Handy Math MB 8/19/07 9:00 PM Page 3
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MATH 15, CLS 15 — Spring 2020 Problem Set 1, Due 24 January 2020
MATH 15, CLS 15 — Spring 2020 Problem set 1, due 24 January 2020 General instructions for the semester: You may use any references you like for these assignments, though you should not need anything beyond the books on the syllabus and the specified web sites. You may work with your classmates provided you all come to your own conclusions and write up your own solutions separately: discussing a problem is a really good idea, but letting somebody else solve it for you misses the point. When a question just asks for a calculation, that’s all you need to write — make sure to show your work! But if there’s a “why” or “how” question, your answer should be in the form of coherent paragraphs, giving evidence for the statements you make and the conclusions you reach. Papers should be typed (double sided is fine) and handed in at the start of class on the due date. 1. What is mathematics? Early in the video you watched, du Sautoy says the fundamental ideas of mathematics are “space and quantity”; later he says that “proof is what gives mathematics its strength.” English Wikipedia tells us “mathematics includes the study of such topics as quantity, structure, space, and change,” while Simple English Wikipedia says “mathematics is the study of numbers, shapes, and patterns.” In French Wikipedia´ we read “mathematics is a collection of abstract knowledge based on logical reasoning applied to such things as numbers, forms, structures, and transformations”; in German, “mathematics is a science that started with the study of geometric figures and calculations with numbers”; and in Spanish, “mathematics is a formal science with, beginning with axioms and continuing with logical reasoning, studies the properties of and relations between abstract objects like numbers, geometric figures, or symbols” (all translations mine). -
Abstract of Counting Systems of Papua New Guinea and Oceania
Abstract of http://www.uog.ac.pg/glec/thesis/ch1web/ABSTRACT.htm Abstract of Counting Systems of Papua New Guinea and Oceania by Glendon A. Lean In modern technological societies we take the existence of numbers and the act of counting for granted: they occur in most everyday activities. They are regarded as being sufficiently important to warrant their occupying a substantial part of the primary school curriculum. Most of us, however, would find it difficult to answer with any authority several basic questions about number and counting. For example, how and when did numbers arise in human cultures: are they relatively recent inventions or are they an ancient feature of language? Is counting an important part of all cultures or only of some? Do all cultures count in essentially the same ways? In English, for example, we use what is known as a base 10 counting system and this is true of other European languages. Indeed our view of counting and number tends to be very much a Eurocentric one and yet the large majority the languages spoken in the world - about 4500 - are not European in nature but are the languages of the indigenous peoples of the Pacific, Africa, and the Americas. If we take these into account we obtain a quite different picture of counting systems from that of the Eurocentric view. This study, which attempts to answer these questions, is the culmination of more than twenty years on the counting systems of the indigenous and largely unwritten languages of the Pacific region and it involved extensive fieldwork as well as the consultation of published and rare unpublished sources. -
Duodecimalbulletinissue521.Pdf
The Duodecimal Bulletin THETHE DuodecimalDuodecimal BulletinBulletin Vol. 52z (62d), No. 1 • July 11EEz (2015d) • Volume 52 z (62 d ), Number 1 • Whole Number X 2 z (122 d ) • July 11 Base Annotation Schemes Whole Number EE z (2015 X d ) z (122 ) ISSN 0046-0826d 2d X ETY Volume Five Dozen Two (52z) Number 1 Whole Number Ten Dozen Two ( 2z) CI O The Dozenal Society of America • • O F is a voluntary, nonprofit corporation, organized to S E 0 1 A L conduct research and educate the public in the use X 2 M The DuodecimalDuodecimal A of base twelve in calculations, mathematics, weights DuodecimalDuodecimalDuodecimal 9 3 E N R and measures, and other branches of pure and ap- E 8 4 I Bulletin Z BulletinBulletin C BulletinBulletin 7 5 plied science. BulletinBulletinBulletinBulletin A O 6 D Volume Sixty Two (62 ) Number 1 Whole No. One Hundred Twenty Two (122 ) d • • d S Basic membership is free, but as a nonprofit we de- pend upon the generosity of our members to continue operating. An annual subscription of US$18.00d B Table of Contents C The Duodecimal Bulletin (US$16.00z) entitles the member to delivery of pa- is an official publication of: per copies of The Duodecimal Bulletin. President’s Message by Donald Goodman ....................................................2z Officers The Dozenal Society Editorial: Radically Conventional ..................................3z Board Chair Jay Schiffman of America, Inc. New Members ...........................................................7z 13510 Photo Drive President Donald Goodman Accuracy of Common Roundings Vice President Graham Steele Woodbridge, VA 22193 by Donald Goodman ....................................................8z Secretary Jen Seron Base Annotation Schemes Treasurer Jay Schiffman Founded: 1160z (1944d) by John Volan.........................................................10z Patterns and Palatable Morsels in Duodecimal Official Website: Board of Directors by Prof. -
