Physical Fieldwork- Swanage Much Less on the Updrift Side and the Gradient on the Beach Being Steeper Between the Groynes

Total Page:16

File Type:pdf, Size:1020Kb

Physical Fieldwork- Swanage Much Less on the Updrift Side and the Gradient on the Beach Being Steeper Between the Groynes Fieldwork enquiry question: How effective are the groynes at Risk assessment Methods carried out Swanage in managing longshore drift? Risk of powerful waves, Students told not to go too close to Aim: To investigate the effect of the groynes on Hypothesis and aims: Tides creating risk of drowning. the shore and to stay out of the sea. 1. Beach profile the sorting of beach material (groynes should Consultation of tide timetables. cause an increase in attrition). It is predicted that the groynes at Swanage will be effective in preventing longshore drift. Therefore aim of the investigation is to Danger of cliff collapse and Avoid walking near the foot of cliff Aim: To investigate the effects of the discover how effective the groynes are at preventing the process of Cliff falling rocks. encase of cliff collapse. Students 2. Exposed management technique of groynes on the longshore drift. collapse warned of this and kept well away height of movement of sediment along the coastline. from the back of the beach. groynes Reason location is suitable for physical enquiry: Wet weather is dangerous Students advised to bring plenty of The location was chosen as Swanage beach is on a stretch of coastline due to slippery groynes etc. water and sun cream if the weather Aim: To survey the shape (morphology) of the that is affected by the process of longshore drift. As a result of this 3. Sediment beach. To examine the effects of the Weather Hot weather also poses the forecast is hot. If the weather forecast process and in order to keep the beach for tourists the local council risk of dehydration. is wet, students are advised to bring analysis (shape management technique of groynes on beach has installed the hard engineering method of groynes. The area is also appropriate clothing and footwear. and size) processes and morphology. easily accessible by coach from our school. Evaluation Method 1: Beach profile Presentation method: Bar chart to show the exposed height of the groynes Sampling method: systematic sampling (fixed intervals) Very clearly shows that updrift is less exposed A larger pebble sample size should have been collected. More than one site Sample size: 3 sites (between pier and groyne, between two groynes Strengths than downdrift. Easy to see the pattern and A bar graph to show the exposed Sample height of groyne data between the groynes should have also and away from the groynes). compare data sets. size Description: Person A stands by the sea holding a ranging pole and 150 been used. Therefore conclusions are Groynes are given letters- not possible to person B holds a second ranging pole 1m up the beach. The angle based on limited data. between matching markers on each ranging pole is measured using a locate. Based on one reading from each side 100 Updrift Weaknesses A lack of readings taken on both sides of clinometer. Repeat this process every 1m up the beach. of the groyne. Difficult to read the decimal Downdrift 50 the groynes means an average of how places of readings. Frequency much groyne was exposed could not be Strengths Weaknesses Height of groyne (cm) 0 Alternative Located bar graphs could have been used on of readings -The method of data collection is -There may be some user error A B C D E F G H I J reached- weakness of data collection a map of the beach to show where the most taken simple to carry out. when taking readings with a presentation Groyne could have had a greater impact on -Systematic sampling is simple clinometer. techniques effective groynes were. results. and has good coverage of the -Ranging poles need to be held Conclusion study area. straight and prevented from Unit 3 sinking into the sediment, It is evident from the results that longshore drift is being managed effectively by the otherwise an inaccurate groynes at Swanage. This is especially seen from the exposed height of the groyne being measurement will be taken. Physical fieldwork- Swanage much less on the updrift side and the gradient on the beach being steeper between the groynes. Method 2: Exposed height of groynes Method 2: Sediment analysis Results Sampling method: systematic sampling (fixed intervals) Sampling method: systematic sampling (fixed intervals) The beach between the groynes had the steepest overall Sample size: 10 groynes Sample size: 5 pebbles every 2m from the shore at 2 sites (away from gradient. The beach measured with no groynes had the 1. Beach profile Description: identify the updrift and downdrift using a compass. Use and between the groynes) lowest overall gradient. Thus showing the groynes are the meter ruler to measure from the top of the groyne to the surface Description: 5 pebbles