Chondrocranial and Oral Morphology of Leptodactylid Larvae William Hagood Turner

Total Page:16

File Type:pdf, Size:1020Kb

Chondrocranial and Oral Morphology of Leptodactylid Larvae William Hagood Turner University of Richmond UR Scholarship Repository Master's Theses Student Research 1999 Chondrocranial and oral morphology of Leptodactylid larvae William Hagood Turner Follow this and additional works at: https://scholarship.richmond.edu/masters-theses Part of the Biology Commons Recommended Citation Turner, William Hagood, "Chondrocranial and oral morphology of Leptodactylid larvae" (1999). Master's Theses. 1349. https://scholarship.richmond.edu/masters-theses/1349 This Thesis is brought to you for free and open access by the Student Research at UR Scholarship Repository. It has been accepted for inclusion in Master's Theses by an authorized administrator of UR Scholarship Repository. For more information, please contact [email protected]. Chondrocranial and Oral Morphology of Leptodactylid Larvae by William H. Turner Jr. I certifythat I have read this thesis and find that, in scope and quality, it satisfies the requirements for the degree of Master of Science. Dr. Gary Radice T Other Faculty Members: Tl and Oral Morphology of CHONDROCRANIALLeptodactylid Larvae William H. TurnerJr. Masters of Science in Biology University of Richmond, 1999 Thesis Director: Rafael 0. de Sa Abstract. Leptodactylidae is a diverse assemblage of anurans that varies in their life history, ecology, and morphology. Little is known about the chondrocranial anatomy of this family. Current knowledge of the evolutionary relationships of the family does not include chondrocranial data. The present paper focuses on understanding the larval chondrocranial morphology and internal oral anatomy of Leptodactylidae. Chondrocranial morphology and internal oral anatomy correlate with ecology and life history. A phylogenetic analysis of the family was executed based on 28 chondrocranial charactersusing as the outgroup. The phylogenetic Hyla lanciformis analysis resulted in two clades within Leptodactylidae: the Leptodactylinae-Odontophzynus clade and the Telmatobiinae­ Hylodinae-Ceratophryinae clade. Analyses of chondrocranial and internal oralmorphology can provide useful phylogenetic information for members of Leptodactylidae. ITT Chondrocranial and Oral Morphology of Leptodactylid Larvae By William H. Turner Jr. B.S., Universityof Richmond, 1997 ,l­ A Thesis Submitted to the Graduate Faculty of the University of Richmond in Candidacy for the degree of MASTER OF SCIENCE in Biology April, 1999 Richmond, Virginia N Acknowledgements I would not have been able to complete this degree were it not for the support, tutelage, and emotional backing of several people. I am indebted to Dr. Rafael 0. de Sa for taking me into his lab, assisting me financially (NSF#BIR-9510228), guiding me mentally, and putting his foot down when he saw me straying fromthe academic path. I am grateful to the Graduate School of Arts and Sciences for providing me with research and travel grants, and academic scholarships. I am also grateful to Dr. John Hayden and Dr. Gary Radice who taught me scanning electron microscope procedures. I would like to thank the Biology department faculty, staff, and students, especially Chris Swart, who offeredme many smiles and much encouragement None of this could have been possible without my mom, my brothers, my dogs, and the rest of my family and friends. I dedicate this work in memory of my father, William H. Turner Sr.; thanks for everything. V page Table of Contents List of Figures i. List of Appendices Introduction 1.ii. Background on Chondrocranial Studies 11. Background on Internal Oral Anatomy Studies. 15. Materials and Methods. 