Positional Numeral Systems: Hexadecimal, Octal, Duodecimal, Senary, Ternary Numeral System, Decimal Mark

Total Page:16

File Type:pdf, Size:1020Kb

Positional Numeral Systems: Hexadecimal, Octal, Duodecimal, Senary, Ternary Numeral System, Decimal Mark [PDF] Positional numeral systems: Hexadecimal, Octal, Duodecimal, Senary, Ternary numeral system, Decimal mark, Sexagesimal, Binary numeral... Positional numeral systems: Hexadecimal, Octal, Duodecimal, Senary, Ternary numeral system, Decimal mark, Sexagesimal, Binary numeral system Book Review This is the very best book i actually have read right up until now. It really is rally intriguing throgh studying period of time. Your way of life span will probably be transform as soon as you comprehensive looking at this book. (Prof. Dana Hilll) POSITIONA L NUMERA L SYSTEMS: HEXA DECIMA L, OCTA L, DUODECIMA L, SENA RY, TERNA RY NUMERA L SYSTEM, DECIMA L MA RK, SEXA GESIMA L, BINA RY NUMERA L SYSTEM - To download Positional numeral systems: Hex adecimal, Octal, Duodecimal, Senary, Ternary numeral system, Decimal mark, Sex ag esimal, Binary numeral system eBook, make sure you follow the web link under and download the document or get access to other information which are relevant to Positional numeral systems: Hexadecimal, Octal, Duodecimal, Senary, Ternary numeral system, Decimal mark, Sexagesimal, Binary numeral system book. » Download Positional numeral systems: Hex adecimal, Octal, Duodecimal, Senary, Ternary numeral system, Decimal mark, Sex ag esimal, Binary numeral system PDF « Our web service was introduced using a aspire to work as a total on-line computerized catalogue that gives usage of multitude of PDF file archive catalog. You may find many different types of e-publication along with other literatures from the paperwork data bank. Specific well-known issues that spread out on our catalog are trending books, answer key, test test question and solution, guide paper, skill guide, test test, user guide, owners manual, assistance instructions, maintenance handbook, and so forth. All e-book all rights remain with all the experts, and downloads come as-is. We have e-books for every issue designed for download. We also provide a great collection of pdfs for students college books, including educational faculties textbooks, children books which may support your youngster during college sessionsT oErR tMo Sg e|t Da McoClAlege degree. Feel free to register to have usage of one of the greatest variety of free e-books. Sub scrib e t od ay! BFHAJBSWD6 Positional numeral systems: Hexadecimal, Octal, Duodecimal, Senary, Ternary numeral system, Decimal mark,... « Book Other eBooks [PDF] Do Monst ers Wear Und ies Coloring Book: A Rhym ing Child ren s Coloring Book Follow the link under to download and read "Do Monsters Wear Undies Coloring Book: A Rhyming Children s Coloring Book" document. Save Docum ent » [PDF] YJ] New p rim ary school lang uag e learning counseling lang uag e b ook of knowled g e [Genuine Sp ecials(Chinese Ed it ion) Follow the link under to download and read "YJ] New primary school language learning counseling language book of knowledge [Genuine Specials(Chinese Edition)" document. Save Docum ent » [PDF] T J new concep t of t he Preschool Qualit y Ed ucat ion Eng ineering : new hap p y learning young child ren (3-5 years old ) d aily learning b ook Int erm ed iat e (2)(Chinese Ed it ion) Follow the link under to download and read "TJ new concept of the Preschool Quality Education Engineering: new happy learning young children (3-5 years old) daily learning book Intermediate (2)(Chinese Edition)" document. Save Docum ent » [PDF] T J new concep t of t he Preschool Qualit y Ed ucat ion Eng ineering t he d aily learning b ook of: new hap p y learning young child ren (3-5 years) Int erm ed iat e (3)(Chinese Ed it ion) Follow the link under to download and read "TJ new concept of the Preschool Quality Education Engineering the daily learning book of: new happy learning young children (3-5 years) Intermediate (3)(Chinese Edition)" document. Save Docum ent » [PDF] T J new concep t of t he Preschool Qualit y Ed ucat ion Eng ineering t he d aily learning b ook of: new hap p y learning young child ren (2-4 years old ) in sm all classes (3)(Chinese Ed it ion) Follow the link under to download and read "TJ new concept of the Preschool Quality Education Engineering the daily learning book of: new happy learning young children (2-4 years old) in small classes (3)(Chinese Edition)" document. Save Docum ent » [PDF] Genuine b ook Orient al fert ile new version of t he fam ous p rim ary