were selected randomly every 2m up the effective at building up the beach. of the sediment on each side. Repeat for each groyne. beach. The length and width of each pebble was measured and compared it Power’s chart to subjectively assess roundness. The average exposed height of the groynes was less on Strengths Weaknesses 2. Exposed height of the updrift side. Thus showing the groynes are effective in Strengths Weaknesses -The method clearly shows -Measurements were not taken groynes trapping sediment in the direction of longshore drift. whether the groynes are working. at the same point along each - A quadrat was used in order to -Accessing the roundness using -The method of data collection is groyne and several were not ensure that the pebbles were the chart is subjective. simple to carry out and does not taken along each side. selected at random. -Power’s chart is still The length and width of the pebbles was used to give an need special equipment. - Care should be taken to -Simple method of data collection subjective- to mitigate this area of each pebble. This was plotted onto a cumulative - A large enough sample size was ensure that meter ruler is held with little equipment needed. more than one person could frequency graph which showed the area of the pebbles 3. Sediment analysis used (most of the groynes were straight and does not sink into -It is a quick and efficient way to have assessed the roundness- between the groynes was smaller. Therefore indicating (shape and size) measured), in order to reach a the sand- otherwise an collect the data needed. however this is more time that longshore drift is taking place and the groynes are reliable conclusion. inaccurate reading could be - Using Power’s chart makes the consuming. stopping trapping the sediment causing the erosional taken. data more reliable. - The sample size was small- process of attrition. making the data less accurate. Fieldwork enquiry question: What are the impacts of Swanage being Risk assessment Methods carried out a honeypot destination. Risk of accident by walking Students told to only cross the road at Busy Aim: To investigate the opinions of the locals in Hypothesis and aims: along and crossing busy the crossings and walk in pairs encase terms of tourism. Therefore discovering the roads 1. Questionnaire roads in the town. of accident. social, economic and environmental impacts The aim of the investigation was to discover the impacts for Swanage from their perspective. of being a honeypot tourist destination. It is predicted that the Risk of injuring through Students told to walk around the economic impacts will be more positive than the social and walking around the town town in pairs or more. Each group Injury 2. Environmental Aim: To investigate the impacts of tourism on environmental impacts. such as tripping. carried a first aid kit and so did the quality survey the environment of Swanage. Factors such as teacher. Reason location is suitable for physical enquiry: (bi-polar pollution, greenery, congestion levels and Risk of verbal abuse from Students told to walk around in pairs analysis) density of wildlife habitats were scored. The location was chosen as Swanage is a popular tourist destination members of the public or more. Meeting point given to Aim: To investigate the impact that tourism has attracting 16.5 million visitors a year and generating £830 million per General especially when carrying students to meet at regular times and year. The area is also easily accessible by coach from our school. public out questionnaires. Also a head count to be done. Students to 3. Retail value on the type of shops in Swanage and therefore Swanage is also a small enough seaside town that the risks associated risk of abduction. be polite when asking questionnaires. survey. on the economy. The High Street, Station Road with fieldwork are reduced. and Institute Road were chosen. Method 1: Questionnaire Presentation method: Bar chart for retail value survey Evaluation Sampling method: Stratified random sampling (only locals were Very clearly shows which type of shop is most A bar graph to show the retail Only 3 sites were chosen for the EQS and value results the retail value survey therefore not questioned however they were chosen randomly) Strengths dominant along each street in Swanage. Easy Sample 35 showing a full representation across Sample size: 30+ (37 exactly) locals were questioned to read how many in each street. 30 Hig h S treet size Description: Create a questionnaire which focuses on finding out the 25 Swanage- thus the conclusions are based 20 Does not show where in Swanage each type 15 Statio n Road on a small area. impacts of tourism from the locals perspective. When in Swanage ask 10 the questionnaire to a sample size of at least 30 local people. of shop can be found- just an overview of the 5 Weaknesses 0 Institute All of the methods were open to some types of shops along a whole street.