A.C. Myshrall
CHAPTER 9. AN INTRODUCTION TO LECTIONARY 299 (A.C. MYSHRALL) Codex Zacynthius, as it is currently bound, is a near-complete Greek gospel lectionary dating to the late twelfth century. Very little work has been done on this lectionary because of the intense interest in the text written underneath. Indeed, New Testament scholars have generally neglected most lectionaries in favour of working on continuous text manuscripts.1 This is largely down to the late date of most of the available lectionaries as well as the assumption that they form a separate, secondary, textual tradition. However, the study of Byzantine lectionaries is vital to understand the development of the use of the New Testament text. Nearly half of the catalogued New Testament manuscripts are lectionaries.2 These manuscripts show us how, in the words of Krueger and Nelson, ‘Christianity is not so much the religion of the New Testament as the religion of its use’.3 These lectionaries were how the Byzantine faithful heard the Bible throughout the Church year, how they interacted with the Scriptures, and they open a window for us to see the worship of a particular community in a particular time and place. THE LECTIONARY A lectionary is a book containing selected scripture readings for use in Christian worship on a given day. The biblical text is thus arranged not in the traditional order of the Bible, but in the order of how the readings appear throughout the year of worship. So, not all of the Bible is included (the Book of Revelation never appears in a Greek lectionary) and the 1 Exceptions to this include the Chicago Lectionary Project (for an overview of the project see Carroll Osburn, ‘The Greek Lectionaries of the New Testament,’ in The Text of the New Testament. -
Ternary and Senary Representations Using DNA Double-Crossover Tiles
Ternary and senary representations using DNA double-crossover tiles Byeonghoon Kim1,5, Soojin Jo2,5, Junyoung Son1,5, Junghoon Kim1,5, Min Hyeok Kim2, Si Un Hwang1, Sreekantha Reddy Dugasani1, Byung-Dong Kim3, Wing Kam Liu4, Moon Ki Kim2,6 and Sung Ha Park1,6 1 Sungkyunkwan Advanced Institute of Nanotechnology (SAINT) and Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea 2 Sungkyunkwan Advanced Institute of Nanotechnology (SAINT) and School of Mechanical Engineering, Sungkyunkwan University, Suwon 440-746, Korea 3 Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Korea 4 Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA 5 These authors contributed equally. 6 Address for correspondence: School of Mechanical Engineering, Sungkyunkwan University, Suwon 440-746, Korea (MKK) or Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea (SHP). E-mails: [email protected] (MKK) and [email protected] (SHP) Abstract. The information capacity of DNA double-crossover (DX) tiles was successfully increased beyond a binary representation to higher base representations. By controlling the length and the position of DNA hairpins on the DX tile, ternary and senary (base-3 and base-6) digit representations were realized and verified by atomic force microscopy (AFM). Also, normal mode analysis (NMA) was carried out to study the mechanical characteristics of each structure. Online supplementary data available from stacks.iop.org/Nano/XX/XXXXXX/mmedia 1 DNA tiles have played a central role in the development of DNA nanotechnology. Of the many types of tiles created to date [1-8], one of the most versatile has been the double-crossover (DX) tile, having been used in a multitude of ways, from constructing one-, two-, and quasi-two-dimensional lattices [9- 11] to creating space-time representations of algorithms by acting as Wang tiles [12-15]. -
A Handbook of Greek and Roman Coins
CORNELL UNIVERSITY LIBRARY BOUGHT WITH THE INCOME OF THE SAGE ENDOWMENT FUND GIVEN IN 1891 BY HENRY WILLIAMS SAGE Cornell University Library CJ 237.H64 A handbook of Greek and Roman coins. 3 1924 021 438 399 Cornell University Library The original of this book is in the Cornell University Library. There are no known copyright restrictions in the United States on the use of the text. http://www.archive.org/details/cu31924021438399 f^antilioofcs of glrcfjaeologj) anU Antiquities A HANDBOOK OF GREEK AND ROMAN COINS A HANDBOOK OF GREEK AND ROMAN COINS G. F. HILL, M.A. OF THE DEPARTMENT OF COINS AND MEDALS IN' THE bRITISH MUSEUM WITH FIFTEEN COLLOTYPE PLATES Hon&on MACMILLAN AND CO., Limited NEW YORK: THE MACMILLAN COMPANY l8 99 \_All rights reserved'] ©jcforb HORACE HART, PRINTER TO THE UNIVERSITY PREFACE The attempt has often been made to condense into a small volume all that is necessary for a beginner in numismatics or a young collector of coins. But success has been less frequent, because the knowledge of coins is essentially a knowledge of details, and small treatises are apt to be un- readable when they contain too many references to particular coins, and unprofltably vague when such references are avoided. I cannot hope that I have passed safely between these two dangers ; indeed, my desire has been to avoid the second at all risk of encountering the former. At the same time it may be said that this book is not meant for the collector who desires only to identify the coins which he happens to possess, while caring little for the wider problems of history, art, mythology, and religion, to which coins sometimes furnish the only key. -
