Synthesis of Patterned Media by Self-Assembly of Magnetic

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis of Patterned Media by Self-Assembly of Magnetic http://wjst.wu.ac.th Health Sciences Effects of Three-Dimension Schroth Exercises and Kinesio Taping on General Mobility of Vertebrae, Angle of Trunk Rotation, Muscle Strength and Endurance of Trunk, and Inspiratory and Expiratory Muscle Strength in Children with Idiopathic Scoliosis Roongtip DUANGKEAW1,*, Teerapat LADDAWONG1, Numchai RATTANAPONGBUNDIT2 and Burawan POLMANG3 1Department of Physical Therapy, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12120, Thailand 2Division of Sports Medicine, Department of Sports Science, Sports Authority of Thailand, Bangkok 10240, Thailand 3Division of Sports Research and Development, Department of Sports Science, Sports Authority of Thailand, Bangkok 10240, Thailand (*Corresponding author’s e-mail: [email protected]) Received: 21 July 2017, Revised: 21 December 2018, Accepted: 21 January 2019 Abstract This study aimed to compare the effects of 3-dimension Schroth exercises and Kinesio taping (KT) on several variables in children with idiopathic scoliosis. Female volunteers aged 10 - 18 years with an angle trunk rotation > 7 degrees participated in the study. The 16 volunteers were divided into 2 groups: ‘Three-dimension Schroth exercises’ (Con) and ‘Kinesio tape with Schroth exercises’ (KT). The training program comprised 2 sessions per week with 2 h per session for 6 consecutive weeks. Significant increases of maximal inspiratory pressure (Con; p = 0.046), maximal expiratory pressure (Con; p = 0.046, KT; p = 0.047), and back muscle endurance (Con; p = 0.028, KT; p = 0.028) were recorded. Significant decreases of angle trunk rotation at the thoracic level (Con; p = 0.046, KT; p = 0.017) and the lumbar level (Con; p = 0.042, KT; p = 0.041) were recorded. In conclusion, 3-dimension Schroth exercises and KT with Schroth exercises can increase maximal expiratory pressure, back muscle endurance, and angle of trunk rotation at the thoracic and the lumbar level. Keywords: Three-dimension Schroth exercises, Kinesio tape, idiopathic scoliosis, angle of trunk rotation, inspiratory and expiratory muscle strength Introduction Idiopathic scoliosis (IS) is a disorder in which the spine shows an abnormal lateral curvature. IS occurs in 3-D; the spine is bent sideways in conjunction with its rotation, causing an altered curve of the scapula [1,2]. Scoliosis leads to deformities of the thoracic cage, weakness of the respiratory muscles, and limited mobility of the spine. In addition, there may be some pain involved [3-7]. A study by Inal-Ince et al. [8] found that the maximal inspiratory pressure, maximum inspiratory pressure (MIP) and maximal expiratory pressure, and maximal expiratory pressure (MEP) in patients with scoliosis that is caused by the nervous system is less than healthy. Furthermore, Martinez-Llorens et al. [9] reported that MIP and MEP in a group of IS patients were not normal. Schiller et al. [10] suggested that people with scoliosis should be exercising to be able to move better. Šarčević et al. [11] studied the strength of the muscle groups used in the posture of children with scoliosis aged 10 - 16 years. The authors found that the quadratus lumborum and gluteus medius muscles Walailak J Sci & Tech 2019; 16(12): 965-973. Schroth Exercises and Kinesio Taping Roongtip DUANGKEAW et al. http://wjst.wu.ac.th on the convex side of the spinal curvature were weaker than those on the concave side of the spine. The erector spine lumbalis and multifidus muscles of the concave side of the spine were weaker when compared with the convex side. In the thoracic region, the middle trapezius, lower trapezius, and serratus anterior muscles on the convex side were weak compared to the concave side. In addition, the rhomboid muscles on the concave side were weak compared to muscles on the convex side. If childhood scoliosis is left untreated, it will continue to cause problems in later life. Examples are low back pain disability, complications in the cardiopulmonary system and, associated with the limited body functionality, a low self-esteem [4,12-16]. The goal of the treatment of scoliosis with a conservative approach is to prevent curve progression throughout pubertal growth. This will reduce or even avoid development of respiratory cardiopulmonary problems and back pain caused by scoliosis. Treatment of scoliosis with specific exercises is a popular way to correct spine curvature. The 3-dimension Schroth exercises are a popular and widely known example of such exercises. Several studies demonstrated that exercise improved spinal conditions from 12 - 100 % [15,17-20]. The Cobb angle of 50 children (average age: 14.1 years) with scoliosis decreased from 26.18 to 17.88 after exercises for 6 weeks, 2 h per day, 5 days a week [17]. Afterwards the patients received a program to continue to work at home for 90 min a day. In another study, 43 children (average age: 12 years) with scoliosis and an average Cobb angle of 19.58 degrees underwent an exercise program [18]. The exercises continued for a period of 3 months, 2 h per day, 2 days per week. The patients did not receive any home exercise program. The results of the study showed that the participants improved their Cobb angle up to 44.2 %. Furthermore, Schroth treatment demonstrated a positive effect on back muscle strength and endurance [17,34]. In an RCT study, Schreiber et al. [34] revealed that Schroth treatment combined with the standard of care improved back muscle endurance in children with AIS after a 6- month training period. In addition, Otman et al. [17] reported Schroth treatment increased back muscle strength after 6 weeks, 6 months, and 1 year in all participants. To the best of the authors’ knowledge, there are only a limited number of studies of Schroth exercises that report on these results. Kinesio® taping method (KT) is linked to the tape that was developed by Dr. Kenzo Kase in 1979 and is still popular today. The tape is an elastic fabric and is designed to suit the properties of human skin. The flexibility of the tape is similar to skin, with an elasticity of 40 - 60 % of its resting length. It can also reduce the risk of skin irritation due to latex adhesive. The correct application of this tape is designed to fulfill 4 main objectives: (1) support muscle function, (2) adjust movement of the joints, (3) stimulate receptors in the skin, and (4) increase lymph flow under the skin [21-23]. A recent study found that KT is likely to stimulate muscle function. Hsu et al. [24] studied the effect of KT on the movement of the scapula and muscle function in baseball patients with shoulder impingement syndrome. They found that the use of KT with muscle facilitation techniques can activate the lower trapezius muscle during 60 - 30° abduction when compared with non-elastic tape. This finding is consistent with the study of Huang et al. [25] in which the authors found that the medial gastrocnemius muscle tends to work more in the KT group compared to the conventional elastic tape group. Also, Mirafzal et al. [26] presented results of high statistical significance showing that KT with exercise helps to shape a better posture in kyphotic adolescents. Chang et al. [27] studied the mistakes of grip strength in healthy athletes and found that KT has a lesser margin of error compared to placebo tape and no tape. This shows that KT can stimulate perception through skin and proprioceptive senses. The benefits of KT for the treatment of patients with idiopathic scoliosis have been demonstrated in additional researches. For example, KT was used with the objective to reduce pain, to activate muscles, and to stimulate awareness through receptors of the body [28]. Bac et al. [29] studied the effect of KT on children with scoliosis in comparison to non-elastic tape. The results showed a better angle of the spine and higher muscle tone in the KT group. The daily activities of the children improved and pain was reduced. In addition, these effects should persist for a longer time. Parents reported that KT motivated their children to exercise more. The expectation of the present study was to see if there is a superior effect on health if Schroth exercises are combined with KT. The result could then be used as a clinical guideline for the physiotherapeutic treatment of adolescent idiopathic scoliosis. Therefore, the objectives of this study were to study the effects of 3-dimension Schroth exercises and KT on general mobility of vertebrae, angle of 966 Walailak J Sci & Tech 2019; 16(12) Schroth Exercises and Kinesio Taping Roongtip DUANGKEAW et al. http://wjst.wu.ac.th trunk rotation, muscle strength and endurance of trunk, and inspiratory and expiratory muscle strength in adolescent idiopathic scoliosis. Materials and methods A total number of 16 female volunteers, aged 10 - 18 years and with an angle trunk rotation of more than 7 degrees [29], participated in the study. Inclusion conditions were: no history of spinal surgery, no history of allergies KT, and able to participate throughout the study. All included participants understood the purpose of this study and provided written informed consent prior to take part in this study. The protocol of this study was approved by the Ethical Review Sub-Committee Board for Human Research Involving Sciences, Thammasat University, No. 3. Volunteers were required to attend a total of 14 days. Data were collected on the first and the last day, before and after exercise. The recorded data included: general mobility of vertebrae, angle of trunk rotation, muscle strength and endurance of trunk, and inspiratory and expiratory muscle strength. Sixteen volunteers were randomly assigned into 2 groups ‘Three-dimension Schroth exercises’ (Con) or group ‘Kinesio tape with Schroth exercises’ (KT). Training sessions were scheduled for 2 days per week, 2 h per day for 6 consecutive weeks (total twelve days).