Recommended publications
  • A Study of Hydrodynamic and Coastal Geomorphic Processes in Küdema Bay, the Baltic Sea
    Coastal Engineering 187 A study of hydrodynamic and coastal geomorphic processes in Küdema Bay, the Baltic Sea Ü. Suursaar1, H. Tõnisson2, T. Kullas1, K. Orviku3, A. Kont2, R. Rivis2 & M. Otsmann1 1Estonian Marine Institute, University of Tartu, Estonia 2Instititute of Ecology, Tallinn Pedagogical University, Estonia 3Merin Ltd., Estonia Abstract The aim of the paper is to analyze relationships between hydrodynamic and geomorphic processes in a small bay in the West-Estonian Archipelago. The area consists of a Silurian limestone cliff exposed to storm activity, and a dependent accumulative distal spit consisting of gravel and pebble. Changes in shoreline position have been investigated on the basis of large-scale maps, aerial photographs, topographic surveys and field measurements using GPS. Waves and currents were investigated using a Recording Doppler Current Profiler RDCP-600 deployed into Küdema Bay in June 2004 and the rough hydrodynamic situation was simulated using hydrodynamic and wave models. The main hydrodynamic patterns were revealed and their dependences on different meteorological scenarios were analyzed. It was found that due to exposure to prevailing winds (and waves induced by the longest possible fetch for the location), the spit elongates with an average rate of 14 m/year. Major changes take place during storms. Vitalization of shore processes is anticipated due to ongoing changes in the regional wind climate above the Baltic Sea. Keywords: shoreline changes, currents, waves, sea level, hydrodynamic models. 1 Introduction Estonia has a relatively long and strongly indented shoreline (3794 km; Fig. 1), therefore the knowledge of coastal processes is of large importance for WIT Transactions on The Built Environment, Vol 78, © 2005 WIT Press www.witpress.com, ISSN 1743-3509 (on-line) 188 Coastal Engineering sustainable development and management of the coastal zone.
    [Show full text]
  • Geology of Hawaii Reefs
    11 Geology of Hawaii Reefs Charles H. Fletcher, Chris Bochicchio, Chris L. Conger, Mary S. Engels, Eden J. Feirstein, Neil Frazer, Craig R. Glenn, Richard W. Grigg, Eric E. Grossman, Jodi N. Harney, Ebitari Isoun, Colin V. Murray-Wallace, John J. Rooney, Ken H. Rubin, Clark E. Sherman, and Sean Vitousek 11.1 Geologic Framework The eight main islands in the state: Hawaii, Maui, Kahoolawe , Lanai , Molokai , Oahu , Kauai , of the Hawaii Islands and Niihau , make up 99% of the land area of the Hawaii Archipelago. The remainder comprises 11.1.1 Introduction 124 small volcanic and carbonate islets offshore The Hawaii hot spot lies in the mantle under, or of the main islands, and to the northwest. Each just to the south of, the Big Island of Hawaii. Two main island is the top of one or more massive active subaerial volcanoes and one active submarine shield volcanoes (named after their long low pro- volcano reveal its productivity. Centrally located on file like a warriors shield) extending thousands of the Pacific Plate, the hot spot is the source of the meters to the seafloor below. Mauna Kea , on the Hawaii Island Archipelago and its northern arm, the island of Hawaii, stands 4,200 m above sea level Emperor Seamount Chain (Fig. 11.1). and 9,450 m from seafloor to summit, taller than This system of high volcanic islands and asso- any other mountain on Earth from base to peak. ciated reefs, banks, atolls, sandy shoals, and Mauna Loa , the “long” mountain, is the most seamounts spans over 30° of latitude across the massive single topographic feature on the planet.
