- occurs essentially where the vertical temperature gradient becomes subadiabatic and vective boundary, there is a deep envelope extending almost the therefore stable against convection. 12622–12627 | PNAS | September 2, 2014 | vol. 111 | no. 35 www.pnas.org/cgi/doi/10.1073/pnas.1304206111 Downloaded by guest on September 29, 2021 A 2.5 B 2.5 SPECIAL FEATURE 3e+10 25.00 1e+10 Flux (erg Radius vs. Mass 4.600 Mass (M Radius vs. Flux 3e+09 2 1e+09 2 0.855 KOI 3e+08 Solar System 0.157 Solar System / 1e+08 Jupiter cm Planet Planet 3e+07 0.029 ) ) 1.5 2 1.5 1e+07 / s) 0.005 ) 3e+06 Jupiter Jupiter 1e+06 0.001 R[M] for H/He comp. J 1 J 1 R (R R (R 3Gyr old, 0.045AU from Sun S S 0.5 0.5 R[M] for 100% water comp. UN R[M] for Earth−like comp. N U R[M] for 100% iron comp. V E M E V 0 0 M 3 4 5 6 7 8 9 10 11 12 0.001 0.01 0.1 1 10 10 10 10 10 10 10 10 10 10 10 M (M ) Jupiter F (erg/cm2/s) Fig. 1. Radius vs. mass (A) and radius vs. incident-irradiating flux (B) for the confirmed exoplanets, the Kepler candidate planets (KOI), and the planets of our solar system. The ∼200 confirmed planets in this figure are represented with filled large circles; KOI (B) are represented with small white circles; solar system planets are represented with large pentagrams. For comparison, A shows the radius vs. mass relationship for Earth-like composition, which precisely matches the (mass, radius) values for Venus and Earth (26). Planets span masses from less than Earth’stotensoftimesJupiter’s, radii from less than Earth’stomorethandouble − − Jupiter’s, and incident fluxes from nearly zero—in the case HR 8799b, at ∼70 a.u. (27)—to nearly 1012 erg·cm 2·s 1. The planets with the largest radii tend to be close to Jupiter’s mass and highly irradiated. lasting ∼1 week or less)—would have cooled and shrunk to near essentially impossible to learn whether the extremely inflated their asymptotic radius (11, 12). However, the discovery of transiting planets have cores (although, if they do, the larger the core mass, ASTRONOMY hot Jupiters such as HD 209458b (13), with its &1.3 RJ radius, the greater the additional power that is required to explain their suggested that some planets are a good deal puffier than expected radii).
Recommended publications
  • Planetas Extrasolares
    Local Extrasolar Planets Universidad Andres Bello ESO Vitacura 4 June 2015 Foto: Dante Joyce Minniti Pullen The big picture 1. Increase human resources and networks for national Astronomy 2. Develop new areas of research and do quality science 3. Promote science in Chile Universidad Andres Bello ESO Vitacura 4 June 2015 Dante Minniti The Pioneers Wolfgang Gieren Maria Teresa Ruiz Grzegorz Pietrzynski Dante Minniti School on Extrasolar Planets and Brown Dwarfs Santiago, 2003 Invited Lecturers: Michel Mayor, Scott Tremaine, Gill Knapp, France Allard Universidad Andres Bello ESO Vitacura 4 June 2015 Dante Minniti It is all about time... Telescope time is the most precious... Universidad Andres Bello ESO Vitacura 4 June 2015 Dante Minniti The Pioneers Wolfgang Gieren Maria Teresa Ruiz Grzegorz Pietrzynski Dante Minniti The first exoplanet for us: M. Konacki, G. Torres, D. D. Sasselov, G. Pietrzynski, A. Udalski, S. Jha, M. T. Ruiz, W. Gieren, & D. Minniti, “A Transiting Extrasolar Giant Planet Around the Star OGLE-TR-113'', 2004, ApJ, 609, L37” Universidad Andres Bello ESO Vitacura 4 June 2015 Dante Minniti The Pioneers Paul Butler Debra Fischer Dante Minniti The First Planets from the N2K Consortium Fischer et al., ``A Hot Saturn Planet Orbiting HD 88133, from the N2K Consortium", 2005, The Astrophysical Journal, 620, 481 Sato, et al., ``The N2K Consortium. II. A Transiting Hot Saturn around HD 149026 with a Large Dense Core", 2005, The Astrophysical Journal, 633, 465 Universidad Andres Bello ESO Vitacura 4 June 2015 Dante Minniti The Pioneers
    [Show full text]
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Miniature Exoplanet Radial Velocity Array I: Design, Commissioning, and Early Photometric Results