school enrollm ent p rog ram : t he int ellect ual d evelop m ent of p re-school Jiang (Chinese Ed it ion) Follow the link under to download and read "Genuine book Oriental fertile new version of the famous primary school enrollment program: the intellectual development of pre-school Jiang(Chinese Edition)" document. Save Docum ent » V5RLAMO2QY // Positional numeral systems: Hexadecimal, Octal, Duodecimal, Senary, Ternary numeral system, Decimal mark,... » Kindle [PDF] ESL St ories for Preschool: Book 1 Click the link beneath to get "ESL Stories for Preschool: Book 1" document. Save Book » [PDF] St ud yg uid e for Const ruct ive Guid ance and Discip line: Preschool and Prim ary Ed ucat ion b y Marjorie V . Field s ISBN: 9780136035930 Click the link beneath to get "Studyguide for Constructive Guidance and Discipline: Preschool and Primary Education by Marjorie V. Fields ISBN: 9780136035930" document. Save Book » [PDF] A Year Book for Prim ary Grad es; Based on Froeb el s Mot her Plays Click the link beneath to get "A Year Book for Primary Grades; Based on Froebel s Mother Plays" document. Save Book » [PDF] Never Invit e an A llig at or t o Lunch! Click the link beneath to get "Never Invite an Alligator to Lunch!" document. Save Book » [PDF] Com ic Mat hs: Sue: Fant asy-Based Learning for 4, 5 and 6 Y ear Old s Click the link beneath to get "Comic Maths: Sue: Fantasy-Based Learning for 4, 5 and 6 Year Olds" document. Save Book » [PDF] Plent yofp ickles. com Click the link beneath to get "Plentyofpickles.com" document. Save Book ».
Recommended publications
  • Abstract of Counting Systems of Papua New Guinea and Oceania
    Abstract of http://www.uog.ac.pg/glec/thesis/ch1web/ABSTRACT.htm Abstract of Counting Systems of Papua New Guinea and Oceania by Glendon A. Lean In modern technological societies we take the existence of numbers and the act of counting for granted: they occur in most everyday activities. They are regarded as being sufficiently important to warrant their occupying a substantial part of the primary school curriculum. Most of us, however, would find it difficult to answer with any authority several basic questions about number and counting. For example, how and when did numbers arise in human cultures: are they relatively recent inventions or are they an ancient feature of language? Is counting an important part of all cultures or only of some? Do all cultures count in essentially the same ways? In English, for example, we use what is known as a base 10 counting system and this is true of other European languages. Indeed our view of counting and number tends to be very much a Eurocentric one and yet the large majority the languages spoken in the world - about 4500 - are not European in nature but are the languages of the indigenous peoples of the Pacific, Africa, and the Americas. If we take these into account we obtain a quite different picture of counting systems from that of the Eurocentric view. This study, which attempts to answer these questions, is the culmination of more than twenty years on the counting systems of the indigenous and largely unwritten languages of the Pacific region and it involved extensive fieldwork as well as the consultation of published and rare unpublished sources.
    [Show full text]
  • 2 1 2 = 30 60 and 1
    Math 153 Spring 2010 R. Schultz SOLUTIONS TO EXERCISES FROM math153exercises01.pdf As usual, \Burton" refers to the Seventh Edition of the course text by Burton (the page numbers for the Sixth Edition may be off slightly). Problems from Burton, p. 28 3. The fraction 1=6 is equal to 10=60 and therefore the sexagesimal expression is 0;10. To find the expansion for 1=9 we need to solve 1=9 = x=60. By elementary algebra this means 2 9x = 60 or x = 6 3 . Thus 6 2 1 6 40 1 x = + = + 60 3 · 60 60 60 · 60 which yields the sexagsimal expression 0; 10; 40 for 1/9. Finding the expression for 1/5 just amounts to writing this as 12/60, so the form here is 0;12. 1 1 30 To find 1=24 we again write 1=24 = x=60 and solve for x to get x = 2 2 . Now 2 = 60 and therefore we can proceed as in the second example to conclude that the sexagesimal form for 1/24 is 0;2,30. 1 One proceeds similarly for 1/40, solving 1=40 = x=60 to get x = 1 2 . Much as in the preceding discussion this yields the form 0;1,30. Finally, the same method leads to the equation 5=12 = x=60, which implies that 5/12 has the sexagesimal form 0;25. 4. We shall only rewrite these in standard base 10 fractional notation. The answers are in the back of Burton. (a) The sexagesimal number 1,23,45 is equal to 1 3600 + 23 60 + 45.