    [Show full text]
  • Coastal Dunes
    BIOLOGICAL RESOURCES OF THE DEL MONTE FOREST COASTAL DUNES DEL MONTE FOREST PRESERVATION AND DEVELOPMENT PLAN Prepared for: Pebble Beach Company Post Office Box 1767 Pebble Beach, California 93953-1767 Contact: Mark Stilwell (831) 625-8497 Prepared by: Zander Associates 150 Ford Way, Suite 101 Novato, California 94945 Contact: Michael Zander July 2001 Zander Associates TABLE OF CONTENTS List of Figures and Plates 1.0 Introduction .................................................................................................................1 2.0 Overview of Dunes within the DMF Planning Area...................................................2 2.1 Remnant Dunes .......................................................................................................2 2.2 Rehabilitation Area..................................................................................................4 2.3 ESHA Boundary......................................................................................................6 3.0 Relationship to the DMF Plan .....................................................................................8 3.1 Preserve Areas (Area L and Signal Hill Dune) .......................................................8 3.2 Development Areas (New Golf Course and Facilities—Areas M & N).................8 3.2.1 General Design Considerations .......................................................................8 3.2.2 Golf Course Specific Design...........................................................................9 3.2.3 Golf
    [Show full text]
  • Pebble Beach Company, Mo
    STATE OF CALIFORNIA—NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., GOVERNOR CALIFORNIA COASTAL COMMISSION CENTRAL COAST AND NORTH CENTRAL COAST DISTRICT OFFICES 725 FRONT STREET, SUITE 300 SANTA CRUZ,F12 CA 95060 PHONE: (831) 427-4863 FAX: (831) 427-4877 WEB: WWW.COASTAL.CA.GOV F12b Filed: 11/29/2012 Action Deadline: 5/28/2013 90-Day Extension: 8/26/2013 Staff: J.Manna - SF Staff Report: 5/23/2013 Hearing Date: 6/14/2013 STAFF REPORT: CDP HEARING Application Number: 3-12-030 Applicant: Pebble Beach Company Project Location: Two bluff locations adjacent to the Pebble Beach Golf Links 18th Hole: one along the 18th Fairway and a second fronting the Stillwater Cove Shoreline Overlook (at the Sloat Building). Both locations on the bluffs seaward of The Lodge at Pebble Beach complex off of 17-Mile Drive in the Pebble Beach portion of the unincorporated Del Monte Forest area of Monterey County. Project Description: Remove approximately 150 linear feet of existing armoring (vertical seawall, rip-rap, concrete grouted rip-rap, and concrete) and construct approximately 350 linear feet of new armoring (contoured semi-vertical seawalls), including 200 linear feet at the 18th Fairway and 150 linear feet at the Stillwater Cove Shoreline Overlook. Staff Recommendation: Approval with Conditions. SUMMARY OF STAFF RECOMMENDATION The Pebble Beach Company proposes to remove existing coastal armoring and to construct new armoring seaward of the Stillwater Cove Shoreline Overlook (at the Sloat Building) and seaward 3-12-030 (Pebble Beach Company Seawalls) of the 18th Fairway within the Pebble Beach Lodge complex located near the intersection of Cypress Drive and 17-Mile Drive, in the Pebble Beach area of the Del Monte Forest, Monterey County.
    [Show full text]
  • Introduction to Pebble
    PEBBLE PROJECT ENVIRONMENTAL BASELINE DOCUMENT 2004 through 2008 CHAPTER 1. INTRODUCTION PREPARED BY: PEBBLE LIMITED PARTNERSHIP INTRODUCTION TABLE OF CONTENTS TABLE OF CONTENTS ............................................................................................................................ 1-i LIST OF TABLES ..................................................................................................................................... 1-ii LIST OF FIGURES ................................................................................................................................... 1-ii ACRONYMS AND ABBREVIATIONS .................................................................................................1-iii 1. INTRODUCTION ............................................................................................................................... 1-1 1.1 Project Location ......................................................................................................................... 1-1 1.2 Place Names .............................................................................................................................. 1-2 1.3 Project History ........................................................................................................................... 1-2 1.4 Pebble Deposit ........................................................................................................................... 1-2 1.5 Project Overview (Basis for Study Design) ..............................................................................