Recommended publications
  • The Erector Spinae Plane Block a Novel Analgesic Technique in Thoracic Neuropathic Pain
    CHRONIC AND INTERVENTIONAL PAIN BRIEF TECHNICAL REPORT The Erector Spinae Plane Block A Novel Analgesic Technique in Thoracic Neuropathic Pain Mauricio Forero, MD, FIPP,*Sanjib D. Adhikary, MD,† Hector Lopez, MD,‡ Calvin Tsui, BMSc,§ and Ki Jinn Chin, MBBS (Hons), MMed, FRCPC|| Case 1 Abstract: Thoracic neuropathic pain is a debilitating condition that is often poorly responsive to oral and topical pharmacotherapy. The benefit A 67-year-old man, weight 116 kg and height 188 cm [body of interventional nerve block procedures is unclear due to a paucity of ev- mass index (BMI), 32.8 kg/m2] with a history of heavy smoking idence and the invasiveness of the described techniques. In this report, we and paroxysmal supraventricular tachycardia controlled on ateno- describe a novel interfascial plane block, the erector spinae plane (ESP) lol, was referred to the chronic pain clinic with a 4-month history block, and its successful application in 2 cases of severe neuropathic pain of severe left-sided chest pain. A magnetic resonance imaging (the first resulting from metastatic disease of the ribs, and the second from scan of his thorax at initial presentation had been reported as nor- malunion of multiple rib fractures). In both cases, the ESP block also pro- mal, and the working diagnosis at the time of referral was post- duced an extensive multidermatomal sensory block. Anatomical and radio- herpetic neuralgia. He reported constant burning and stabbing logical investigation in fresh cadavers indicates that its likely site of action neuropathic pain of 10/10 severity on the numerical rating score is at the dorsal and ventral rami of the thoracic spinal nerves.
    [Show full text]
  • Congenital Bilateral Absence of Levator Scapulae Muscles: a Case Report Stephanie Klinesmith, Randy Kuleszat
    CASE REPORT Congenital bilateral absence of levator scapulae muscles: A case report Stephanie Klinesmith, Randy Kuleszat Klinesmith S, Kulesza R. Congenital bilateral absence of levator we report dissection of a cadaveric specimen where the levator scapulae muscles: A case report. Int J Anat Var. 2020;13(1): 66-67. scapulae muscle was absent bilaterally. While bilateral congenital absence of the levator scapular appears to be an extremely rare The levator scapulae muscle is a thin, four-bellied muscle occurrence, the absence of this muscle might put neurovascular spanning the posterior neck and scapular region. Previous case bundles in the posterior neck and scapular region at increased risk reports have documented highly variable origins and insertions of this muscle, with the most common variations being from penetrating trauma or surgical procedures. additional slips and bellies. However, there are no previous Key Words: Levator scapulae; Anatomical variation; Congenital reports demonstrating congenital absence of this muscle. Herein, absence INTRODUCTION he levator scapulae muscle (LSM) is a bilaterally symmetric muscle that Toriginates from the transverse processes of the first through fourth cervical vertebrae and inserts onto the superior angle of medial border of the scapula [1]. The LSM is in contact anteriorly with the middle scalene muscle, laterally with the sternocleidomastoid and trapezius muscles, posteriorly with the splenius cervicis muscle and medially with the posterior scalene muscle [2]. The LSM is innervated by the dorsal scapular nerve, as well as the anterior rami of the C3 and C4 spinal nerves. The primary function of the levator scapulae is elevating the scapula [1], however it has been suggested that it also assists in downward rotation of the scapula [2].