History of Binary and Other Nondecimal Numeration
HISTORY OF BINARY AND OTHER NONDECIMAL NUMERATION BY ANTON GLASER Professor of Mathematics, Pennsylvania State University TOMASH PUBLISHERS Copyright © 1971 by Anton Glaser Revised Edition, Copyright 1981 by Anton Glaser All rights reserved Printed in the United States of America Library of Congress Cataloging in Publication Data Glaser, Anton, 1924- History of binary and other nondecimal numeration. Based on the author's thesis (Ph. D. — Temple University), presented under the title: History of modern numeration systems. Bibliography: p. 193 Includes Index. 1. Numeration — History. I. Title QA141.2.G55 1981 513'.5 81-51176 ISBN 0-938228-00-5 AACR2 To My Wife, Ruth ACKNOWLEDGMENTS THIS BOOK is based on the author’s doctoral dissertation, History of Modern Numeration Systems, written under the guidance of Morton Alpren, Sara A. Rhue, and Leon Steinberg of Temple University in Philadelphia, Pa. Extensive help was received from the libraries of the Academy of the New Church (Bryn Athyn, Pa.), the American Philosophical Society, Pennsylvania State University, Temple University, the University of Michigan, and the University of Pennsylvania. The photograph of Figure 7 was made available by the New York Public Library; the library of the University of Pennsylvania is the source of the photographs in Figures 2 and 6. The author is indebted to Harold Hanes, Joseph E. Hofmann, Donald E. Knuth, and Brian J. Winkel, who were kind enough to communicate their comments about the strengths and weaknesses of the original edition. The present revised edition is the better for it. A special thanks is also owed to John Wagner for his careful editorial work and to Adele Clark for her thorough preparation of the Index. -
A Short History of Greek Mathematics
Cambridge Library Co ll e C t i o n Books of enduring scholarly value Classics From the Renaissance to the nineteenth century, Latin and Greek were compulsory subjects in almost all European universities, and most early modern scholars published their research and conducted international correspondence in Latin. Latin had continued in use in Western Europe long after the fall of the Roman empire as the lingua franca of the educated classes and of law, diplomacy, religion and university teaching. The flight of Greek scholars to the West after the fall of Constantinople in 1453 gave impetus to the study of ancient Greek literature and the Greek New Testament. Eventually, just as nineteenth-century reforms of university curricula were beginning to erode this ascendancy, developments in textual criticism and linguistic analysis, and new ways of studying ancient societies, especially archaeology, led to renewed enthusiasm for the Classics. This collection offers works of criticism, interpretation and synthesis by the outstanding scholars of the nineteenth century. A Short History of Greek Mathematics James Gow’s Short History of Greek Mathematics (1884) provided the first full account of the subject available in English, and it today remains a clear and thorough guide to early arithmetic and geometry. Beginning with the origins of the numerical system and proceeding through the theorems of Pythagoras, Euclid, Archimedes and many others, the Short History offers in-depth analysis and useful translations of individual texts as well as a broad historical overview of the development of mathematics. Parts I and II concern Greek arithmetic, including the origin of alphabetic numerals and the nomenclature for operations; Part III constitutes a complete history of Greek geometry, from its earliest precursors in Egypt and Babylon through to the innovations of the Ionic, Sophistic, and Academic schools and their followers. -
NUMBER SYSTEMS and DATA REPRESENTATION for COMPUTERS
NUMBER SYSTEMS and DATA REPRESENTATION for COMPUTERS 05 March 2008 Number Systems and Data Representation 2 Table of Contents Table of Contents .............................................................................................................2 Prologue.............................................................................................................................8 Number System Bases Introduction............................................................................12 Base 60 Number System ..........................................................................................12 Base 12 Number System ..........................................................................................14 Base 6 (Senary) Number System ............................................................................15 Base 3 (Trinary) Number System ............................................................................16 Base 1 Number System.............................................................................................17 Other Bases.................................................................................................................18 Know Nothing ..............................................................................................................18 Indexes and Subscripts .................................................................................................19 Common Number Systems for Computers ................................................................20 Decimal Numbers -