    Miniature Exoplanet Radial Velocity Array I: design, commissioning, and early photometric results Jonathan J. Swift Steven R. Gibson Michael Bottom Brian Lin John A. Johnson Ming Zhao Jason T. Wright Paul Gardner Nate McCrady Emilio Falco Robert A. Wittenmyer Stephen Criswell Peter Plavchan Chantanelle Nava Reed Riddle Connor Robinson Philip S. Muirhead David H. Sliski Erich Herzig Richard Hedrick Justin Myles Kevin Ivarsen Cullen H. Blake Annie Hjelstrom Jason Eastman Jon de Vera Thomas G. Beatty Andrew Szentgyorgyi Stuart I. Barnes Downloaded From: http://astronomicaltelescopes.spiedigitallibrary.org/ on 05/21/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx Journal of Astronomical Telescopes, Instruments, and Systems 1(2), 027002 (Apr–Jun 2015) Miniature Exoplanet Radial Velocity Array I: design, commissioning, and early photometric results Jonathan J. Swift,a,*,† Michael Bottom,a John A. Johnson,b Jason T. Wright,c Nate McCrady,d Robert A. Wittenmyer,e Peter Plavchan,f Reed Riddle,a Philip S. Muirhead,g Erich Herzig,a Justin Myles,h Cullen H. Blake,i Jason Eastman,b Thomas G. Beatty,c Stuart I. Barnes,j,‡ Steven R. Gibson,k,§ Brian Lin,a Ming Zhao,c Paul Gardner,a Emilio Falco,l Stephen Criswell,l Chantanelle Nava,d Connor Robinson,d David H. Sliski,i Richard Hedrick,m Kevin Ivarsen,m Annie Hjelstrom,n Jon de Vera,n and Andrew Szentgyorgyil aCalifornia Institute of Technology, Departments of Astronomy and Planetary Science, 1200 E. California Boulevard, Pasadena, California 91125, United States bHarvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, United States cThe Pennsylvania State University, Department of Astronomy and Astrophysics, Center for Exoplanets and Habitable Worlds, 525 Davey Laboratory, University Park, Pennsylvania 16802, United States dUniversity of Montana, Department of Physics and Astronomy, 32 Campus Drive, No.
    [Show full text]
  • Report by the ESA–ESO Working Group on Extra-Solar Planets
    Report by the ESA–ESO Working Group on Extra-Solar Planets 4 March 2005 Summary Various techniques are being used to search for extra-solar planetary signatures, including accurate measurement of radial velocity and positional (astrometric) dis- placements, gravitational microlensing, and photometric transits. Planned space experiments promise a considerable increase in the detections and statistical know- ledge arising especially from transit and astrometric measurements over the years 2005–15, with some hundreds of terrestrial-type planets expected from transit mea- surements, and many thousands of Jupiter-mass planets expected from astrometric measurements. Beyond 2015, very ambitious space (Darwin/TPF) and ground (OWL) experiments are targeting direct detection of nearby Earth-mass planets in the habitable zone and the measurement of their spectral characteristics. Beyond these, ‘Life Finder’ (aiming to produce confirmatory evidence of the presence of life) and ‘Earth Imager’ (some massive interferometric array providing resolved images of a distant Earth) arXiv:astro-ph/0506163v1 8 Jun 2005 appear as distant visions. This report, to ESA and ESO, summarises the direction of exo-planet research that can be expected over the next 10 years or so, identifies the roles of the major facilities of the two organisations in the field, and concludes with some recommendations which may assist development of the field. The report has been compiled by the Working Group members and experts (page iii) over the period June–December 2004. Introduction & Background Following an agreement to cooperate on science planning issues, the executives of the European Southern Observatory (ESO) and the European Space Agency (ESA) Science Programme and representatives of their science advisory structures have met to share information and to identify potential synergies within their future projects.