    [Show full text]
  • A Ternary Arithmetic and Logic
    Proceedings of the World Congress on Engineering 2010 Vol I WCE 2010, June 30 - July 2, 2010, London, U.K. A Ternary Arithmetic and Logic Ion Profeanu which supports radical ontological dualism between the two Abstract—This paper is only a chapter, not very detailed, of eternal principles, Good and Evil, which oppose each other a larger work aimed at developing a theoretical tool to in the course of history, in an endless confrontation. A key investigate first electromagnetic fields but not only that, (an element of Manichean doctrine is the non-omnipotence of imaginative researcher might use the same tool in very unusual the power of God, denying the infinite perfection of divinity areas of research) with the stated aim of providing a new perspective in understanding older or recent research in "free that has they say a dual nature, consisting of two equal but energy". I read somewhere that devices which generate "free opposite sides (Good-Bad). I confess that this kind of energy" works by laws and principles that can not be explained dualism, which I think is harmful, made me to seek another within the framework of classical physics, and that is why they numeral system and another logic by means of which I will are kept far away from public eye. So in the absence of an praise and bring honor owed to God's name; and because adequate theory to explain these phenomena, these devices can God is One Being in three personal dimensions (the Father, not reach the design tables of some plants in order to produce them in greater number.
    [Show full text]
  • Duodecimalbulletinissue521.Pdf
    The Duodecimal Bulletin THETHE DuodecimalDuodecimal BulletinBulletin Vol. 52z (62d), No. 1 • July 11EEz (2015d) • Volume 52 z (62 d ), Number 1 • Whole Number X 2 z (122 d ) • July 11 Base Annotation Schemes Whole Number EE z (2015 X d ) z (122 ) ISSN 0046-0826d 2d X ETY Volume Five Dozen Two (52z) Number 1 Whole Number Ten Dozen Two ( 2z) CI O The Dozenal Society of America • • O F is a voluntary, nonprofit corporation, organized to S E 0 1 A L conduct research and educate the public in the use X 2 M The DuodecimalDuodecimal A of base twelve in calculations, mathematics, weights DuodecimalDuodecimalDuodecimal 9 3 E N R and measures, and other branches of pure and ap- E 8 4 I Bulletin Z BulletinBulletin C BulletinBulletin 7 5 plied science. BulletinBulletinBulletinBulletin A O 6 D Volume Sixty Two (62 ) Number 1 Whole No. One Hundred Twenty Two (122 ) d • • d S Basic membership is free, but as a nonprofit we de- pend upon the generosity of our members to continue operating. An annual subscription of US$18.00d B Table of Contents C The Duodecimal Bulletin (US$16.00z) entitles the member to delivery of pa- is an official publication of: per copies of The Duodecimal Bulletin. President’s Message by Donald Goodman ....................................................2z Officers The Dozenal Society Editorial: Radically Conventional ..................................3z Board Chair Jay Schiffman of America, Inc. New Members ...........................................................7z 13510 Photo Drive President Donald Goodman Accuracy of Common Roundings Vice President Graham Steele Woodbridge, VA 22193 by Donald Goodman ....................................................8z Secretary Jen Seron Base Annotation Schemes Treasurer Jay Schiffman Founded: 1160z (1944d) by John Volan.........................................................10z Patterns and Palatable Morsels in Duodecimal Official Website: Board of Directors by Prof.