Download Book // Positional Numeral Systems: Hexadecimal, Octal
QUB7RMIDHRDN » eBook » Positional numeral systems: Hexadecimal, Octal, Duodecimal, Senary, Ternary numeral system, Decimal mark,... Download eBook Online POSITIONAL NUMERAL SYSTEMS: HEXADECIMAL, OCTAL, DUODECIMAL, SENARY, TERNARY NUMERAL SYSTEM, DECIMAL MARK, SEXAGESIMAL, BINARY NUMERAL SYSTEM To save Positional numeral systems: Hexadecimal, Octal, Duodecimal, Senary, Ternary numeral system, Decimal mark, Sexagesimal, Binary numeral system eBook, remember to click the link beneath and download the ebook or have accessibility to other information that are highly relevant to POSITIONAL NUMERAL SYSTEMS: HEXADECIMAL, OCTAL, DUODECIMAL, SENARY, TERNARY NUMERAL SYSTEM, DECIMAL MARK, SEXAGESIMAL, BINARY NUMERAL SYSTEM book. Download PDF Positional numeral systems: Hexadecimal, Octal, Duodecimal, Senary, Ternary numeral system, Decimal mark, Sexagesimal, Binary numeral system Authored by Source: Wikipedia Released at 2016 Filesize: 7.7 MB Reviews It in just one of my personal favorite pdf. I could comprehended every thing out of this written e book. Its been written in an remarkably basic way and is particularly just following i finished reading through this book by which actually transformed me, affect the way i think. -- Jace Johns These types of pdf is the best ebook accessible. Sure, it is actually enjoy, nonetheless an interesting and amazing literature. I am pleased to inform you that this is basically the very best pdf i actually have read through in my own daily life and may be he finest ebook for ever. -- Prince Haag A top quality ebook and the typeface used was interesting to learn. This can be for all who statte that there had not been a well worth reading through. I am just pleased to tell you that this is basically the very best ebook i actually have go through in my individual life and can be he finest book for at any time. -
A Primer Dozenalism
A Primer on Dozenalism E 10 1 X 2 9 3 8 4 7 6 5 Donald P. Goodman III Dozenal Society of America Contents 1 Introduction 3 2 The Nature of Numbers 5 3 Possible Systems of Numbering 8 3.1 Systems of Notation . 8 3.2 The Concept of the Numerical Base . 11 4 The Case for Dozens 16 4.1 Criteria of a Good Base . 16 4.2 The Failures of Decimalism . 19 4.3 The Glory of Dozens . 1E 4.3.1 The Case for Dozenalism . 20 4.3.2 Possible New Digits . 24 4.3.3 The Need for Better Words . 28 4.3.4 Some Applications of Dozenal Numeration . 31 5 Objections to Dozenalism 36 5.1 The Cost of Conversion . 36 5.2 The Metric System . 38 5.2.1 The Faults of the Metric System . 38 5.2.2 TGM: An Improved, Dozenal Metric System . 3X 6 Conclusion 40 Appendix 41 Figures and Tables 1 A table calculating four thousand, six hundred and seventy- eight using place notation in base ten. 10 2 A table calculating a number in place notation in base eight. 14 3 A diagram demonstrating an easy method of dozenal finger- counting. 1X 4 Divisors of ten, written out in base ten place notation. 1E 1 5 A comparison of divisors for even bases between eight and sixteen, written in base ten place notation. 21 6 A comparison of fractions for even bases between eight and sixteen. 22 7 A figure showing simple seven-segment displays for all numer- als, including the Pitman characters X and E. -
Introduction
Chapter 1 INTRODUCTION This book is about mathematics and mathematicians. We will occasionally stray into other areas, but mathematics and mathematicians are our basic theme. This book is not designed to teach you much mathematics. If you learn a little bit, that’s OK, but my goal is to introduce you to my world and the wonderful and sometimes strange people that inhabit it. There is no lack of books that will give you a deeper experience, that will reward your hard work with a bit of real knowledge of mathematics, but this is not one of those books. This book is more like a movie. You will read along and try to see as much as you can. The mathematics will be held up for you to see but you need not make much effort to get enough to appreciate the story, and it’s the story I want to tell. It’s a great story, with lots of drama and comedy and fortunately not so much tragedy; the kind of story most people like. This is not a book for scholars; there are plenty of those. This is a book for ordinary people with a little curiosity about the world we live in and one of the most effective ways to understand parts of it. And it’s an old story, one of the oldest on Earth. It starts with counting animals and looking at the stars, and today mankind is using mathematics to plumb the history of the Universe, and make lasers dance to tunes on IPODS.