Number Systems: Binary and Hexadecimal Tom Brennan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
13054-Duodecimal.Pdf
Universal Multiple-Octet Coded Character Set International Organization for Standardization Organisation Internationale de Normalisation Международная организация по стандартизации Doc Type: Working Group Document Title: Proposal to encode Duodecimal Digit Forms in the UCS Author: Karl Pentzlin Status: Individual Contribution Action: For consideration by JTC1/SC2/WG2 and UTC Date: 2013-03-30 1. Introduction The duodecimal system (also called dozenal) is a positional numbering system using 12 as its base, similar to the well-known decimal (base 10) and hexadecimal (base 16) systems. Thus, it needs 12 digits, instead of ten digits like the decimal system. It is used by teachers to explain the decimal system by comparing it to an alternative, by hobbyists (see e.g. fig. 1), and by propagators who claim it being superior to the decimal system (mostly because thirds can be expressed by a finite number of digits in a "duodecimal point" presentation). • Besides mathematical and hobbyist publications, the duodecimal system has appeared as subject in the press (see e.g. [Bellos 2012] in the English newspaper "The Guardian" from 2012-12-12, where the lack of types to represent these digits correctly is explicitly stated). Such examples emphasize the need of the encoding of the digit forms proposed here. While it is common practice to represent the extra six digits needed for the hexadecimal system by the uppercase Latin capital letters A,B.C,D,E,F, there is no such established convention regarding the duodecimal system. Some proponents use the Latin letters T and E as the first letters of the English names of "ten" and "eleven" (which obviously is directly perceivable only for English speakers). -
Maths Week 2021
Maths Week 2021 Survivor Series/Kia Mōrehurehu Monday Level 5 Questions What to do for students 1 You can work with one or two others. Teams can be different each day. 2 Do the tasks and write any working you did, along with your answers, in the spaces provided (or where your teacher says). 3 Your teacher will tell you how you can get the answers to the questions and/or have your work checked. 4 When you have finished each day, your teacher will give you a word or words from a proverb. 5 At the end of the week, put the words together in the right order and you will be able to find the complete proverb! Your teacher may ask you to explain what the proverb means. 6 Good luck. Task 1 – numbers in te reo Māori The following chart gives numbers in te reo Māori. Look at the chart carefully and note the patterns in the way the names are built up from 10 onwards. Work out what each of the numbers in the following calculations is, do each calculation, and write the answer in te reo Māori. Question Answer (a) whitu + toru (b) whā x wa (c) tekau mā waru – rua (d) ono tekau ma whā + rua tekau ma iwa (e) toru tekau ma rua + waru x tekau mā ono Task 2 - Roman numerals The picture shows the Roman Emperor, Julius Caesar, who was born in the year 100 BC. (a) How many years ago was 100 BC? You may have seen places where numbers have been written in Roman numerals. -
The Hexadecimal Number System and Memory Addressing
C5537_App C_1107_03/16/2005 APPENDIX C The Hexadecimal Number System and Memory Addressing nderstanding the number system and the coding system that computers use to U store data and communicate with each other is fundamental to understanding how computers work. Early attempts to invent an electronic computing device met with disappointing results as long as inventors tried to use the decimal number sys- tem, with the digits 0–9. Then John Atanasoff proposed using a coding system that expressed everything in terms of different sequences of only two numerals: one repre- sented by the presence of a charge and one represented by the absence of a charge. The numbering system that can be supported by the expression of only two numerals is called base 2, or binary; it was invented by Ada Lovelace many years before, using the numerals 0 and 1. Under Atanasoff’s design, all numbers and other characters would be converted to this binary number system, and all storage, comparisons, and arithmetic would be done using it. Even today, this is one of the basic principles of computers. Every character or number entered into a computer is first converted into a series of 0s and 1s. Many coding schemes and techniques have been invented to manipulate these 0s and 1s, called bits for binary digits. The most widespread binary coding scheme for microcomputers, which is recog- nized as the microcomputer standard, is called ASCII (American Standard Code for Information Interchange). (Appendix B lists the binary code for the basic 127- character set.) In ASCII, each character is assigned an 8-bit code called a byte. -