17. Results Chondrocranium of 22. Adenomera marmorata. Chondrocranium of 31. Edalorhina perezi . Chondrocranium of 40. Limnomedusa macroglossa Chondrocranium of and Physalaemus gracilis, P. henselii, P. pustulosus. Chondrocranium of and Pleurodema brachyops, P. brachyops2, 49. P. tucumana 59. Oral Morphology of 68. Limnomedusa macroglossa Oral Morphology of 7 4. Physalaemus gracilis Oral Morphology of 80. Physalaemus henselii. LarvalCharacters for phylogenetic analysis . 86. VT page Discussion Chondrocranial Morphology and skeletogenesis. 94. InternalOral Anatomy. 104. Phylogenetic Analysis 105. Literature cited . 117. Appendix . 139. Vita . 142. VTT List of Figures: Page Figure 1. Chondrocranium of at stage 36 . 26. Figure 2. Chondrocranium of Adenomera marmorataat stage 36 . 28. Figure 3. Chondrocranium of Adenomera marmorataat stage 36 . 34. Figure 4. Chondrocranium of Edalorhina perezi at stage 36 . 36. Figure 5. Chondrocranium of Edalorhina perezi at stage 34 44. Figure 6. Chondrocranium of Limnomedusa macroglqssa at stage 34 46. Figure 7. Chondrocrania of Limnomedusa macroglossaat stage 40, at stage 39, andPhysalaemus P. gracilisat stage 38 P. henselii 54. Figure 8. Chondrocrania of pustulosus at stage 40, at stage 39, andPhysalaemus gracilisat stage 38 P. henselii 56. Figure 9. Chondrocranium of P. pustulosus at stage 35, Pleurodemaat stage 37, andbrachyops at stage 35 63. Figure 10. ChondrocraniumP. brachyops2 of P. tucumanaat stage 35, Plateurodema stage 37, andbrachyops at stage 35 65. Figure 11. ScanningP. brachyops2 electron mi croscope photographP. tucumana of buccal floorof at stage 37 . 71. Figure 12. ScanningLimnomedusa electron microscope macroglossa photograph of buccal roof of at stage 3 7 . 73. Limnomedusa macroglossa Figure 13. Scanning electron microscope photograph of buccal floorof Physalaem us gracilis at stage 37 . 77 . Figure 14. Scanning electron microscope photograph of buccal roof of Physalaemus gra.cilis at stage 37 . 79. Figure 15. Scanning electron microscope photograph of buccal floor of Physalaemus henselii at stage 31 . 83 .J Figure 16. Scanning electron microscope photograph of buccal roof of Physalaemus henselii at stage 31 . 85 Figure 17. Phylogenetic trees 109. Figure 18. Consensus trees . 113. LIST OF TABLES: Table 1. Data matrixof phylogenetic characters . 93. Table 2. Ossificationsequence for the specimens of Physalaemus gracilis and P. pustulosus used in this work. 101. LIST OF APPENDICES: Appendix 1. Stages, measurements, and status of specimens used in this work. 139. ii The word amphibianINTRODUCTION comes from the Greek amphi, meaning "on both sides," and hi.us� meaning "life" or "mode of life." Anurans most accurately definethe word amphibian because considering their larvaland adult forms, they live a dual lifestyle,aquatic and terrestrial. These two stages of their life cycle are connected by an intricate metamorphic event that morphologically, ecologically, behaviorally, and physiologically transformsthe tadpole into the adult frog (Orton, 1953). Any shift in the timing or rate of the metamorphic events would be an example of heterochrony, and heterochronic mechanisms have been shown to be driving forces in amphibian evolution (Gould, 1977; Wassersug, 1980; Trueb and Alberch, 1985; Davies, 1989; Richardson, 1995; Haas, 1996b; Wakahara, 1996). An increase in the ways anurans have diversified results from heterochronic mechanisms acting on the larval stage of the life cycle and selective pressures acting on both the larva and the adult. The diversity of anurans is not reflected in their overall simple body plan (Sokol, 1975). Anuranshave achieved high levels of specialization yet the anatomical differences across frogs are subtle. This constancy of form presents a challenge to studies of anuran evolution and systematics. Consequently, a variety of data sets must be used to decipher anuran evolution (Duellman and Trueb, 1994; Kluge, 1989; Brooks and Mcclennan, 1991). In fact, anuran research has expanded into� di':ersefield of study incorporating a variety of data sets. Osteological