    [Show full text]
  • SŁOWNIK ANATOMICZNY (ANGIELSKO–Łacinsłownik Anatomiczny (Angielsko-Łacińsko-Polski)´ SKO–POLSKI)
    ANATOMY WORDS (ENGLISH–LATIN–POLISH) SŁOWNIK ANATOMICZNY (ANGIELSKO–ŁACINSłownik anatomiczny (angielsko-łacińsko-polski)´ SKO–POLSKI) English – Je˛zyk angielski Latin – Łacina Polish – Je˛zyk polski Arteries – Te˛tnice accessory obturator artery arteria obturatoria accessoria tętnica zasłonowa dodatkowa acetabular branch ramus acetabularis gałąź panewkowa anterior basal segmental artery arteria segmentalis basalis anterior pulmonis tętnica segmentowa podstawna przednia (dextri et sinistri) płuca (prawego i lewego) anterior cecal artery arteria caecalis anterior tętnica kątnicza przednia anterior cerebral artery arteria cerebri anterior tętnica przednia mózgu anterior choroidal artery arteria choroidea anterior tętnica naczyniówkowa przednia anterior ciliary arteries arteriae ciliares anteriores tętnice rzęskowe przednie anterior circumflex humeral artery arteria circumflexa humeri anterior tętnica okalająca ramię przednia anterior communicating artery arteria communicans anterior tętnica łącząca przednia anterior conjunctival artery arteria conjunctivalis anterior tętnica spojówkowa przednia anterior ethmoidal artery arteria ethmoidalis anterior tętnica sitowa przednia anterior inferior cerebellar artery arteria anterior inferior cerebelli tętnica dolna przednia móżdżku anterior interosseous artery arteria interossea anterior tętnica międzykostna przednia anterior labial branches of deep external rami labiales anteriores arteriae pudendae gałęzie wargowe przednie tętnicy sromowej pudendal artery externae profundae zewnętrznej głębokiej
    [Show full text]
  • Winged Scapula Caused by a Dorsal Scapular Nerve Lesion: a Case Report Kenan Akgun, MD, Ilknur Aktas, MD, Yeliz Terzi, MD
    2017 CLINICAL NOTE Winged Scapula Caused by a Dorsal Scapular Nerve Lesion: A Case Report Kenan Akgun, MD, Ilknur Aktas, MD, Yeliz Terzi, MD ABSTRACT. Akgun K, Aktas I, Terzi Y. Winged Here,scapula we present a patient with a winged scapula caused by caused by a dorsal scapular nerve lesion: a case areport. dorsal Archscapular nerve lesion and discuss this condition in the Phys Med Rehabil 2008;89:2017-20. light of previous reports. Dorsal scapular nerve lesions are quite rare. A case of a CASE DESCRIPTION 51-year-old man who had right shoulder pain, weakness of A 51-year-old right-hand– dominant man was admitted to right arm elevation, and prominence of right scapula for 6 our shoulder clinic with a 6-month history of weakness of right months is presented. The condition had been abruptly devel- arm elevation and a prominence of his right scapula. The oped after lifting a heavy box overhead on which he felt a sharp condition had been abruptly developed after lifting a heavy box pain in the right shoulder. On clinical examination, there was a overhead on which he felt a sharp pain in the right shoulder. prominence of the lower medial border and inferior angle of the There was no history of recent viral infection, immunization, right scapula compared with the left. In addition, the right sports injury, chiropractic manipulation, shoulder or thorax scapula was located more lateral. Magnetic resonance imaging surgery, or family history. Physical examination revealed that of the thorax revealed the presence of a thinner rhomboid major the cervical spine was normal.
    [Show full text]
  • SCAPULAR and THORACIC PLACEMENT in KAYAKING By
    CORE Metadata, citation and similar papers at core.ac.uk Provided by British Columbia's network of post-secondary digital repositories SCAPULAR AND THORACIC PLACEMENT IN KAYAKING by Noah Nochasak THOMPSON RIVERS UNIVERSITY A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Bachelor of Interdisciplinary Studies KAMLOOPS, BRITISH COLUMBIA April, 2018 Thesis examining committee: Sarah Osberg (MSc), Thesis Supervisor, Master in Outdoor, Environmental and Sustainability Education Iain Stewart-Patterson (PhD), Committee Member, Doctorate of Philosophy Mark Rakobowchuk, (PhD), Committee Member, Doctorate of Kinesiology © Noah Nochasak, 2018 SCAPULAR AND THORACIC PLACEMENT IN KAYAKING 2 ABSTRACT Anatomical understanding is needed in kayaking scapular and thoracic placement, key elements to the forward stroke, to provide a more insightful understanding of the frequent amount of injuries to these areas, and hopefully quell them. What can be done to help serious kayakers see the forward stroke from a biological standpoint with limited resources to address this topic directly? With more information and references, kayakers will have a better chance of breaking down kayak motion and be able to use that knowledge to enhance their kayaking life. With adventure sports, the body is an especially vital tool. Kayaking performance becomes very poor with shoulder and back dysfunction; this is like a car with flat tires. A well-functioning body, aided by relevant human biological knowledge is useful to the adventurous kayaker to help propel the craft forward. Kayakers typically have very limited understanding of human anatomy and physiology. They tend to have a strong outdoor knowledge yet a weak knowledge of their own indoors.