    [Show full text]
  • 2.06 AT&T Pebble Beach
    Tournament Fact Sheet AT&T Pebble Beach Pro-Am Pebble Beach Golf Links • Pebble Beach, Calif. • Feb. 6-9, 2020 Director of Golf Course Maintenance Tournament Set-up Chris Dalhamer, CGCS Par: 72 Phone: 831-622-6601 Yardage: 6,816 Email: [email protected] Stimpmeter: 10.5 Years as GCSAA Member: 20 Course Statistics Years at Pebble Beach: 9 Average Green Size: 3,500 sq. ft. Average Tee Size: 3,500 sq. ft. Previous Courses: Spyglass (super), Carmel Valley Ranch Acres of Fairway: 30 (dir. of maint.), Pebble Beach (assistant) Acres of Rough: 80 Hometown: Pacific Grove, Calif. Number of Sand Bunkers: 118 Education: CS-Chico and Monterey Peninsula College Number of Water Hazards: Pacific Ocean Soil Conditions: Sandy loam Number of Employees: 30 Water Sources: Effluent water Number of Tournament Volunteers: 15-20 Drainage Conditions: Fair Other Key Golf Personnel Turfgrass Eric McAlister, Assistant Superintendent Greens: Poa annua .125” Bubba Wright, Assistant Superintendent Tees: Ryegrass .400” Mark Thomas, Irrigation Technician Fairways: Poa annua .450” Charlie Almony, Field Supervisor Rough: Ryegrass 2” Jon Rybicki, Equipment Manager John Swain, Club president/manager Additional Notes Eric Lippert, PGA Professional • There was 10 inches of rainfall from Nov. John Sawin, director of Golf 25-Dec. 31 and has made the course wetter than normal. Course Architect • An improved short course designed by Architect (year): Jack Nevill and Douglas Grant (1919) Tiger Woods will open this year. Course Owner: Lone Cypress Group Rounds Per Year: 60,000 • Species of trees on course include Monterey pines, coastal live oaks and Monterey cypress Tournament Fact Sheets for the PGA, LPGA, Champions and Korn Ferry Tours can be found all year at: • Pebble Beach is Audubon certified.
    [Show full text]
  • Del Monte Forest Land Use Plan
    Exhibit 1 Del Monte Forest Land Use Plan TABLE OF CONTENTS CHAPTER ONE INTRODUCTION.................................................................................................................................................1 CALIFORNIA COASTAL ACT MONTEREY COUNTY LOCAL COASTAL PROGRAM (LCP) DEL MONTE FOREST LAND USE PLAN (LUP) DEL MONTE FOREST LUP ORGANIZATION DEL MONTE FOREST LUP TERMINOLOGY DEL MONTE FOREST LUP KEY POLICIES CHAPTER TWO RESOURCE MANAGEMENT ELEMENT ..............................................................................................7 INTRODUCTION FRESHWATER AND MARINE RESOURCES ENVIRONMENTALLY SENSITIVE HABITAT AREAS FOREST RESOURCES HAZARDS SCENIC AND VISUAL RESOURCES CULTURAL RESOURCES CHAPTER THREE LAND USE AND DEVELOPMENT ELEMENT ..................................................................................24 INTRODUCTION LAND USE AND DEVELOPMENT LAND USE DESIGNATIONS LAND USE BY PLANNING AREA PEBBLE BEACH COMPANY CONCEPT PLAN CHAPTER FOUR LAND USE SUPPORT ELEMENT.............................................................................................................43 INTRODUCTION CIRCULATION WATER AND WASTEWATER SERVICES HOUSING CHAPTER FIVE PUBLIC ACCESS ELEMENT ......................................................................................................................51 INTRODUCTION i CHAPTER SIX IMPLEMENTATION........................................................................................................................................58 INTRODUCTION BASIC IMPLEMENTATION
    [Show full text]
  • Coral Reef Biological Criteria: Using the Clean Water Act to Protect a National Treasure
    EPA/600/R-10/054 | July 2010 | www.epa.gov/ord Coral Reef Biological Criteria: Using the Clean Water Act to Protect a National Treasure Offi ce of Research and Development | National Health and Environmental Effects Research Laboratory EPA/600/R-10/054 July 2010 www.epa.gov/ord Coral Reef Biological Criteria Using the Clean Water Act to Protect a National Treasure by Patricia Bradley Leska S. Fore Atlantic Ecology Division Statistical Design NHEERL, ORD 136 NW 40th St. 33 East Quay Road Seattle, WA 98107 Key West, FL 33040 William Fisher Wayne Davis Gulf Ecology Division Environmental Analysis Division NHEERL, ORD Offi ce of Environmental Information 1 Sabine Island Drive 701 Mapes Road Gulf Breeze, FL 32561 Fort Meade, MD 20755 Contract No. EP-C-06-033 Work Assignment 