    [Show full text]
  • Binocular Double Star Logbook
    Astronomical League Binocular Double Star Club Logbook 1 Table of Contents Alpha Cassiopeiae 3 14 Canis Minoris Sh 251 (Oph) Psi 1 Piscium* F Hydrae Psi 1 & 2 Draconis* 37 Ceti Iota Cancri* 10 Σ2273 (Dra) Phi Cassiopeiae 27 Hydrae 40 & 41 Draconis* 93 (Rho) & 94 Piscium Tau 1 Hydrae 67 Ophiuchi 17 Chi Ceti 35 & 36 (Zeta) Leonis 39 Draconis 56 Andromedae 4 42 Leonis Minoris Epsilon 1 & 2 Lyrae* (U) 14 Arietis Σ1474 (Hya) Zeta 1 & 2 Lyrae* 59 Andromedae Alpha Ursae Majoris 11 Beta Lyrae* 15 Trianguli Delta Leonis Delta 1 & 2 Lyrae 33 Arietis 83 Leonis Theta Serpentis* 18 19 Tauri Tau Leonis 15 Aquilae 21 & 22 Tauri 5 93 Leonis OΣΣ178 (Aql) Eta Tauri 65 Ursae Majoris 28 Aquilae Phi Tauri 67 Ursae Majoris 12 6 (Alpha) & 8 Vul 62 Tauri 12 Comae Berenices Beta Cygni* Kappa 1 & 2 Tauri 17 Comae Berenices Epsilon Sagittae 19 Theta 1 & 2 Tauri 5 (Kappa) & 6 Draconis 54 Sagittarii 57 Persei 6 32 Camelopardalis* 16 Cygni 88 Tauri Σ1740 (Vir) 57 Aquilae Sigma 1 & 2 Tauri 79 (Zeta) & 80 Ursae Maj* 13 15 Sagittae Tau Tauri 70 Virginis Theta Sagittae 62 Eridani Iota Bootis* O1 (30 & 31) Cyg* 20 Beta Camelopardalis Σ1850 (Boo) 29 Cygni 11 & 12 Camelopardalis 7 Alpha Librae* Alpha 1 & 2 Capricorni* Delta Orionis* Delta Bootis* Beta 1 & 2 Capricorni* 42 & 45 Orionis Mu 1 & 2 Bootis* 14 75 Draconis Theta 2 Orionis* Omega 1 & 2 Scorpii Rho Capricorni Gamma Leporis* Kappa Herculis Omicron Capricorni 21 35 Camelopardalis ?? Nu Scorpii S 752 (Delphinus) 5 Lyncis 8 Nu 1 & 2 Coronae Borealis 48 Cygni Nu Geminorum Rho Ophiuchi 61 Cygni* 20 Geminorum 16 & 17 Draconis* 15 5 (Gamma) & 6 Equulei Zeta Geminorum 36 & 37 Herculis 79 Cygni h 3945 (CMa) Mu 1 & 2 Scorpii Mu Cygni 22 19 Lyncis* Zeta 1 & 2 Scorpii Epsilon Pegasi* Eta Canis Majoris 9 Σ133 (Her) Pi 1 & 2 Pegasi Δ 47 (CMa) 36 Ophiuchi* 33 Pegasi 64 & 65 Geminorum Nu 1 & 2 Draconis* 16 35 Pegasi Knt 4 (Pup) 53 Ophiuchi Delta Cephei* (U) The 28 stars with asterisks are also required for the regular AL Double Star Club.