    [Show full text]
  • Anatomy Module 3. Muscles. Materials for Colloquium Preparation
    Section 3. Muscles 1 Trapezius muscle functions (m. trapezius): brings the scapula to the vertebral column when the scapulae are stable extends the neck, which is the motion of bending the neck straight back work as auxiliary respiratory muscles extends lumbar spine when unilateral contraction - slightly rotates face in the opposite direction 2 Functions of the latissimus dorsi muscle (m. latissimus dorsi): flexes the shoulder extends the shoulder rotates the shoulder inwards (internal rotation) adducts the arm to the body pulls up the body to the arms 3 Levator scapula functions (m. levator scapulae): takes part in breathing when the spine is fixed, levator scapulae elevates the scapula and rotates its inferior angle medially when the shoulder is fixed, levator scapula flexes to the same side the cervical spine rotates the arm inwards rotates the arm outward 4 Minor and major rhomboid muscles function: (mm. rhomboidei major et minor) take part in breathing retract the scapula, pulling it towards the vertebral column, while moving it upward bend the head to the same side as the acting muscle tilt the head in the opposite direction adducts the arm 5 Serratus posterior superior muscle function (m. serratus posterior superior): brings the ribs closer to the scapula lift the arm depresses the arm tilts the spine column to its' side elevates ribs 6 Serratus posterior inferior muscle function (m. serratus posterior inferior): elevates the ribs depresses the ribs lift the shoulder depresses the shoulder tilts the spine column to its' side 7 Latissimus dorsi muscle functions (m. latissimus dorsi): depresses lifted arm takes part in breathing (auxiliary respiratory muscle) flexes the shoulder rotates the arm outward rotates the arm inwards 8 Sources of muscle development are: sclerotome dermatome truncal myotomes gill arches mesenchyme cephalic myotomes 9 Muscle work can be: addacting overcoming ceding restraining deflecting 10 Intrinsic back muscles (autochthonous) are: minor and major rhomboid muscles (mm.
    [Show full text]
  • Analysis of Recruitment of the Superficial and Deep Scapular Muscles in Patients with Chronic Shoulder Or Neck Pain, and Implications for Rehabilitation Exercises
    ANALYSIS OF RECRUITMENT OF THE SUPERFICIAL AND DEEP SCAPULAR MUSCLES IN PATIENTS WITH CHRONIC SHOULDER OR NECK PAIN, AND IMPLICATIONS FOR REHABILITATION EXERCISES BIRGIT CASTELEIN Thesis submitted in fulfillment of the requirements for the degree of Doctor in Health Sciences Ghent University, 2016 PROMOTOR Prof. Dr. Ann Cools Ghent University, Ghent, Belgium CO-PROMOTOR Prof. Dr. Barbara Cagnie Ghent University, Ghent, Belgium SUPERVISORY BOARD Prof. Dr. Lieven Danneels Ghent University, Ghent, Belgium Prof. Dr. Erik Achten Ghent University, Ghent, Belgium EXAMINATION BOARD Prof. Dr. Lori Michener University of Southern California, Los Angeles, USA Prof. Dr. Filip Struyf University of Antwerp, Antwerp, Belgium Dr. Katie Bouche Ghent University Hospital, Ghent, Belgium Prof. Dr. Damien Van Tiggelen Ghent University, Ghent, Belgium Prof. Dr. Jessica Van Oosterwijck Ghent University, Ghent, Belgium TABLE OF CONTENTS GENERAL INTRODUCTION .................................................................................................................. 1 1. The role of the scapula in normal upper limb function ................................................................... 4 2. Scapulothoracic muscle recruitment during arm elevation .............................................................. 6 2.1 Superficial lying scapulothoracic muscles ................................................................................. 6 2.2 Deeper lying scapulothoracic muscles .....................................................................................