3-11 Great Lakes Environmental Center, Inc Project Officer: Work Assignment Manager: Susan K. Jackson Wayne Davis Offi ce of Water Offi ce of Environmental Information Washington, DC 20460 Fort Meade, MD 20755 National Health and Environmental Effects Research Laboratory Offi ce of Research and Development Washington, DC 20460 Printed on chlorine free 100% recycled paper with 100% post-consumer fiber using vegetable-based ink. Notice and Disclaimer The U.S. Environmental Protection Agency through its Offi ce of Research and Development, Offi ce of Environmental Information, and Offi ce of Water funded and collaborated in the research described here under Contract EP-C-06-033, Work Assignment 3-11, to Great Lakes Environmental Center, Inc. It has been subject to the Agency’s peer and administrative review and has been approved for publication as an EPA document.
    [Show full text]
  • Redalyc.Sedimentology and Stratigraphy of the Upper Miocene
    Revista Mexicana de Ciencias Geológicas ISSN: 1026-8774 [email protected] Universidad Nacional Autónoma de México México Ochoa Landín, Lucas; Ruiz, Joaquín; Calmus, Thierry; Pérez Segura, Efrén; Escandón, Francisco Sedimentology and Stratigraphy of the Upper Miocene El Boleo Formation, Santa Rosalía, Baja California, Mexico Revista Mexicana de Ciencias Geológicas, vol. 17, núm. 2, 2000, pp. 83-96 Universidad Nacional Autónoma de México Querétaro, México Available in: http://www.redalyc.org/articulo.oa?id=57217201 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista Mexicana de Ciencias Geológicas, volumen 17, número 2, 83 2000, p. 83-96 Universidad Nacional Autónoma de México, Instituto de Geología, México, D.F SEDIMENTOLOGY AND STRATIGRAPHY OF THE UPPER MIOCENE EL BOLEO FORMATION, SANTA ROSALÍA, BAJA CALIFORNIA, MEXICO Lucas Ochoa-Landín,1 Joaquín Ruiz,2 Thierry Calmus,3 Efrén Pérez-Segura1, and Francisco Escandón4 ABSTRACT The transtensional Upper Miocene Santa Rosalía basin, located in the east-central part of the Baja California Peninsula, consists of almost 500 m of non-marine to marine sedimentary deposits, and interbedded tuffaceous beds. The Santa Rosalía basin is a NW-SE elongated fault-bounded depocenter that records the sedimentation from Upper Miocene to Pleistocene time. The sequence is divided in El Boleo, La Gloria, Infierno and Santa Rosalía Formations. The lower most stratigraphic unit is the El Boleo Formation, a 200 to 300 m thick section composed in its lower part by a 1 to 5 m thick basal limestone and gypsum bodies followed by 170 to 300 m of clastic coarsening upward fan-delta, marine and nonmarine deposits.
    [Show full text]
  • The Path of a Pebble- Coastal Processes Activities
    The path of a pebble Teachers notes Indulge your natural sense of exploration on the beach by collecting pebbles and recording sound effects. This activity uses the intuitive games that pupils and adults alike will want to play when exploring the beach for the first (or twentieth) time while helping to embed learning about abrasion, attrition, and other processes of coastal change. Location: Barton on Sea or any shingle or pebble beach Timing: 30-45 minutes Age: Key stage 2 Curriculum links: Maths- 3D shapes, volume, estimation, Geography- coastal processes and change Science- rock types and properties, forces. English- poetry, onomatopoeia. (* check tides, weather conditions and safety of access near actively eroding cliffs prior to visit, take throw rope and appropriate emergency numbers, clearly demarcate and explain which areas pupils can explore safely) Learning Outcomes: Estimate the volume of different beach materials and the energy need to move and lift them Discover that shingle is made from mixed materials (rock types, shells, man-made etc.) which have varying degrees of hardness. Understand that harder rocks erode softer rocks creating shingle and pebbles of varying sizes (attrition) Resources needed: Blank postcard sized plain card Coloured pencils Aerial photo of your coastal site from e.g. google earth in two different time periods. The path of a pebble- Teachers notes Part 1- Does the coast stay the same? From a high point, admire the view and point out landmarks (the Solent, Isle of Wight, Bournemouth). Ask pupils to imagine this landscape 10, 100 and 10,000 years ago and suggest reasons it may have changed.