studies have been useful in diagnosing species and determining anuran relationships (Cope, 1865, 1889; Noble, 1922, 1931; Parker, 1927; Lynch, 1970, 1971; Trueb, 1973 ). More recently, many studies have included additional characters such as: karyotype (Barrio and Rinaldi de Chieri, 1970; Bogart, 1970; Veloso et al., 1973; Duellman and Veloso, 1977; King, 1990; Green and Sessions, 1991), behavior (Wells, 1977; Greer and Wells, 1980; Martins, 1989; Cardoso and Heyer, 1995), diet (Premo and Atmowidjojo, 1987; Toft, 1995; Kovacs and Torok, 1997; Howard et al., 1997), call analysis (Barrio, 1964; Duellman, 1973; Duellman and Veloso, 1977; Ryan and Rand, 1995), development (Wassersug and Hoff, 1982; Trueb and Hanken, 1992) and molecular data (Hillis and Davis, 1987; Maxson and ?. Heyer, 1988; de Sa and Hillis, 1990; Hillis et al., 1993; Hay et al., 1995; Ruvinsky and Maxson, 1996). Anuran research has also focused on larval characters. Research on the structure of the head in anuran larvaeand studies of their internal oral anatomy date back to the early 19th century (Martin St. Ange, 1831; Schulze, 1870, 1892). Tlfese iµitial studies are characterized by inconsistent terminology and varied thoroughness of their descriptions. De Beer (1937) summarized what was known about the development of the vertebrate skull through detailed descriptions and illustrationsof four anuran taxa. The use of larval charactersin systematics began in the 1950s when a comparative study of tadpoles at similar stages of development was undertaken (Orton 1953, 1957). Orton (1957) grouped tadpoles into four major categories based on external morphology. Subsequently, Orton's data were combined with other larval characters such as larval musculature and chondrocranial data (Starrett, 1973; Sokol, 1975, 1977). Larval chondrocranial descriptions exist for less than 5% of known species (Haas, 1996a). Few chondrocranial
Recommended publications
  • Catalogue of the Amphibians of Venezuela: Illustrated and Annotated Species List, Distribution, and Conservation 1,2César L
    Mannophryne vulcano, Male carrying tadpoles. El Ávila (Parque Nacional Guairarepano), Distrito Federal. Photo: Jose Vieira. We want to dedicate this work to some outstanding individuals who encouraged us, directly or indirectly, and are no longer with us. They were colleagues and close friends, and their friendship will remain for years to come. César Molina Rodríguez (1960–2015) Erik Arrieta Márquez (1978–2008) Jose Ayarzagüena Sanz (1952–2011) Saúl Gutiérrez Eljuri (1960–2012) Juan Rivero (1923–2014) Luis Scott (1948–2011) Marco Natera Mumaw (1972–2010) Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 13(1) [Special Section]: 1–198 (e180). Catalogue of the amphibians of Venezuela: Illustrated and annotated species list, distribution, and conservation 1,2César L. Barrio-Amorós, 3,4Fernando J. M. Rojas-Runjaic, and 5J. Celsa Señaris 1Fundación AndígenA, Apartado Postal 210, Mérida, VENEZUELA 2Current address: Doc Frog Expeditions, Uvita de Osa, COSTA RICA 3Fundación La Salle de Ciencias Naturales, Museo de Historia Natural La Salle, Apartado Postal 1930, Caracas 1010-A, VENEZUELA 4Current address: Pontifícia Universidade Católica do Río Grande do Sul (PUCRS), Laboratório de Sistemática de Vertebrados, Av. Ipiranga 6681, Porto Alegre, RS 90619–900, BRAZIL 5Instituto Venezolano de Investigaciones Científicas, Altos de Pipe, apartado 20632, Caracas 1020, VENEZUELA Abstract.—Presented is an annotated checklist of the amphibians of Venezuela, current as of December 2018. The last comprehensive list (Barrio-Amorós 2009c) included a total of 333 species, while the current catalogue lists 387 species (370 anurans, 10 caecilians, and seven salamanders), including 28 species not yet described or properly identified. Fifty species and four genera are added to the previous list, 25 species are deleted, and 47 experienced nomenclatural changes.