    [Show full text]
  • Fibonacci P-Codes and Codes of the “Golden” P-Proportions: New Informational and Arithmetical Foundations of Computer Scienc
    British Journal of Mathematics & Computer Science 17(1): 1-49, 2016, Article no.BJMCS.25969 ISSN: 2231-0851 SCIENCEDOMAIN international www.sciencedomain.org Fibonacci p-codes and Codes of the “Golden” p-proportions: New Informational and Arithmetical Foundations of Computer Science and Digital Metrology for Mission-Critical Applications Alexey Stakhov1* 1International Club of the Golden Section, Canada. Author’s contribution The sole author designed, analyzed and interpreted and prepared the manuscript. Article Information DOI: 10.9734/BJMCS/2016/25969 Editor(s): (1) Wei-Shih Du, Department of Mathematics, National Kaohsiung Normal University, Taiwan. Reviewers: (1) Santiago Tello-Mijares, Instituto Tecnológico Superior de Lerdo, Mexico. (2) Danyal Soybas, Erciyes University, Turkey. (3) Manuel Alberto M. Ferreira, ISCTE-IUL, Portugal. Complete Peer review History: http://sciencedomain.org/review-history/14921 Received: 28th March 2016 Accepted: 2nd June 2016 Original Research Article Published: 7th June 2016 _______________________________________________________________________________ Abstract In the 70s and 80s years of the past century, the new positional numeral systems, called Fibonaссi p-codes and codes of the golden p-proportions, as new informational and arithmetical foundations of computer science and digital metrology, was considered as one of the most important directions of Soviet computer science and digital metrology for mission-critical applications. The main advantage of this direction was to improve the information reliability of computer and measuring systems. This direction has been patented abroad widely (more than 60 patents of US, Japan, England, France, Germany, Canada and other countries). Theoretical basis of this direction have been described in author’s books "Introduction into the Algorithmic Measurement Theory" (1977), and "Codes of the Golden Proportion" (1984).
    [Show full text]
  • Ternary and Senary Representations Using DNA Double-Crossover Tiles
    Ternary and senary representations using DNA double-crossover tiles Byeonghoon Kim1,5, Soojin Jo2,5, Junyoung Son1,5, Junghoon Kim1,5, Min Hyeok Kim2, Si Un Hwang1, Sreekantha Reddy Dugasani1, Byung-Dong Kim3, Wing Kam Liu4, Moon Ki Kim2,6 and Sung Ha Park1,6 1 Sungkyunkwan Advanced Institute of Nanotechnology (SAINT) and Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea 2 Sungkyunkwan Advanced Institute of Nanotechnology (SAINT) and School of Mechanical Engineering, Sungkyunkwan University, Suwon 440-746, Korea 3 Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Korea 4 Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA 5 These authors contributed equally. 6 Address for correspondence: School of Mechanical Engineering, Sungkyunkwan University, Suwon 440-746, Korea (MKK) or Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea (SHP). E-mails: [email protected] (MKK) and [email protected] (SHP) Abstract. The information capacity of DNA double-crossover (DX) tiles was successfully increased beyond a binary representation to higher base representations. By controlling the length and the position of DNA hairpins on the DX tile, ternary and senary (base-3 and base-6) digit representations were realized and verified by atomic force microscopy (AFM). Also, normal mode analysis (NMA) was carried out to study the mechanical characteristics of each structure. Online supplementary data available from stacks.iop.org/Nano/XX/XXXXXX/mmedia 1 DNA tiles have played a central role in the development of DNA nanotechnology. Of the many types of tiles created to date [1-8], one of the most versatile has been the double-crossover (DX) tile, having been used in a multitude of ways, from constructing one-, two-, and quasi-two-dimensional lattices [9- 11] to creating space-time representations of algorithms by acting as Wang tiles [12-15].
