“Condylarths” (Panameriungulata)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Foraminifera of the Eocene of Belgium
FORAMINIFERA OF THE EOCENE OF BELGIUM CHAPTER I STRATI GRAPHIC REVIEW INTRODUCTION In 1833 L\ELL ubdivided the Tertiary period into four groups : Eocene, Miocene, Older Pliocene and Newer Pliocene. He based his subdivisions on the percentages of living species of molluscs of the variou known fossil faunas of northwestern Europe. For these percentages he adopted the countings given by DESHAYES (1830) . The percentage of the Eocene ·was mainly based on the rich faunas of the Paris basin. Since LrnLL's proposal, the Eocene suffered the separation of the Oligocene (BEYRICB, 1854) and of the Paleocene ( CHDIPER, 1874), but it still represents the central and main part of the Paleogene (NAmrAK:\', 1866) or Nummulitique (REl'iEYIER, 1873; HAUG, 1911). Paleogene trata appear at the surface in a large part of Belgium. They belong to a m uch larger area of form er deposition which included southern England (London and Hamp shire ba ins) , northern France (Paris basin) and the southern Netherlands. The relationship between this great anglo-franco-belgian basin and the depositional areas in the northern .:\etherlands, northern Germany, and Denmark is not quite clear. According to stratigraphic maps, published by PA NNEKOEK (1956), the Belgian basin was separated from the 'orthern German-Dani h basin by a SE-1'vV striking swell. During at least part of the Eocene there must have been orne connection between the two basins. Since L\ELL' time the Eocen e has been subdivided into a number of stages. These stage , such as those e tablished by Dm roNT, were originally merely names for rock-units. -
Mammal and Plant Localities of the Fort Union, Willwood, and Iktman Formations, Southern Bighorn Basin* Wyoming
Distribution and Stratigraphip Correlation of Upper:UB_ • Ju Paleocene and Lower Eocene Fossil Mammal and Plant Localities of the Fort Union, Willwood, and Iktman Formations, Southern Bighorn Basin* Wyoming U,S. GEOLOGICAL SURVEY PROFESS IONAL PAPER 1540 Cover. A member of the American Museum of Natural History 1896 expedition enter ing the badlands of the Willwood Formation on Dorsey Creek, Wyoming, near what is now U.S. Geological Survey fossil vertebrate locality D1691 (Wardel Reservoir quadran gle). View to the southwest. Photograph by Walter Granger, courtesy of the Department of Library Services, American Museum of Natural History, New York, negative no. 35957. DISTRIBUTION AND STRATIGRAPHIC CORRELATION OF UPPER PALEOCENE AND LOWER EOCENE FOSSIL MAMMAL AND PLANT LOCALITIES OF THE FORT UNION, WILLWOOD, AND TATMAN FORMATIONS, SOUTHERN BIGHORN BASIN, WYOMING Upper part of the Will wood Formation on East Ridge, Middle Fork of Fifteenmile Creek, southern Bighorn Basin, Wyoming. The Kirwin intrusive complex of the Absaroka Range is in the background. View to the west. Distribution and Stratigraphic Correlation of Upper Paleocene and Lower Eocene Fossil Mammal and Plant Localities of the Fort Union, Willwood, and Tatman Formations, Southern Bighorn Basin, Wyoming By Thomas M. Down, Kenneth D. Rose, Elwyn L. Simons, and Scott L. Wing U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1540 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1994 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Robert M. Hirsch, Acting Director For sale by U.S. Geological Survey, Map Distribution Box 25286, MS 306, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. -
Attachment J Assessment of Existing Paleontologic Data Along with Field Survey Results for the Jonah Field