    [Show full text]
  • Species Diversity and Conservation Status of Amphibians in Madre De Dios, Southern Peru
    Herpetological Conservation and Biology 4(1):14-29 Submitted: 18 December 2007; Accepted: 4 August 2008 SPECIES DIVERSITY AND CONSERVATION STATUS OF AMPHIBIANS IN MADRE DE DIOS, SOUTHERN PERU 1,2 3 4,5 RUDOLF VON MAY , KAREN SIU-TING , JENNIFER M. JACOBS , MARGARITA MEDINA- 3 6 3,7 1 MÜLLER , GIUSEPPE GAGLIARDI , LILY O. RODRÍGUEZ , AND MAUREEN A. DONNELLY 1 Department of Biological Sciences, Florida International University, 11200 SW 8th Street, OE-167, Miami, Florida 33199, USA 2 Corresponding author, e-mail: [email protected] 3 Departamento de Herpetología, Museo de Historia Natural de la Universidad Nacional Mayor de San Marcos, Avenida Arenales 1256, Lima 11, Perú 4 Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, California 94132, USA 5 Department of Entomology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, California 94118, USA 6 Departamento de Herpetología, Museo de Zoología de la Universidad Nacional de la Amazonía Peruana, Pebas 5ta cuadra, Iquitos, Perú 7 Programa de Desarrollo Rural Sostenible, Cooperación Técnica Alemana – GTZ, Calle Diecisiete 355, Lima 27, Perú ABSTRACT.—This study focuses on amphibian species diversity in the lowland Amazonian rainforest of southern Peru, and on the importance of protected and non-protected areas for maintaining amphibian assemblages in this region. We compared species lists from nine sites in the Madre de Dios region, five of which are in nationally recognized protected areas and four are outside the country’s protected area system. Los Amigos, occurring outside the protected area system, is the most species-rich locality included in our comparison.
    [Show full text]
  • Bibliography and Scientific Name Index to Amphibians
    lb BIBLIOGRAPHY AND SCIENTIFIC NAME INDEX TO AMPHIBIANS AND REPTILES IN THE PUBLICATIONS OF THE BIOLOGICAL SOCIETY OF WASHINGTON BULLETIN 1-8, 1918-1988 AND PROCEEDINGS 1-100, 1882-1987 fi pp ERNEST A. LINER Houma, Louisiana SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE NO. 92 1992 SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE The SHIS series publishes and distributes translations, bibliographies, indices, and similar items judged useful to individuals interested in the biology of amphibians and reptiles, but unlikely to be published in the normal technical journals. Single copies are distributed free to interested individuals. Libraries, herpetological associations, and research laboratories are invited to exchange their publications with the Division of Amphibians and Reptiles. We wish to encourage individuals to share their bibliographies, translations, etc. with other herpetologists through the SHIS series. If you have such items please contact George Zug for instructions on preparation and submission. Contributors receive 50 free copies. Please address all requests for copies and inquiries to George Zug, Division of Amphibians and Reptiles, National Museum of Natural History, Smithsonian Institution, Washington DC 20560 USA. Please include a self-addressed mailing label with requests. INTRODUCTION The present alphabetical listing by author (s) covers all papers bearing on herpetology that have appeared in Volume 1-100, 1882-1987, of the Proceedings of the Biological Society of Washington and the four numbers of the Bulletin series concerning reference to amphibians and reptiles. From Volume 1 through 82 (in part) , the articles were issued as separates with only the volume number, page numbers and year printed on each. Articles in Volume 82 (in part) through 89 were issued with volume number, article number, page numbers and year.
    [Show full text]
  • On the Uncertain Taxonomic Identity of Adenomera Hylaedactyla (Cope, 1868) and the Composite Type Series of A
    Copeia 107, No. 4, 2019, 708–723 On the Uncertain Taxonomic Identity of Adenomera hylaedactyla (Cope, 1868) and the Composite Type Series of A. andreae (Muller,¨ 1923) (Anura, Leptodactylidae) Thiago R. de Carvalho1, Ariovaldo A. Giaretta2, Natan M. Maciel3, Diego A. Barrera4,Cesar´ Aguilar-Puntriano4,5,Celio´ F. B. Haddad1, Marcelo N. C. Kokubum6, Marcelo Menin7, and Ariadne Angulo4,5 Adenomera andreae and A. hylaedactyla are two widespread Amazonian frogs that have been traditionally distinguished from each other by the use of different habitats, toe tip development, and more recently through advertisement calls. Yet, taxonomic identification of these species has always been challenging. Herein we undertake a review of type specimens and include new phenotypic (morphology and vocalization) and mitochondrial DNA information for an updated diagnosis of both species. Our morphological analysis indicates that the single type (holotype) of A. hylaedactyla could either belong to lineages associated with Amazonian forest-dwelling species (A. andreae clade) or to the open-formation morphotype (A. hylaedactyla clade). Given the holotype’s poor preservation, leading to the ambiguous assignment of character states for toe tip development, as well as a vague type locality encompassing a vast area in eastern Ecuador and northern Peru, the identity of this specimen is uncertain. Morphology of toe tip fragments and the original species description suggest that A. hylaedactyla could correspond to at least two described species (A. andreae or A. simonstuarti) or additional unnamed genetic lineages of the A. andreae clade, all bearing toe tips expanded into discs. Analysis of morphometric data, however, clustered the holotype with the Amazonian open-formation morphotype (toe tips unexpanded).