Bits, Data Types, and Operations
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Agenda 1. Data Types 2. Unsigned & Signed Integers 3. Arithmetic Operations Chapter 2 4. Logical Operations 5. Shifting Bits, Data Types, 6. Hexadecimal & Octal Notation and Operations 7. Other Data Types COMPSCI210 S1C 2009 2 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1. Data Types Computer is a binary digital system. How do we represent data in a computer? Digital system: Binary (base two) system: At the lowest level, a computer is an electronic machine. • finite number of symbols • has two states: 0 and 1 • works by controlling the flow of electrons Easy to recognize two conditions: 1. presence of a voltage – we’ll call this state “1” 2. absence of a voltage – we’ll call this state “0” Basic unit of information is the binary digit, or bit. Values with more than two states require multiple bits. • A collection of two bits has four possible states: Could base state on value of voltage, 00, 01, 10, 11 but control and detection circuits more complex. • A collection of three bits has eight possible states: • compare turning on a light switch to 000, 001, 010, 011, 100, 101, 110, 111 measuring or regulating voltage • A collection of n bits has 2n possible states. COMPSCI210 S1C 2009 3 COMPSCI210 S1C 2009 4 1 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. -
Unicode Request for Kaktovik Numerals Design
Unicode request for Kaktovik numerals L2/21-058R Eduardo Marín Silva, [email protected] Kirk Miller, [email protected] Catherine Strand, [email protected] 2021 April 29 This document supersedes L2/20-070 by Eduardo Marín Silva. The Kaktovik numerals are a set of base-20 digits with a sub-base of 5—that is, a penta-vigesimal system. Graphically, the sub-base forms the upper part of the digit and the remaining units the lower part, an iconic design that lends itself to graphical manipulation for arithmetic. Kaktovik numerals are part of the curriculum in the North Slope Borough School District of Alaska. Though designed by speakers of Iñupiaq Eskimo (ISO code [esi]), they are equally suited to the penta-vigesimal systems of other Inuit and Yupik languages of Alaska, Canada and Russia, and they have the support of the Inuit Circumpolar Council. Thanks to Deborah Anderson of the Universal Scripts Project for her assistance. Design Kaktovik numerals were made intentionally distinct from decimal Hindu-Arabic digits so that there could be no confusion between them. In speech as well, Kaktovik digits have been named in Iñupiaq and Hindu-Arabic digits in English in order to keep them distinct. There are 19 counting digits, composed of straight strokes joined at sharp angles, and a graphically distinct zero . The counting digits occupy the space of an upright golden rectangle, with a unit square at bottom and a smaller golden rectangle at top. The top rectangle is occupied by up to three horizontal strokes that tally the quinary sub-base (null, 틅, 틊, 틏). -
Abstract of Counting Systems of Papua New Guinea and Oceania
Abstract of http://www.uog.ac.pg/glec/thesis/ch1web/ABSTRACT.htm Abstract of Counting Systems of Papua New Guinea and Oceania by Glendon A. Lean In modern technological societies we take the existence of numbers and the act of counting for granted: they occur in most everyday activities. They are regarded as being sufficiently important to warrant their occupying a substantial part of the primary school curriculum. Most of us, however, would find it difficult to answer with any authority several basic questions about number and counting. For example, how and when did numbers arise in human cultures: are they relatively recent inventions or are they an ancient feature of language? Is counting an important part of all cultures or only of some? Do all cultures count in essentially the same ways? In English, for example, we use what is known as a base 10 counting system and this is true of other European languages. Indeed our view of counting and number tends to be very much a Eurocentric one and yet the large majority the languages spoken in the world - about 4500 - are not European in nature but are the languages of the indigenous peoples of the Pacific, Africa, and the Americas. If we take these into account we obtain a quite different picture of counting systems from that of the Eurocentric view. This study, which attempts to answer these questions, is the culmination of more than twenty years on the counting systems of the indigenous and largely unwritten languages of the Pacific region and it involved extensive fieldwork as well as the consultation of published and rare unpublished sources. -