    [Show full text]
  • Intramuscular Neural Distribution of Rhomboid Muscles: Evaluation for Botulinum Toxin Injection Using Modified Sihler’S Method
    toxins Article Intramuscular Neural Distribution of Rhomboid Muscles: Evaluation for Botulinum Toxin Injection Using Modified Sihler’s Method Kyu-Ho Yi 1, Hyung-Jin Lee 2, You-Jin Choi 2, Ji-Hyun Lee 2 , Kyung-Seok Hu 2 and Hee-Jin Kim 2,3,* 1 Inje County Public Health Center, Inje 24633, Korea; [email protected] 2 Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 PLUS Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; [email protected] (H.-J.L.); [email protected] (Y.-J.C.); [email protected] (J.-H.L.); [email protected] (K.-S.H.) 3 Department of Materials Science & Engineering, College of Engineering, Yonsei University, Seoul 03722, Korea * Correspondence: [email protected] Received: 28 February 2020; Accepted: 30 April 2020; Published: 3 May 2020 Abstract: This study describes the nerve entry point and intramuscular nerve branching of the rhomboid major and minor, providing essential information for improved performance of botulinum toxin injections and electromyography. A modified Sihler method was performed on the rhomboid major and minor muscles (10 specimens each). The nerve entry point and intramuscular arborization areas were identified in terms of the spinous processes and medial and lateral angles of the scapula. The nerve entry point for both the rhomboid major and minor was found in the middle muscular area between levels C7 and T1. The intramuscular neural distribution for the rhomboid minor had the largest arborization patterns in the medial and lateral sections between levels C7 and T1. The rhomboid major muscle had the largest arborization area in the middle section between levels T1 and T5.
    [Show full text]
  • Anatomy and Physiology Model Guide Book
    Anatomy & Physiology Model Guide Book Last Updated: August 8, 2013 ii Table of Contents Tissues ........................................................................................................................................................... 7 The Bone (Somso QS 61) ........................................................................................................................... 7 Section of Skin (Somso KS 3 & KS4) .......................................................................................................... 8 Model of the Lymphatic System in the Human Body ............................................................................. 11 Bone Structure ........................................................................................................................................ 12 Skeletal System ........................................................................................................................................... 13 The Skull .................................................................................................................................................. 13 Artificial Exploded Human Skull (Somso QS 9)........................................................................................ 14 Skull ......................................................................................................................................................... 15 Auditory Ossicles ....................................................................................................................................
    [Show full text]
  • Enhancing Trigger Point Dry Needling Safety by Ultrasound Skin-To-Rib Measurement: an Inter-Rater Reliability Study
    Journal of Clinical Medicine Article Enhancing Trigger Point Dry Needling Safety by Ultrasound Skin-to-Rib Measurement: An inter-Rater Reliability Study Anna Folli 1,* , Alessandro Schneebeli 1 , Simone Ballerini 2, Francesca Mena 3, Emiliano Soldini 4,César Fernández-de-las-Peñas 5,6 and Marco Barbero 1 1 Rehabilitation Research Laboratory 2rLab, Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, 6928 Manno, Switzerland; [email protected] (A.S.); [email protected] (M.B.) 2 Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, 6928 Manno, Switzerland; [email protected] 3 Private physical therapy practitioner, 6850 Mendrisio, Switzerland; francesca.menafi[email protected] 4 Research Methodology Competence Centre, Department of Business Economics, Health and Social Care; University of Applied Sciences and Arts of Southern Switzerland, 6928 Manno, Switzerland; [email protected] 5 Department of Physical Therapy, Occupational Therapy, Physical Medicine and Rehabilitation, Universidad Rey Juan Carlos (URJC), 28922 Alcorcón, Madrid, Spain; [email protected] 6 Cátedra Institucional en Docencia, Clínica e Investigación en Fisioterapia: Terapia Manual, Punción Seca y Ejercicio Terapéutico, Universidad Rey Juan Carlos, 28922 Alcorcón, Madrid, Spain * Correspondence: [email protected] Received: 18 May 2020; Accepted: 19 June 2020; Published: 23 June 2020 Abstract: Dry needling (DN) is a minimally invasive treatment technique widely used by physical therapists to treat myofascial trigger points (MTrP). Even if its safety has been commonly declared and the majority of adverse events are considered mild, serious adverse events cannot be excluded and DN treatments of several trunk muscles can potentially result in pneumothorax.