    [Show full text]
  • Restriction Fragment Analysis of the Ribosomal DNA of Paratelmatobius and Scythrophrys Species (Anura, Leptodactylidae)
    Genetics and Molecular Biology, 26, 2, 139-143 (2003) Copyright by the Brazilian Society of Genetics. Printed in Brazil www.sbg.org.br Research Article Restriction fragment analysis of the ribosomal DNA of Paratelmatobius and Scythrophrys species (Anura, Leptodactylidae) Luciana B. Lourenço1, Paulo C.A. Garcia2 and Shirlei M. Recco-Pimentel1 1Departamento de Biologia Celular, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil. 2Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro, SP, Brazil. Abstract Physical maps of the ribosomal RNA gene 28S of species belonging to the genera Paratelmatobius and Scythrophrys were constructed, using five restriction endonucleases. The restriction sites for Bam HI, Bgl II, Bst EII, and Eco RI had similar positions in all species, although there were interspecific differences in the size of the restriction fragments obtained. An additional Pvu II site was found in Scythrophrys specimens from Piraquara (State of Paraná, Brazil) and from São Bento do Sul (State of Santa Catarina, Brazil), but not in the Scythrophrys specimens from Rancho Queimado (State of Santa Catarina, Brazil). This finding is in agreement with the hypothesis regarding the existence of two species in the genus Scythrophrys. On the other hand, the extra Bst EII site considered in the literature to be a synapomorphy for the subfamilies Leptodactylinae and Telmatobiinae was not observed in the genera Paratelmatobius and Scythrophrys, which brings new questions about some taxonomic classifications that include Paratelmatobius in Leptodactylinae and Scythrophrys in Telmatobiinae. Interspecific variation was observed in the size of the restriction fragments analyzed and, in the case of group I Scythrophrys, there was also a variation between the individuals of the two populations.
    [Show full text]
  • Etar a Área De Distribuição Geográfica De Anfíbios Na Amazônia
    Universidade Federal do Amapá Pró-Reitoria de Pesquisa e Pós-Graduação Programa de Pós-Graduação em Biodiversidade Tropical Mestrado e Doutorado UNIFAP / EMBRAPA-AP / IEPA / CI-Brasil YURI BRENO DA SILVA E SILVA COMO A EXPANSÃO DE HIDRELÉTRICAS, PERDA FLORESTAL E MUDANÇAS CLIMÁTICAS AMEAÇAM A ÁREA DE DISTRIBUIÇÃO DE ANFÍBIOS NA AMAZÔNIA BRASILEIRA MACAPÁ, AP 2017 YURI BRENO DA SILVA E SILVA COMO A EXPANSÃO DE HIDRE LÉTRICAS, PERDA FLORESTAL E MUDANÇAS CLIMÁTICAS AMEAÇAM A ÁREA DE DISTRIBUIÇÃO DE ANFÍBIOS NA AMAZÔNIA BRASILEIRA Dissertação apresentada ao Programa de Pós-Graduação em Biodiversidade Tropical (PPGBIO) da Universidade Federal do Amapá, como requisito parcial à obtenção do título de Mestre em Biodiversidade Tropical. Orientador: Dra. Fernanda Michalski Co-Orientador: Dr. Rafael Loyola MACAPÁ, AP 2017 YURI BRENO DA SILVA E SILVA COMO A EXPANSÃO DE HIDRELÉTRICAS, PERDA FLORESTAL E MUDANÇAS CLIMÁTICAS AMEAÇAM A ÁREA DE DISTRIBUIÇÃO DE ANFÍBIOS NA AMAZÔNIA BRASILEIRA _________________________________________ Dra. Fernanda Michalski Universidade Federal do Amapá (UNIFAP) _________________________________________ Dr. Rafael Loyola Universidade Federal de Goiás (UFG) ____________________________________________ Alexandro Cezar Florentino Universidade Federal do Amapá (UNIFAP) ____________________________________________ Admilson Moreira Torres Instituto de Pesquisas Científicas e Tecnológicas do Estado do Amapá (IEPA) Aprovada em de de , Macapá, AP, Brasil À minha família, meus amigos, meu amor e ao meu pequeno Sebastião. AGRADECIMENTOS Agradeço a CAPES pela conceção de uma bolsa durante os dois anos de mestrado, ao Programa de Pós-Graduação em Biodiversidade Tropical (PPGBio) pelo apoio logístico durante a pesquisa realizada. Obrigado aos professores do PPGBio por todo o conhecimento compartilhado. Agradeço aos Doutores, membros da banca avaliadora, pelas críticas e contribuições construtivas ao trabalho.