    [Show full text]
  • Exoplanet Overview
    Exoplanet Properties, System Architectures and Host Stars John Asher Johnson Caltech Department of Astronomy What we knew in 1994 • Planets form in disks – Planets orbit in same direction as stellar spin, and in same direction as other planets. • Giant planets have circular orbits • Giant planets reside near where they formed, beyond the “iceline” • Giant planets have a ~10 MEarth core surrounded by a gaseous envelope What We Expected Rocky planets Gas giants far away in close High-Precision Radial Velocities 95% of known exoplanets have been discovered or confirmed by Doppler measurements Jupiter’s Doppler Signal Orbit Period Planet Mass Meters per second What We Found 4.2 days! 0.45 Jupiter masses Meters per second 51 Pegasi Ensemble Johnson 2009 Mass ecc 1.5 ms^-1 10-3 pixel Johnson, Butler et al. 2006 Low-mass planets Howard, Johnson, Marcy et al. 2009 OGLE-2005-BLG-390b Beaulieu et al. 2008 MP = 5.5 Mearth a = 2.6 AU 28% of apparently single-planet systems Multiplanetturn Systems out to have additional Are planets Common Wright et al. 2009 Hot Jupiters: A Problem and an Opportunity Hot Jupiters The Problem of Forming Hot Jupiters The “Ice Line” in situ formation unlikely Figure courtesy of Transit Demo Josh Winn Inclination: MP rather than MPsini 2 (RP/R*) : Radius Relative brightness Time The HATNet Planet Search Hungarian-made Automated Telescope Doppler measurements needed to confirm transiting planets Johnson, Winn, Cabrera, Carter (2009) WASP-10 Actual WASP-10 RP = 1.06 RJup Precision: 0.5 mmag precision UH 2.2m + OPTIC Mass-Radius Torres, Winn, Holman 2008 Weird interiors Knutson et al.
    [Show full text]
  • Sized Exoplanet Thomas Barclay1,2, Jason F
    A sub-Mercury-sized exoplanet Thomas Barclay1,2, Jason F. Rowe1,3, Jack J. Lissauer1, Daniel Huber1,4, François Fressin5, Steve B. Howell1, Stephen T. Bryson1, William J. Chaplin6, Jean-Michel Désert5, Eric D. Lopez7, Geoffrey W. Marcy8, Fergal Mullally1,3, Darin Ragozzine5,9, Guillermo Torres5, Elisabeth R. Adams5, Eric Agol10, David Barrado11,12, Sarbani Basu13, Timothy R. Bedding14, Lars A. Buchhave15,16, David Charbonneau5, Jessie L. Christiansen1,3, Jørgen Christensen-Dalsgaard17, David Ciardi18, William D. Cochran19, Andrea K. Dupree5, Yvonne Elsworth6, Mark Everett20, Debra A. Fischer13, Eric B. Ford9, Jonathan J. Fortney7, John C. Geary5, Michael R. Haas1, Rasmus Handberg17, Saskia Hekker6,21, Christopher E. Henze1, Elliott Horch22, Andrew W. Howard23, Roger C. Hunter1, Howard Isaacson8, Jon M. Jenkins1,3, Christoffer Karoff17, Steven D. Kawaler24, Hans Kjeldsen17, Todd C. Klaus25, David W. Latham5, Jie Li1,3, Jorge Lillo-Box12, Mikkel N. Lund17, Mia Lundkvist17, Travis S. Metcalfe26, Andrea Miglio6, Robert L. Morris1,3, Elisa V. Quintana1,3, Dennis Stello14, Jeffrey C. Smith1,3, Martin Still1,2, & Susan E. Thompson1,3 1 NASA Ames Research Center, Moffett Field, CA 94035, USA 2 Bay Area Environmental Research Institute, 596 First St West, Sonoma, CA 95476, USA 3 SETI Institute, 189 Bernardo Ave, Mountain View, CA 94043, USA 4 NASA Postdoctoral Program Fellow 5 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 6 School of Physics and Astronomy, University of Birmingham, Edgbaston, B15 2TT, UK 7 Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA 8 Department of Astronomy, UC Berkeley, Berkeley, CA 94720, USA 9 Astronomy Department, University of Florida, 211 Bryant Space Sciences Center, Gainesville, FL 32111, USA 10 Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195, USA 11 Calar Alto Observatory, Centro Astronómico Hispano Alemán, C/ Jesús Durbán Remón, E- 04004 Almería, Spain 12 Depto.