    [Show full text]
  • A Unique Anatomical Variant of the Levator Scapulae Muscle: a Case Report
    Scientific Foundation SPIROSKI, Skopje, Republic of Macedonia Open Access Macedonian Journal of Medical Sciences. 2020 Jul 25; 8(A):457-460. https://doi.org/10.3889/oamjms.2020.4608 eISSN: 1857-9655 Category: A - Basic Sciences Section: Anatomy A Unique Anatomical Variant of the Levator Scapulae Muscle: A Case Report Adegbenro Omotuyi John Fakoya1*, Samantha Michelle De Filippis2, Aaron D’Souza2, Gabriela Arizmendi-Vélez2, Ariel Jazmine Rucker2, Nihal Satyadev2, Nithin Ravikumar2, Abayomi Gbolahan Afolabi1, Thomas McCracken1, David Otohinoyi3 1Department of Anatomy, University of Medicine and Health Sciences, Basseterre, St. Kitts and Nevis; 2Medical Student, University of Medicine and Health Sciences, Basseterre, St. Kitts and Nevis; 3Department of Research, All Saints University, College of Medicine, Saint Vincent and Grenadines Abstract Edited by: Slavica Hristomanova-Mitkovska Musculature variations in the head and neck are typically observed in cadaveric dissections. Some of these Citation: Fakoya AOJ, De Filippis SM, D’Souza A, Arizmendi-Vélez GE, Rucker AJ, Satyadev N, variations could involve the levator scapulae muscle, which may lead to cervical and postural misalignment. The Ravikumar NK, Afolabi AG, McCracken T, Otohinoyi D. A levator scapulae function to elevate the scapula and rotate it downward. In this case report, we present an 88-year- Unique Anatomical Variant of the Levator Scapulae old male cadaver diagnosed with thoracic kyphosis having a double-bellied levator scapulae, originating from the Muscle: A Case Report. Open Access Maced J Med Sci. 2020 Jul 25; 8(A):457-460. https://doi.org/10.3889/ transverse processes of C1-C4 and the mastoid process. This abnormality, not found elsewhere in our search of oamjms.2020.4608 literature, can give physicians insight into upper back pain management and surgical navigation of the posterior Keywords: Levator scapulae muscle; Anatomical variation; Head-and-neck anatomy; Cervical vertebrae; cervical and upper back regions.
    [Show full text]
  • A Cadaveric Study of the Erector Spinae Plane Block in a Neonatal Sample
    A cadaveric study of the erector spinae plane block in a neonatal sample. Sabashnee Govender1,2*; Dwayne Mohr2; Adrian Bosenberg3; Albert Neels Van Schoor2. 1Department of Anatomy, School of Medicine, Sefako Makgatho Health Sciences University, Ga- Rankuwa, South Africa. 2Department of Anatomy, Section of Clinical Anatomy, School of Medicine, Faculty of Health Sciences, University of Pretoria, Gauteng, South Africa. 3Department Anaesthesiology and Pain Management, University Washington and Seattle Children's Hospital, Seattle, Washington, United States of America. *Correspondence: Ms Sabashnee Govender, Department of Anatomy, School of Medicine, Sefako Makgatho Health Sciences University, PO Box 232, Ga-Rankuwa 024, South Africa. Email: [email protected]. Contact: +27125214502. Word count: 3115 Abbreviations: 1. ESP – erector spinae plane Key words: cranio-caudal, dermatomes, erector spinae plane block, nerve block, ultrasound-guided. Abstract Background: The aim of this article was to provide a detailed description of the anatomy related to the erector spinae plane block. As well as to track the spread of the dye within the fascial plane to report on the dermatomal coverage. Methods: Using ultrasound guidance, the bony landmarks and anatomy of the erector spinae fascial plane space was identified. The erector spinae plane block was then replicated unilaterally in two fresh unembalmed neonatal cadavers. Using methylene blue dye, the block was performed at vertebral levels T5 – using 0.5ml in cadaver 1 – and T8 – using 0.2ml in cadaver 2. The cranio-caudal spread of dye was tracked within the space on the ultrasound screen and further confirmed upon dissection. Results: Cranio-caudal spread was noted from vertebral levels T3 to T6 when the dye was introduced at vertebral level T5 and from vertebral levels T7 to T11 when the dye was introduced at vertebral level T8.
    [Show full text]