    [Show full text]
  • Redalyc.Amphibians Found in the Amazonian Savanna of the Rio
    Biota Neotropica ISSN: 1676-0611 [email protected] Instituto Virtual da Biodiversidade Brasil Reis Ferreira Lima, Janaina; Dias Lima, Jucivaldo; Dias Lima, Soraia; Borja Lima Silva, Raullyan; Vasconcellos de Andrade, Gilda Amphibians found in the Amazonian Savanna of the Rio Curiaú Environmental Protection Area in Amapá, Brazil Biota Neotropica, vol. 17, núm. 2, 2017, pp. 1-10 Instituto Virtual da Biodiversidade Campinas, Brasil Available in: http://www.redalyc.org/articulo.oa?id=199152368003 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Biota Neotropica 17(2): e20160252, 2017 ISSN 1676-0611 (online edition) inventory Amphibians found in the Amazonian Savanna of the Rio Curiaú Environmental Protection Area in Amapá, Brazil Janaina Reis Ferreira Lima1,2, Jucivaldo Dias Lima1,2, Soraia Dias Lima2, Raullyan Borja Lima Silva2 & Gilda Vasconcellos de Andrade3 1Universidade Federal do Amazonas, Universidade Federal do Amapá, Rede BIONORTE, Programa de Pós‑graduação em Biodiversidade e Biotecnologia, Macapá, AP, Brazil 2Instituto de Pesquisas Científicas e Tecnológicas do Estado do Amapá, Macapá, Amapá, Brazil 3Universidade Federal do Maranhão, Departamento de Biologia, São Luís, MA, Brazil *Corresponding author: Janaina Reis Ferreira Lima, e‑mail: [email protected] LIMA, J. R. F., LIMA, J. D., LIMA, S. D., SILVA, R. B. L., ANDRADE, G. V. Amphibians found in the Amazonian Savanna of the Rio Curiaú Environmental Protection Area in Amapá, Brazil. Biota Neotropica. 17(2): e20160252. http://dx.doi.org/10.1590/1676-0611-BN-2016-0252 Abstract: Amphibian research has grown steadily in recent years in the Amazon region, especially in the Brazilian states of Amazonas, Pará, Rondônia, and Amapá, and neighboring areas of the Guiana Shield.
    [Show full text]
  • Foam Nest Construction and First Report of Agonistic Behaviour In
    Neotropical Biology and Conservation 14(1): 117–128 (2019) doi: 10.3897/neotropical.14.e34841 SHORT COMMUNICATION Foam nest construction and first report of agonistic behaviour in Pleurodema tucumanum (Anura, Leptodactylidae) Melina J. Rodriguez Muñoz1,2, Tomás A. Martínez1,2, Juan Carlos Acosta1, Graciela M. Blanco1 1 Gabinete DIBIOVA (Diversidad y Biología de Vertebrados del Árido). Departamento de Biología, FCEFN, Universidad Nacional de San Juan, Avenida Ignacio de la Roza 590, Rivadavia J5400DCS, San Juan, Argentina 2 Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, C1425FQB, Ciudad Autónoma de Buenos Aires Argentina Corresponding author: Melina J. Rodriguez Muñoz ([email protected]) Academic editor: A. M. Leal-Zanchet | Received 21 May 2018 | Accepted 27 December 2018 | Published 11 April 2019 Citation: Rodriguez Muñoz MJ, Martínez TA, Acosta JC, Blanco GM (2019) Foam nest construction and first report of agonistic behaviour in Pleurodema tucumanum (Anura: Leptodactylidae). Neotropical Biology and Conservation, 14(1): 117–128. https://doi.org/10.3897/neotropical.14.e34841 Abstract Reproductive strategies are the combination of physiological, morphological, and behavioural traits interacting to increase species reproductive success within a set of environmental conditions. While the reproductive strategies of Leiuperinae are known, few studies have been conducted regarding the reproductive behaviour that underlies them. The aim of this study was to document the structural characteristics of nesting microsites, to describe the process of foam nest construction, and to explore the presence of male agonistic and chorus behaviour in Pleurodema tucumanum. Nests were found close to the edge of a temporary pond and the mean temperature of the foam nests was always close to the mean temperature of the pond water.