    [Show full text]
  • WASP-80B: a Gas Giant Transiting a Cool Dwarf⋆⋆⋆
    A&A 551, A80 (2013) Astronomy DOI: 10.1051/0004-6361/201220900 & c ESO 2013 Astrophysics WASP-80b: a gas giant transiting a cool dwarf, A. H. M. J. Triaud1,D.R.Anderson2, A. Collier Cameron3,A.P.Doyle2,A.Fumel4, M. Gillon4, C. Hellier2, E. Jehin4, M. Lendl1,C.Lovis1,P.F.L.Maxted2,F.Pepe1, D. Pollacco5,D.Queloz1, D. Ségransan1,B.Smalley2, A. M. S. Smith2,6,S.Udry1,R.G.West7, and P. J. Wheatley5 1 Observatoire Astronomique de l’Université de Genève, Chemin des Maillettes 51, 1290 Sauverny, Switzerland e-mail: [email protected] 2 Astrophysics Group, Keele University, Staffordshire, ST55BG, UK 3 SUPA, School of Physics & Astronomy, University of St. Andrews, North Haugh, KY16 9SS, St. Andrews, Fife, Scotland, UK 4 Institut d’Astrophysique et de Géophysique, Université de Liège, Allée du 6 Août, 17, Bat. B5C, Liège 1, Belgium 5 Department of Physics, University of Warwick, Coventry CV4 7AL, UK 6 N. Copernicus Astronomical Centre, Polish Academy of Sciences, Bartycka 18, 00-716 Warsaw, Poland 7 Department of Physics and Astronomy, University of Leicester, Leicester, LE17RH, UK Received 13 December 2012 / Accepted 9 January 2013 ABSTRACT We report the discovery of a planet transiting the star WASP-80 (1SWASP J201240.26-020838.2; 2MASS J20124017-0208391; TYC 5165-481-1; BPM 80815; V = 11.9, K = 8.4). Our analysis shows this is a 0.55 ± 0.04 Mjup,0.95 ± 0.03 Rjup gas giant on a circular 3.07 day orbit around a star with a spectral type between K7V and M0V.
    [Show full text]
  • On the Atmospheres of the Smallest Gas Exoplanets
    On the Atmospheres of the Smallest Gas Exoplanets by Erin M. May A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Astronomoy and Astrophysics) in The University of Michigan 2019 Doctoral Committee: Assistant Professor Emily Rasucher, Chair Professor Fred Adams Professor Michael Meyer Professor John Monnier Erin M. May [email protected] ORCID iD: 0000-0002-2739-1465 c Erin M. May 2019 For my cat. May she learn to love me at least as much as I love this dissertation. ii ACKNOWLEDGEMENTS \I don't have emotions. And sometimes that makes me very sad." { Bender, the Robot I've never been much for emotions, but if it's a required component of this dissertation... First, thank you to Alex. I may have been a pain to deal with during parts of this process, but we both made it through. Thank you to Li'l B who taught me that not everything that's perfect is perfect for you and that love isn't unconditional. Especially from a cat. Thank you to the humans in the department who were there for me along the way. In particular, Emily, who was the advisor I needed but didn't deserve. To Renee for confirming that there's no such thing as too many macarons on a Friday, and for the constant commiserating throughout the past year. And because this human requested this acknowledgement, to Adi for saving me that one time from that one thing. Thank you to the regular GB@3 crew, even those who showed up late or barely at all.