Attachment J Assessment of Existing Paleontologic Data Along with Field Survey Results for the Jonah Field June 12, 2007 ABSTRACT This is compilation of a technical analysis of existing paleontological data and a limited, selective paleontological field survey of the geologic bedrock formations that will be impacted on Federal lands by construction associated with energy development in the Jonah Field, Sublette County, Wyoming. The field survey was done on approximately 20% of the field, primarily where good bedrock was exposed or where there were existing, debris piles from recent construction. Some potentially rich areas were inaccessible due to biological restrictions. Heavily vegetated areas were not examined. All locality data are compiled in the separate confidential appendix D. Uinta Paleontological Associates Inc. was contracted to do this work through EnCana Oil & Gas Inc. In addition BP and Ultra Resources are partners in this project as they also have holdings in the Jonah Field. For this project, we reviewed a variety of geologic maps for the area (approximately 47 sections); none of maps have a scale better than 1:100,000. The Wyoming 1:500,000 geology map (Love and Christiansen, 1985) reveals two Eocene geologic formations with four members mapped within or near the Jonah Field (Wasatch – Alkali Creek and Main Body; Green River – Laney and Wilkins Peak members). In addition, Winterfeld’s 1997 paleontology report for the proposed Jonah Field II Project was reviewed carefully. After considerable review of the literature and museum data, it became obvious that the portion of the mapped Alkali Creek Member in the Jonah Field is probably misinterpreted. -
Rapid and Early Post-Flood Mammalian Diversification Videncede in the Green River Formation
The Proceedings of the International Conference on Creationism Volume 6 Print Reference: Pages 449-457 Article 36 2008 Rapid and Early Post-Flood Mammalian Diversification videncedE in the Green River Formation John H. Whitmore Cedarville University Kurt P. Wise Southern Baptist Theological Seminary Follow this and additional works at: https://digitalcommons.cedarville.edu/icc_proceedings DigitalCommons@Cedarville provides a publication platform for fully open access journals, which means that all articles are available on the Internet to all users immediately upon publication. However, the opinions and sentiments expressed by the authors of articles published in our journals do not necessarily indicate the endorsement or reflect the views of DigitalCommons@Cedarville, the Centennial Library, or Cedarville University and its employees. The authors are solely responsible for the content of their work. Please address questions to [email protected]. Browse the contents of this volume of The Proceedings of the International Conference on Creationism. Recommended Citation Whitmore, John H. and Wise, Kurt P. (2008) "Rapid and Early Post-Flood Mammalian Diversification Evidenced in the Green River Formation," The Proceedings of the International Conference on Creationism: Vol. 6 , Article 36. Available at: https://digitalcommons.cedarville.edu/icc_proceedings/vol6/iss1/36 In A. A. Snelling (Ed.) (2008). Proceedings of the Sixth International Conference on Creationism (pp. 449–457). Pittsburgh, PA: Creation Science Fellowship and Dallas, TX: Institute for Creation Research. Rapid and Early Post-Flood Mammalian Diversification Evidenced in the Green River Formation John H. Whitmore, Ph.D., Cedarville University, 251 N. Main Street, Cedarville, OH 45314 Kurt P. Wise, Ph.D., Southern Baptist Theological Seminary, 2825 Lexington Road. -
Paleontological Discoveries in the Chorrillo Formation (Upper Campanian-Lower Maastrichtian, Upper Cretaceous), Santa Cruz Province, Patagonia, Argentina
Rev. Mus. Argentino Cienc. Nat., n.s. 21(2): 217-293, 2019 ISSN 1514-5158 (impresa) ISSN 1853-0400 (en línea) Paleontological discoveries in the Chorrillo Formation (upper Campanian-lower Maastrichtian, Upper Cretaceous), Santa Cruz Province, Patagonia, Argentina Fernando. E. NOVAS1,2, Federico. L. AGNOLIN1,2,3, Sebastián ROZADILLA1,2, Alexis M. ARANCIAGA-ROLANDO1,2, Federico BRISSON-EGLI1,2, Matias J. MOTTA1,2, Mauricio CERRONI1,2, Martín D. EZCURRA2,5, Agustín G. MARTINELLI2,5, Julia S. D´ANGELO1,2, Gerardo ALVAREZ-HERRERA1, Adriel R. GENTIL1,2, Sergio BOGAN3, Nicolás R. CHIMENTO1,2, Jordi A. GARCÍA-MARSÀ1,2, Gastón LO COCO1,2, Sergio E. MIQUEL2,4, Fátima F. BRITO4, Ezequiel I. VERA2,6, 7, Valeria S. PEREZ LOINAZE2,6 , Mariela S. FERNÁNDEZ8 & Leonardo SALGADO2,9 1 Laboratorio de Anatomía Comparada y Evolución de los Vertebrados. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina - fernovas@yahoo. com.ar. 2 Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina. 3 Fundación de Historia Natural “Felix de Azara”, Universidad Maimonides, Hidalgo 775, C1405BDB Buenos Aires, Argentina. 4 Laboratorio de Malacología terrestre. División Invertebrados Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina. 5 Sección Paleontología de Vertebrados. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina. 6 División Paleobotánica. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina. 7 Área de Paleontología. Departamento de Geología, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria (C1428EGA) Buenos Aires, Argentina. 8 Instituto de Investigaciones en Biodiversidad y Medioambiente (CONICET-INIBIOMA), Quintral 1250, 8400 San Carlos de Bariloche, Río Negro, Argentina. -
Condylarthra, Mammalia) by ROBERT M
ovNitates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N. Y. I0024 NUMBER 246I APRIL 30, 1971 Deciduous Dentition of the Early Tertiary Phenacodontidae (Condylarthra, Mammalia) BY ROBERT M. WEST1 INTRODUCTION Isolated deciduous teeth are frustrating and often confusing finds for mammalian paleontologists. Accurate identification and interpretation of these teeth depend upon positive association with permanent teeth. Unfortunately deciduous teeth commonly are found separately, because they were either shed by the living animal in the course of maturation or they were lost after the death of a subadult individual. Additionally, rapid wear often removes most of their distinguishing features early in life, so many are virtually featureless, whereas permanent teeth, at a similar age, retain much of the surface topography. In the process of a study of the Paleocene to Eocene condylarth family Phenacodontidae, I encountered a large number of deciduous teeth both isolated and in jaws and frequently associated with at least one permanent tooth. The present paper describes and illustrates the decidu- ous premolar dentitions, as far as known, of three common genera of phenacodont condylarths (Tetraclaenodon, Phenacodus, and Ectocion). The presence of some deciduous teeth in place in jaws allows examina- tion of their relationships with one another and with the permanent teeth. It is also possible, under favorable circumstances, to postulate the sequence of replacement of deciduous teeth and eruption of the perma- nent teeth. 1Assistant Professor of Biology, Adelphi University, Garden City, New York. 2 AMERICAN MUSEUM NOVITATES NO. 2461 All measurements are given in millimeters, and the important features of the deciduous teeth are shown in the outline drawing (fig. -
Early Eocene Fossils Suggest That the Mammalian Order Perissodactyla Originated in India
ARTICLE Received 7 Jul 2014 | Accepted 15 Oct 2014 | Published 20 Nov 2014 DOI: 10.1038/ncomms6570 Early Eocene fossils suggest that the mammalian order Perissodactyla originated in India Kenneth D. Rose1, Luke T. Holbrook2, Rajendra S. Rana3, Kishor Kumar4, Katrina E. Jones1, Heather E. Ahrens1, Pieter Missiaen5, Ashok Sahni6 & Thierry Smith7 Cambaytheres (Cambaytherium, Nakusia and Kalitherium) are recently discovered early Eocene placental mammals from the Indo–Pakistan region. They have been assigned to either Perissodactyla (the clade including horses, tapirs and rhinos, which is a member of the superorder Laurasiatheria) or Anthracobunidae, an obscure family that has been variously considered artiodactyls or perissodactyls, but most recently placed at the base of Proboscidea or of Tethytheria (Proboscidea þ Sirenia, superorder Afrotheria). Here we report new dental, cranial and postcranial fossils of Cambaytherium, from the Cambay Shale Formation, Gujarat, India (B54.5 Myr). These fossils demonstrate that cambaytheres occupy a pivotal position as the sister taxon of Perissodactyla, thereby providing insight on the phylogenetic and biogeographic origin of Perissodactyla. The presence of the sister group of perissodactyls in western India near or before the time of collision suggests that Perissodactyla may have originated on the Indian Plate during its final drift toward Asia. 1 Center for Functional Anatomy & Evolution, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Baltimore, Maryland 21205, USA. 2 Department of Biological Sciences, Rowan University, Glassboro, New Jersey 08028, USA. 3 Department of Geology, H.N.B. Garhwal University, Srinagar 246175, Uttarakhand, India. 4 Wadia Institute of Himalayan Geology, Dehradun 248001, Uttarakhand, India. 5 Research Unit Palaeontology, Ghent University, Krijgslaan 281-S8, B-9000 Ghent, Belgium. -