    [Show full text]
  • Chromosome Analysis of Five Brazilian
    c Indian Academy of Sciences RESEARCH ARTICLE Chromosome analysis of five Brazilian species of poison frogs (Anura: Dendrobatidae) PAULA CAMARGO RODRIGUES1, ODAIR AGUIAR2, FLÁVIA SERPIERI1, ALBERTINA PIMENTEL LIMA3, MASAO UETANEBARO4 and SHIRLEI MARIA RECCO-PIMENTEL1∗ 1Departamento de Anatomia, Biologia Celular e Fisiologia, Instituto de Biologia, Universidade Estadual de Campinas, 13083-863 Campinas, São Paulo, Brazil 2Departamento de Biociências, Universidade Federal de São Paulo, Campus Baixada Santista, 11060-001 Santos, São Paulo, Brazil 3Coordenadoria de Pesquisas em Ecologia, Instituto Nacional de Pesquisas do Amazonas, 69011-970 Manaus, Amazonas, Brazil 4Departamento de Biologia, Universidade Federal de Mato Grosso do Sul, 70070-900 Campo Grande, Mato Grosso do Sul, Brazil Abstract Dendrobatid frogs have undergone an extensive systematic reorganization based on recent molecular findings. The present work describes karyotypes of the Brazilian species Adelphobates castaneoticus, A. quinquevittatus, Ameerega picta, A. galactonotus and Dendrobates tinctorius which were compared to each other and with previously described related species. All karyotypes consisted of 2n = 18 chromosomes, except for A. picta which had 2n = 24. The karyotypes of the Adelphobates and D. tinctorius species were highly similar to each other and to the other 2n = 18 previously studied species, revealing conserved karyotypic characteristics in both genera. In recent phylogenetic studies, all Adelphobates species were grouped in a clade separated from the Dendrobates species. Thus, we hypothesized that their common karyotypic traits may have a distinct origin by chromosome rearrangements and mutations. In A. picta, with 2n = 24, chromosome features of pairs from 1 to 8 are shared with other previously karyotyped species within this genus. Hence, the A.
    [Show full text]
  • CHKCKLIS I and TAXONO^Irc RIBI JOGRAPHY of the AMPHIBL\NS from PERU
    CHKCKLIS I AND TAXONO^irC RIBI JOGRAPHY OF THE AMPHIBL\NS FROM PERU Victor R Morales Asociaci6n de Ecologia y Conservacion/Perii 'MH 2 U 1996 ^JpRARIES SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE NO. 107 1995 SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE The SHIS series publishes and distributes translations, bibliographies, indices, and similar items judged useful to individuals interested in the biology of amphibians and reptiles, but unlikely to be published in the normal technical journals. Single copies are distributed free to interested individuals. Libraries, herpetological associations, and research laboratories are invited to exchange their publications with the Division of Amphibians and Reptiles^ We wish to encourage individuals to share their bibliographies, translations, etc. with other herpetologists through the SHIS series. If you have such items please contact George Zug for instructions on preparation and submission. Contributors receive 50 free copies. Please address all requests for copies and inquiries to George Zug, Division of Amphibians and Reptiles, National Museum of Natural History, Smithsonian Institution, Washington DC 20560 USA. Please include a self-addressed mailing label with requests. INTRODUCTION Until 1985, when Darrel Frost published the Catalogue of the Amphibians Species of de World, no comprehensive list of amphibians of Peru existed. Now, Rodriguez et al . (1993) have plublished a preliminary list of Amphibians from Peru with species distribution in ecological regions. Herein, I list all the species of amphibians reported from Peru and annotations on some species listed for Rodriguez et al . (op. cit.). The present list contains the following (family/genus/species): in Gymnophiona: 5/6/16, in Caudata: 1/1/3, and in Anura: 9/44/298, the total is 15/51/316.