    [Show full text]
  • The LAEX and NASA Portals for Corot Public Data ? E
    Astronomy & Astrophysics manuscript no. 12386˙astro-ph c ESO 2021 September 1, 2021 The LAEX and NASA Portals for CoRoT Public Data ? E. Solano1;11 ??, K. von Braun2;9, A. Velasco1;11, D. R. Ciardi2;9, R. Gutierrez´ 1;11, D. L. McElroy2;9, M. Lopez´ 1;11, M. Abajian2;9, M. Garc´ıa3;11, B. Ali4;9, L. M. Sarro5;11, G. B. Berriman2;9, G. Bryden6, B. Chan2;10, J. Good2;9, S. R. Kane2;9, A. C. Laity2;9, C. Lau2;10, A. N. Payne7, P. Plavchan2;9, S. Ramirez2;9, M. Schmitz4;9, J. R. Stauffer8;9, P. L. Wyatt2;9, and A. Zhang2;4;9 1 Centro de Astrobiolog´ıa, CSIC-INTA. LAEX. P.O. Box 78. 28691 Villanueva de la Canada,˜ Madrid, Spain 2 NASA Exoplanet Science Institute 3 Area´ de Lenguajes y Sistemas Informaticos.´ Universidad Pablo Olavide. Ctra. de Utrera, km. 1, 41013 Sevilla, Spain 4 Infrared Processing and Analysis Center 5 Dpt. de Inteligencia Artificial, UNED, Juan del Rosal, 16, 28040 Madrid, Spain 6 Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109, USA 7 Australian National University, Mount Stromlo Observatory, Canberra, ACT, Australia 8 Spitzer Science Center 9 California Institute of Technology, 770 South Wilson Ave, Pasadena, CA 91125, USA 10 Raytheon Information Systems, Pasadena, CA, USA 11 Spanish Virtual Observatory Thematic Network Received ; accepted ABSTRACT Aims. We describe here the main functionalities of the LAEX (Laboratorio de Astrof´ısica Estelar y Exoplanetas /Laboratory for Stellar Astrophysics and Exoplanets) and NASA portals for CoRoT Public Data. The CoRoT archive at LAEX was opened to the community in January 2009 and is managed in the framework of the Spanish Virtual Observatory.
    [Show full text]
  • Noao Annual Report Fy07
    AURA/NOAO ANNUAL REPORT FY 2007 Submitted to the National Science Foundation September 30, 2007 Revised as Final and Submitted January 30, 2008 Emission nebula NGC6334 (Cat’s Paw Nebula): star-forming region in the constellation Scorpius. This 2007 image was taken using the Mosaic-2 imager on the Blanco 4-meter telescope at Cerro Tololo Inter- American Observatory. Intervening dust in the plane of the Milky Way galaxy reddens the colors of the nebula. Image credit: T.A. Rector/University of Alaska Anchorage, T. Abbott and NOAO/AURA/NSF NATIONAL OPTICAL ASTRONOMY OBSERVATORY NOAO ANNUAL REPORT FY 2007 Submitted to the National Science Foundation September 30, 2007 Revised as Final and Submitted January 30, 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................................. 1 1 SCIENTIFIC ACTIVITIES AND FINDINGS ..................................................................................... 2 1.1 NOAO Gemini Science Center .............................................................................. 2 GNIRS Infrared Spectroscopy and the Origins of the Peculiar Hydrogen-Deficient Stars...................... 2 Supermassive Black Hole Growth and Chemical Enrichment in the Early Universe.............................. 4 1.2 Cerro Tololo Inter-American Observatory (CTIO)................................................ 5 The Nearest Stars.......................................................................................................................................
    [Show full text]
  • Transit Photometry of the Core# Dominated Planet HD 149026B
    Transit Photometry of the Core# dominated Planet HD 149026b The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Charbonneau, David, Joshua N. Winn, David W. Latham, Gaspar Bakos, Emilio E. Falco, Matthew J. Holman, Robert W. Noyes, et al. 2006. “Transit Photometry of the Core#dominated Planet HD 149026b.” The Astrophysical Journal 636 (1): 445–52. https:// doi.org/10.1086/497959. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41397427 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA The Astrophysical Journal, 636:445–452, 2006 January 1 A # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. TRANSIT PHOTOMETRY OF THE CORE-DOMINATED PLANET HD 149026b David Charbonneau, Joshua N. Winn,1 David W. Latham, Ga´spa´r Bakos,1 Emilio E. Falco, Matthew J. Holman, Robert W. Noyes, and Bala´zs Csa´k2 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138; [email protected] Gilbert A. Esquerdo and Mark E. Everett Planetary Science Institute, 1700 East Fort Lowell, Tucson, AZ 85719 and Francis T. O’Donovan California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 Received 2005 August 1; accepted 2005 September 8 ABSTRACT We report g, V, and r photometric time series of HD 149026 spanning predicted times of transit of the Saturn-mass planetary companion, which was recently discovered by Sato and collaborators.
    [Show full text]