    [Show full text]
  • History of Binary and Other Nondecimal Numeration
    HISTORY OF BINARY AND OTHER NONDECIMAL NUMERATION BY ANTON GLASER Professor of Mathematics, Pennsylvania State University TOMASH PUBLISHERS Copyright © 1971 by Anton Glaser Revised Edition, Copyright 1981 by Anton Glaser All rights reserved Printed in the United States of America Library of Congress Cataloging in Publication Data Glaser, Anton, 1924- History of binary and other nondecimal numeration. Based on the author's thesis (Ph. D. — Temple University), presented under the title: History of modern numeration systems. Bibliography: p. 193 Includes Index. 1. Numeration — History. I. Title QA141.2.G55 1981 513'.5 81-51176 ISBN 0-938228-00-5 AACR2 To My Wife, Ruth ACKNOWLEDGMENTS THIS BOOK is based on the author’s doctoral dissertation, History of Modern Numeration Systems, written under the guidance of Morton Alpren, Sara A. Rhue, and Leon Steinberg of Temple University in Philadelphia, Pa. Extensive help was received from the libraries of the Academy of the New Church (Bryn Athyn, Pa.), the American Philosophical Society, Pennsylvania State University, Temple University, the University of Michigan, and the University of Pennsylvania. The photograph of Figure 7 was made available by the New York Public Library; the library of the University of Pennsylvania is the source of the photographs in Figures 2 and 6. The author is indebted to Harold Hanes, Joseph E. Hofmann, Donald E. Knuth, and Brian J. Winkel, who were kind enough to communicate their comments about the strengths and weaknesses of the original edition. The present revised edition is the better for it. A special thanks is also owed to John Wagner for his careful editorial work and to Adele Clark for her thorough preparation of the Index.
    [Show full text]
  • Math Book from Wikipedia
    Math book From Wikipedia PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Mon, 25 Jul 2011 10:39:12 UTC Contents Articles 0.999... 1 1 (number) 20 Portal:Mathematics 24 Signed zero 29 Integer 32 Real number 36 References Article Sources and Contributors 44 Image Sources, Licenses and Contributors 46 Article Licenses License 48 0.999... 1 0.999... In mathematics, the repeating decimal 0.999... (which may also be written as 0.9, , 0.(9), or as 0. followed by any number of 9s in the repeating decimal) denotes a real number that can be shown to be the number one. In other words, the symbols 0.999... and 1 represent the same number. Proofs of this equality have been formulated with varying degrees of mathematical rigour, taking into account preferred development of the real numbers, background assumptions, historical context, and target audience. That certain real numbers can be represented by more than one digit string is not limited to the decimal system. The same phenomenon occurs in all integer bases, and mathematicians have also quantified the ways of writing 1 in non-integer bases. Nor is this phenomenon unique to 1: every nonzero, terminating decimal has a twin with trailing 9s, such as 8.32 and 8.31999... The terminating decimal is simpler and is almost always the preferred representation, contributing to a misconception that it is the only representation. The non-terminating form is more convenient for understanding the decimal expansions of certain fractions and, in base three, for the structure of the ternary Cantor set, a simple fractal.
    [Show full text]
  • NUMBER SYSTEMS and DATA REPRESENTATION for COMPUTERS
    NUMBER SYSTEMS and DATA REPRESENTATION for COMPUTERS 05 March 2008 Number Systems and Data Representation 2 Table of Contents Table of Contents .............................................................................................................2 Prologue.............................................................................................................................8 Number System Bases Introduction............................................................................12 Base 60 Number System ..........................................................................................12 Base 12 Number System ..........................................................................................14 Base 6 (Senary) Number System ............................................................................15 Base 3 (Trinary) Number System ............................................................................16 Base 1 Number System.............................................................................................17 Other Bases.................................................................................................................18 Know Nothing ..............................................................................................................18 Indexes and Subscripts .................................................................................................19 Common Number Systems for Computers ................................................................20 Decimal Numbers
    [Show full text]
  • Dirac's Principle of Mathematical Beauty, Mathematics of Harmony
    1 Dirac’s Principle of Mathematical Beauty, Mathematics of Harmony and “Golden” Scientific Revolution Alexey Stakhov The International Club of the Golden Section 6 McCreary Trail, Bolton, ON, L7E 2C8, Canada [email protected] • www.goldenmuseum.com Abstract. In this study we develop the Mathematics of Harmony as a new interdisciplinary direction of modern science. The newest discoveries in different fields of modern science based on the Mathematics of Harmony, namely, mathematics (a general theory of hyperbolic functions and a solution to Hilbert’s Fourth Problem, algorithmic measurement theory and “golden” number theory), computer science (the “golden information technology), crystallography (quasi-crystals), chemistry (fullerenes), theoretical physics and cosmology (Fibonacci-Lorentz transformations, the “golden” interpretation of special theory of relativity and “golden” interpretation of the Universe evolution), botany (new geometric theory of phyllotaxis), genetics (“golden” genomatrices) and so on, are creating a general picture of the “Golden” Scientific Revolution, which can influence fundamentally on the development of modern science and education. Contents Preface 1. Introduction: Dirac’s Principle of Mathematical Beauty and “beautiful” mathematical objects 2. A new approach to the mathematics origins 3. The Mathematics of Harmony as a “beautiful” mathematical theory 4. The “Golden” Fibonacci goniometry: a revolution in the theory of hyperbolic functions 5. The “Golden” Fibonacci goniometry and Hilbert’s Fourth Problem: revolution in hyperbolic geometry 6. Fibonacci and “golden” matrices: a unique class of square matrices 7. New scientific principles based on the Golden Section 8. The Mathematics of Harmony: a renaissance of the oldest mathematical theories 9. The “Golden” information technology: a revolution in computer science 10.