To Link and Cite This Article: Doi
Submitted: October 1st, 2019 – Accepted: June 8th, 2020 – Published online: June 11th, 2020 To link and cite this article: doi: https://doi.org/10.5710/AMGH.08.06.2020.3306 1 COTYLAR FOSSA, ITS INTERPRETATION AND FUNCTIONALITY. 2 THE CASE FROM SOUTH AMERICAN NATIVE UNGULATES 3 4 MALENA LORENTE1,2, 3 5 1 División Paleontología de Vertebrados, Museo de La Plata. Paseo del Bosque s/n B1900FWA, La 6 Plata, Buenos Aires, Argentina; [email protected]; 2 CONICET; 3 Facultad de Ciencias 7 Naturales y Museo 8 9 Number of pages: 21, 7 figures 10 Proposed header: LORENTE, COTYLAR FOSSA 1 11 12 Abstract. The cotylar fossa is a complex anatomical character in the astragalar medial malleolar 13 facet. It represents a dynamic relationship between the astragalus and the tibia in the upper tarsal 14 joint. The astragalus must accommodate the medial tibial malleolus when the tibia is in an extreme 15 flexion. It is one of the three morphological synapomorphies considered for Afrotheria, although it 16 is also a recurrent trait among different groups of mammals. Here, fossil South American Native 17 Ungulates and extant mammals were surveyed to reevaluate how much this character is spread and 18 how variable it is. Beyond afrotherians, it is observed that it also appears in primates, macropodid 19 marsupials, laurasiatherian archaic ungulates, perissodactyls, pantodonts, and dinoceratans; it is also 20 in some but not all of the extinct endemic ungulates from South America. No function has been 21 suggested before for the presence of a cotylar fossa. The cotylar fossa could be an adaptation to a 22 passive, rest related posture. -
Chriacus: New Insight Into the Neurosensory System and Evolution of Early Placental Mammals
Edinburgh Research Explorer Virtual endocranial and inner ear endocasts of the Paleocene ‘condylarth’ Chriacus: New insight into the neurosensory system and evolution of early placental mammals Citation for published version: Bertrand, O, Shelley, SL, Wible, JR, Williamson, TE, Holbrook, LT, Chester, SGB, Butler, I & Brusatte, S 2019, 'Virtual endocranial and inner ear endocasts of the Paleocene ‘condylarth’ Chriacus: New insight into the neurosensory system and evolution of early placental mammals', Journal of Anatomy, vol. 236, no. 1, pp. 21-49. https://doi.org/10.1111/joa.13084 Digital Object Identifier (DOI): 10.1111/joa.13084 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Journal of Anatomy General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 06. Oct. 2021 1 Virtual endocranial and inner ear endocasts of the Paleocene ‘condylarth’ 2 Chriacus: New insight into the neurosensory system and evolution of early 3 placental mammals 4 Short running page heading: Virtual endocranial and inner ear endocasts of Chriacus 5 6 Ornella C. -
CHAPTER 4Demise of the Dinosaurs Why Did the Dinosaurs Vanish? One
CHAPTER 4Demise of the Dinosaurs Why did the dinosaurs vanish? One popular account is a simplistic story of a colliding object from space as the only cause of extinction. The true story is much more complicated and much more interesting. This Is the End Dinosaurs ruled the earth at the end of the Cretaceous Period, about 66 Ma. They did so for more than 120 million years. During all this time, they were preeminently successful around the world. In North America, the Late Cretaceous dinosaurs included the most famous dinosaur, Tyrannosaurus rex, as well as the three- horned Triceratops and other horned dinosaurs, turtle like armored ankylosaurs, and lots of different kinds of duck-billed dinosaurs— but very few long- necked sauropods, which