    [Show full text]
  • Antipredator Mechanisms of Post-Metamorphic Anurans: a Global Database and Classification System
    Utah State University DigitalCommons@USU Ecology Center Publications Ecology Center 5-1-2019 Antipredator Mechanisms of Post-Metamorphic Anurans: A Global Database and Classification System Rodrigo B. Ferreira Utah State University Ricardo Lourenço-de-Moraes Universidade Estadual de Maringá Cássio Zocca Universidade Vila Velha Charles Duca Universidade Vila Velha Karen H. Beard Utah State University Edmund D. Brodie Jr. Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/eco_pubs Part of the Ecology and Evolutionary Biology Commons Recommended Citation Ferreira, R.B., Lourenço-de-Moraes, R., Zocca, C. et al. Behav Ecol Sociobiol (2019) 73: 69. https://doi.org/ 10.1007/s00265-019-2680-1 This Article is brought to you for free and open access by the Ecology Center at DigitalCommons@USU. It has been accepted for inclusion in Ecology Center Publications by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. 1 Antipredator mechanisms of post-metamorphic anurans: a global database and 2 classification system 3 4 Rodrigo B. Ferreira1,2*, Ricardo Lourenço-de-Moraes3, Cássio Zocca1, Charles Duca1, Karen H. 5 Beard2, Edmund D. Brodie Jr.4 6 7 1 Programa de Pós-Graduação em Ecologia de Ecossistemas, Universidade Vila Velha, Vila Velha, ES, 8 Brazil 9 2 Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT, United 10 States of America 11 3 Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Universidade Estadual 12 de Maringá, Maringá, PR, Brazil 13 4 Department of Biology and the Ecology Center, Utah State University, Logan, UT, United States of 14 America 15 16 *Corresponding author: Rodrigo B.
    [Show full text]
  • AMPHIBIA: ANURA: LEPTODACTYLIDAE Leptodactylus Pentadactylus
    887.1 AMPHIBIA: ANURA: LEPTODACTYLIDAE Leptodactylus pentadactylus Catalogue of American Amphibians and Reptiles. Heyer, M.M., W.R. Heyer, and R.O. de Sá. 2011. Leptodactylus pentadactylus . Leptodactylus pentadactylus (Laurenti) Smoky Jungle Frog Rana pentadactyla Laurenti 1768:32. Type-locality, “Indiis,” corrected to Suriname by Müller (1927: 276). Neotype, Nationaal Natuurhistorisch Mu- seum (RMNH) 29559, adult male, collector and date of collection unknown (examined by WRH). Rana gigas Spix 1824:25. Type-locality, “in locis palu - FIGURE 1. Leptodactylus pentadactylus , Brazil, Pará, Cacho- dosis fluminis Amazonum [Brazil]”. Holotype, Zoo- eira Juruá. Photograph courtesy of Laurie J. Vitt. logisches Sammlung des Bayerischen Staates (ZSM) 89/1921, now destroyed (Hoogmoed and Gruber 1983). See Nomenclatural History . Pre- lacustribus fluvii Amazonum [Brazil]”. Holotype, occupied by Rana gigas Wallbaum 1784 (= Rhin- ZSM 2502/0, now destroyed (Hoogmoed and ella marina {Linnaeus 1758}). Gruber 1983). Rana coriacea Spix 1824:29. Type-locality: “aquis Rana pachypus bilineata Mayer 1835:24. Type-local MAP . Distribution of Leptodactylus pentadactylus . The locality of the neotype is indicated by an open circle. A dot may rep - resent more than one site. Predicted distribution (dark-shaded) is modified from a BIOCLIM analysis. Published locality data used to generate the map should be considered as secondary sources, as we did not confirm identifications for all specimen localities. The locality coordinate data and sources are available on a spread sheet at http://learning.richmond.edu/ Leptodactylus. 887.2 FIGURE 2. Tadpole of Leptodactylus pentadactylus , USNM 576263, Brazil, Amazonas, Reserva Ducke. Scale bar = 5 mm. Type -locality, “Roque, Peru [06 o24’S, 76 o48’W].” Lectotype, Naturhistoriska Riksmuseet (NHMG) 497, age, sex, collector and date of collection un- known (not examined by authors).
    [Show full text]