    [Show full text]
  • Babylonian Numerals the Units
    Babylonian numerals the units. For example the decimal 12345 represents 1 104 + 2 103 + 3 102 + 4 10 + 5. Babylonian index History Topics Index If one thinks about it this is perhaps illogical for we read from left to right so when we read the first digit we do not know its value until we have read the complete number to find out how many powers of 10 The Babylonian civilisation in Mesopotamia replaced the Sumerian civilisation and the Akkadian are associated with this first place. The Babylonian sexagesimal positional system places numbers with civilisation. We give a little historical background to these events in our article Babylonian mathematics. the same convention, so the right most position is for the units up to 59, the position one to the left is for Certainly in terms of their number system the Babylonians inherited ideas from the Sumerians and from 60 n where 1 n 59, etc. Now we adopt a notation where we separate the numerals by commas so, the Akkadians. From the number systems of these earlier peoples came the base of 60, that is the for example, 1,57,46,40 represents the sexagesimal number sexagesimal system. Yet neither the Sumerian nor the Akkadian system was a positional system and this advance by the Babylonians was undoubtedly their greatest achievement in terms of developing the 1 603 + 57 602 + 46 60 + 40 number system. Some would argue that it was their biggest achievement in mathematics. which, in decimal notation is 424000. Often when told that the Babylonian number system was base 60 people's first reaction is: what a lot of special number symbols they must have had to learn.
    [Show full text]
  • The Sumerian Ternary System and the Concept of Number António José Gonçalves De Freitas Centro De Estudos Humanísticos Universidade Do Minho Portugal
    Paper delivered at 1st CLE Colloquium for Philosophy and Formal Sciences Campinas, 21-23 March 2013 Accepted for publication in the Proceedings of the Conference DRAFT &1 The Sumerian ternary system and the concept of number António José Gonçalves de Freitas Centro de Estudos Humanísticos Universidade do Minho Portugal Abstract It is well known that Sumerians and Babylonians used a numeration system of base 12 and 60. We still have influence of that system in our nowadays counting of the hours of a day, twelve plus twelve, each hour has 60 minute and each minute 60 seconds. Also the circle has 360 degrees. What is not so well known is that the Sumerians in an earlier period used a ternary system of numeration; the first notice about that system is in Thureau- Dangin (1928). Later Diakonoff (1983) described it in good details and recently, Balke (2010) studied the system and described it with more precision. Still the use of this system and the concept of number involved are open questions. I will answer to those problems making a formalization of the system and showing how it could be related to a cosmogonic design. DRAFT &2 1. Numeral systems. DRAFT &3 ��� 1 11 21 31 41 51 � �� ��� �� �� � ��� 2 12 22 32 41 52 � �� ��� �� �� � � �� ��� � 3 13 23 33 42 53 � �� � � � � � �� ��� � 4 14 24 34 43 54 � �� � � � � � �� ��� � 5 15 25 35 44 55 � �� � � � � � �� ��� � 6 16 26 36 45 56 � �� �DRAFT� � � � �� ��� � 7 17 27 37 46 57 � �� � � � � &4 � �� � 8 18 28 38 47 58 � �� �� � � � � �� � � 9 19 29 39 48 59 � �� � � � � 10 20 30 ��� 40 50 � �� � � The main Babylonian and Sumerian counting system was a sexagesimal system.
    [Show full text]