we saw in the pre- vious chapter. No sauropods are found in the Upper Cretaceous beds of Montana or Wyoming, and only the titanosaur Alamosaurus is known from the Late Cretaceous of the San Juan Basin in New Mexico. In South America, there are numerous fossil assemblages of latest Cretaceous age, especially in Patagonia. These fossils are very similar to those of other Gondwana landmasses, such as India and Madagascar, but very different from those in North America. In contrast to North America and Asia, there were no horned dinosaurs such as Triceratops in South America. Instead of the rare sauropods that we see in North America, there were abundant titanosaurs in South America. Some, such as Puertasaurus and Laplatasaurus, were not much smaller that the gigantic Argentinosaurus from the middle part of the Cretaceous (about 93 Ma). -
Mxieiianjluseum
MXieiian Jluseum PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N. Y. I0024 NUMBER 2404 MARCH II, -I970 Additional Middle Eocene (Bridgerian) Mammals from Tabernacle Butte, Sublette County, Wyoming BY ROBERT M. WEST1 AND EDWARD G. ATKINS2 INTRODUCTION Fossil vertebrates from the upper part of the Bridger Formation (Mid- dle Eocene) at Tabernacle Butte in the northeastern part of the Green River Basin have been collected and studied primarily by personnel of the University of Wyoming and of the American Museum of Natural History. P. 0. McGrew and others (1959) described the stratigraphy and the fauna known at that time. Supplementary reports have since been published by Simpson (1959a, 1959b), M. C. McKenna and Simp- son (1959), and McKenna, P. Robinson, and D. W. Taylor (1962). The present paper adds data on mammalian material collected by the Ameri- can Museum of Natural History parties in 1959 and 1967. During the senior author's study of the phenacodont condylarths in the American Museum of Natural History collection, McKenna pointed out a specimen recovered from the "Hyopsodus Hill" locality (Locality 5 of McGrew and others) in 1967. Examination of this specimen confirmed its tentative identification as Phenacodus, a genus not previously known to have survived later than the time of the Lost Cabin fauna (early 1 Department of Geological and Geophysical Sciences, Princeton University, New Jersey; present address: Department of Biology, Adelphi University, Garden City, New York. 2 Department of Biological Sciences, Columbia University, New York. 2 AMERICAN MUSEUM NOVITATES NO. 2404 Eocene) in North America. -
Extant Taxa Stem Frogs Stem Turtles Stem Lepidosaurs Stem Squamates
Stem Taxa - Peters 2016 851 taxa, 228 characters 100 Eldeceeon 1990.7.1 91 Eldeceeon holotype 100 Romeriscus Ichthyostega Gephyrostegus watsoni Pederpes 85 Eryops 67 Solenodonsaurus 87 Proterogyrinus 100 Chroniosaurus Eoherpeton 94 72 Chroniosaurus PIN3585/124 98 Seymouria Chroniosuchus Kotlassia Stem 58 94 Westlothiana Utegenia Casineria 84 81 Amphibamus Brouffia 95 72 Cacops 93 77 Coelostegus Paleothyris 98 Doleserpeton 84 91 78 100 Gerobatrachus Hylonomus Rana Archosauromorphs Protorothyris MCZ1532 95 66 98 Adelospondylus 85 Protorothyris CM 8617 89 Brachydectes Protorothyris MCZ 2149 Eocaecilia 87 86 Microbrachis Vaughnictis Pantylus 80 89 75 94 Anthracodromeus Elliotsmithia 90 Utaherpeton 51 Apsisaurus Kirktonecta 95 90 86 Aerosaurus 96 Tuditanus 67 90 Varanops Stem Frogs 59 94 Eoserpeton Varanodon Diplocaulus Varanosaurus FMNH PR 1760 100 Sauropleura 62 84 Varanosaurus BSPHM 1901 XV20 88 Ptyonius 89 Archaeothyris 70 Scincosaurus Euryodus primus Ophiacodon 74 82 84 Micraroter Haptodus 91 Rhynchonkos 97 82 Secodontosaurus Batropetes 85 76 100 Dimetrodon 97 Sphenacodon Silvanerpeton Ianthodon 85 Edaphosaurus Gephyrostegeus bohemicus 99 Stem100 Reptiles 80 82 Ianthasaurus Glaucosaurus 94 Cutleria 100 Urumqia Bruktererpeton Stenocybus Stem Mammals 63 97 Thuringothyris MNG 7729 62 IVPP V18117 82 Thuringothyris MNG 10183 87 62 71 Kenyasaurus 82 Galechirus 52 Suminia Saurorictus Venjukovia 99 99 97 83 70 Cephalerpeton Opisthodontosaurus 94 Eodicynodon 80 98 Reiszorhinus 100 Dicynodon 75 Concordia KUVP 8702a Hipposaurus 100 98 96 Concordia