    [Show full text]
  • Carbonate Platform Evolution: from a Bioconstructed Platform Margin to a Sand-Shoal System (Devonian, Guilin, South China)
    Sedimentology (2002) 49, 737–764 Carbonate platform evolution: from a bioconstructed platform margin to a sand-shoal system (Devonian, Guilin, South China) DAIZHAO CHEN*, MAURICE E. TUCKER , JINGQUAN ZHU* and MAOSHENG JIANG* *Institute of Geology and Geophysics, Chinese Academy of Sciences, PO Box 9825, Beijing 100029, China (E-mail: [email protected]) Department of Geological Sciences, University of Durham, Durham DH1 3LE, UK (E-mail: [email protected]) ABSTRACT The depositional organization and architecture of the middle–late Devonian Yangdi rimmed carbonate platform margin in the Guilin area of South China were related to oblique, extensional faulting in a strike-slip setting. The platform margin shows two main stages of construction in the late Givetian to Frasnian, with a bioconstructed margin evolving into a sand-shoal system. In the late Givetian, the platform margin was rimmed with microbial buildups composed mainly of cyanobacterial colonies (mostly Renalcis and Epiphyton). These grew upwards and produced an aggradational (locally slightly retrogradational) architecture with steep foreslope clinoforms. Three depositional sequences (S3–S5) are recognized in the upper Givetian strata, which are dominated by extensive microbialites. Metre-scale depositional cyclicity occurs in most facies associations, except in the platform-margin buildups and upper foreslope facies. In the latest Givetian (at the top of sequence S5), relative platform uplift (± subaerial exposure) and associated rapid basin subsidence (probably a block-tilting effect) caused large-scale platform collapse and slope erosion to give local scalloped embayments along the platform margin and the synchronous demise of microbial buildups. Subsequently, sand shoals and banks composed of ooids and peloids and, a little later, stromatoporoid buildups on the palaeohighs, developed along the platform margin, from which abundant loose sediment was transported downslope to form gravity-flow deposits.
    [Show full text]
  • Pebble Count Methods
    Pebble count methods The composition of the streambed and banks are using a zigzag pattern. In some cases only riffles are important facets of stream character, influencing channel sampled. Measure a minimum of 100 particles to obtain form and hydraulics, erosion rates, sediment supply, and a valid count. Usually less are collected if single channel other parameters. Each permanent reference site features are sampled. includes a basic characterization of bed and bank material. For studies of fish habitat, riparian ecosystems Start the collection at the lower end (downstream) of or stream hydraulics, the characterization of substrates your reach at one of the bankfull elevations (not and bank materials may require greater detail than can necessarily the present water level). Averting your gaze, be covered here. pick up the first particle touched by the tip of your index finger at the toe of your wader. Observations tell us that steep mountain streams with beds of boulders and cobbles act differently from low- Measure the intermediate axis (neither the longest nor gradient streams with beds of sand or silt. You can shortest of the three mutually perpendicular sides of document this difference by collecting representative each particle picked up). Measure embedded particles or samples of the bed materials using a procedure called a those too large to be moved in place. For these, pebble count. measure the smaller of the two exposed axes. Call out the measurement. The note taker tallies it by The most efficient basic technique is the Wolman Pebble size class and repeats it back for confirmation. Count. This requires an observer with a metric ruler who wades through the stream and a note taker who wades along side, or remains on the bank with the field book.
    [Show full text]