2 1 2 = 30 60 and 1
Math 153 Spring 2010 R. Schultz SOLUTIONS TO EXERCISES FROM math153exercises01.pdf As usual, \Burton" refers to the Seventh Edition of the course text by Burton (the page numbers for the Sixth Edition may be off slightly). Problems from Burton, p. 28 3. The fraction 1=6 is equal to 10=60 and therefore the sexagesimal expression is 0;10. To find the expansion for 1=9 we need to solve 1=9 = x=60. By elementary algebra this means 2 9x = 60 or x = 6 3 . Thus 6 2 1 6 40 1 x = + = + 60 3 · 60 60 60 · 60 which yields the sexagsimal expression 0; 10; 40 for 1/9. Finding the expression for 1/5 just amounts to writing this as 12/60, so the form here is 0;12. 1 1 30 To find 1=24 we again write 1=24 = x=60 and solve for x to get x = 2 2 . Now 2 = 60 and therefore we can proceed as in the second example to conclude that the sexagesimal form for 1/24 is 0;2,30. 1 One proceeds similarly for 1/40, solving 1=40 = x=60 to get x = 1 2 . Much as in the preceding discussion this yields the form 0;1,30. Finally, the same method leads to the equation 5=12 = x=60, which implies that 5/12 has the sexagesimal form 0;25. 4. We shall only rewrite these in standard base 10 fractional notation. The answers are in the back of Burton. (a) The sexagesimal number 1,23,45 is equal to 1 3600 + 23 60 + 45. -
1. Understanding Decimal, Binary, Octal and Hexadecimal Numbers
Objectives: 1. Understanding decimal, binary, octal and hexadecimal numbers. 2. Counting in decimal, binary, octal and hexadecimal systems. 3. Convert a number from one number system to another system. 4. Advantage of octal and hexadecimal systems. 1. Understanding decimal, binary, octal and hexadecimal numbers Decimal number systems: Decimal numbers are made of decimal digits: (0,1,2,3,4,5,6,7,8,9 --------10-base system) The decimal system is a "positional-value system" in which the value of a digit depends on its position. Examples: 453→4 hundreds, 5 tens and 3 units. 4 is the most weight called "most significant digit" MSD. 3 carries the last weight called "least significant digit" LSD. number of items that a decimal number represent: 9261= (9× )+(2× )+(6× )+(1× ) The decimal fractions: 3267.317= (3× )+(2× )+(6× )+(7× )+ (3× ) + (6× ) + (1× ) Decimal point used to separate the integer and fractional part of the number. Formal notation→ . Decimal position values of powers of (10). Positional values "weights" 2 7 7 8 3 . 2 3 4 5 MSD LSD Binary numbers: . Base-2 system (0 or 1). We can represent any quantity that can be represented in decimal or other number systems using binary numbers. Binary number is also positional–value system (power of 2). Example: 1101.011 1 1 0 1 . 0 1 1 MSD LSD Notes: . To find the equivalent of binary numbers in decimal system , we simply take the sum of products of each digit value (0,1)and its positional value: Example: = (1× ) + (0× ) + (1× ) + (1× )+ (1× )+ (0× ) +(1× ) = 8 + 0 + 2 + 1 + + 0 + = In general, any number (decimal, binary, octal and hexadecimal) is simply the sum of products of each digit value and its positional value. -
Bit, Byte, and Binary
Bit, Byte, and Binary Number of Number of values 2 raised to the power Number of bytes Unit bits 1 2 1 Bit 0 / 1 2 4 2 3 8 3 4 16 4 Nibble Hexadecimal unit 5 32 5 6 64 6 7 128 7 8 256 8 1 Byte One character 9 512 9 10 1024 10 16 65,536 16 2 Number of bytes 2 raised to the power Unit 1 Byte One character 1024 10 KiloByte (Kb) Small text 1,048,576 20 MegaByte (Mb) A book 1,073,741,824 30 GigaByte (Gb) An large encyclopedia 1,099,511,627,776 40 TeraByte bit: Short for binary digit, the smallest unit of information on a machine. John Tukey, a leading statistician and adviser to five presidents first used the term in 1946. A single bit can hold only one of two values: 0 or 1. More meaningful information is obtained by combining consecutive bits into larger units. For example, a byte is composed of 8 consecutive bits. Computers are sometimes classified by the number of bits they can process at one time or by the number of bits they use to represent addresses. These two values are not always the same, which leads to confusion. For example, classifying a computer as a 32-bit machine might mean that its data registers are 32 bits wide or that it uses 32 bits to identify each address in memory. Whereas larger registers make a computer faster, using more bits for addresses enables a machine to support larger programs. -
Chapter 6 MISCELLANEOUS NUMBER BASES. the QUINARY
The Number Concept: Its Origin and Development By Levi Leonard Conant Ph. D. Chapter 6 MISCELLANEOUS NUMBER BASES. THE QUINARY SYSTEM. The origin of the quinary mode of counting has been discussed with some fulness in a preceding chapter, and upon that question but little more need be said. It is the first of the natural systems. When the savage has finished his count of the fingers of a single hand, he has reached this natural number base. At this point he ceases to use simple numbers, and begins the process of compounding. By some one of the numerous methods illustrated in earlier chapters, he passes from 5 to 10, using here the fingers of his second hand. He now has two fives; and, just as we say “twenty,” i.e. two tens, he says “two hands,” “the second hand finished,” “all the fingers,” “the fingers of both hands,” “all the fingers come to an end,” or, much more rarely, “one man.” That is, he is, in one of the many ways at his command, saying “two fives.” At 15 he has “three hands” or “one foot”; and at 20 he pauses with “four hands,” “hands and feet,” “both feet,” “all the fingers of hands and feet,” “hands and feet finished,” or, more probably, “one man.” All these modes of expression are strictly natural, and all have been found in the number scales which were, and in many cases still are, in daily use among the uncivilized races of mankind. In its structure the quinary is the simplest, the most primitive, of the natural systems. -
Number Systems and Number Representation Aarti Gupta
Number Systems and Number Representation Aarti Gupta 1 For Your Amusement Question: Why do computer programmers confuse Christmas and Halloween? Answer: Because 25 Dec = 31 Oct -- http://www.electronicsweekly.com 2 Goals of this Lecture Help you learn (or refresh your memory) about: • The binary, hexadecimal, and octal number systems • Finite representation of unsigned integers • Finite representation of signed integers • Finite representation of rational numbers (if time) Why? • A power programmer must know number systems and data representation to fully understand C’s primitive data types Primitive values and the operations on them 3 Agenda Number Systems Finite representation of unsigned integers Finite representation of signed integers Finite representation of rational numbers (if time) 4 The Decimal Number System Name • “decem” (Latin) => ten Characteristics • Ten symbols • 0 1 2 3 4 5 6 7 8 9 • Positional • 2945 ≠ 2495 • 2945 = (2*103) + (9*102) + (4*101) + (5*100) (Most) people use the decimal number system Why? 5 The Binary Number System Name • “binarius” (Latin) => two Characteristics • Two symbols • 0 1 • Positional • 1010B ≠ 1100B Most (digital) computers use the binary number system Why? Terminology • Bit: a binary digit • Byte: (typically) 8 bits 6 Decimal-Binary Equivalence Decimal Binary Decimal Binary 0 0 16 10000 1 1 17 10001 2 10 18 10010 3 11 19 10011 4 100 20 10100 5 101 21 10101 6 110 22 10110 7 111 23 10111 8 1000 24 11000 9 1001 25 11001 10 1010 26 11010 11 1011 27 11011 12 1100 28 11100 13 1101 29 11101 14 1110 30 11110 15 1111 31 11111 .. -
1 Evolution and Base Conversion
Indian Institute of Information Technology Design and Manufacturing, Kancheepuram logo.png Chennai { 600 127, India Instructor An Autonomous Institute under MHRD, Govt of India N.Sadagopan http://www.iiitdm.ac.in Computational Engineering Objectives: • To learn to work with machines (computers, ATMs, Coffee vending machines). • To understand how machines think and work. • To design instructions which machines can understand so that a computational task can be performed. • To learn a language which machines can understand so that human-machine interaction can take place. • To understand the limitations of machines: what can be computed and what can not be computed using machines. Outcome: To program a computer for a given computational task involving one or more of arithmetic, algebraic, logical, relational operations. 1 Evolution and Base Conversion Why Machines ? We shall now discuss the importance of automation; human-centric approach (manual) versus machines. Although machines are designed by humans, for many practical reasons, machines are superior to humans as far as problem solving is concerned. We shall highlight below commonly observed features that make machines powerful. • Reliable, accurate and efficient. • Can do parallel tasks if trained. • Efficient while peforming computations with large numbers. If designed correctly, then there is no scope for error. • Good at micro-level analysis with precision. • Consistent It is important to highlight that not all problems can be solved using machines (computers). For example, (i) whether a person is happy (ii) whether a person is lying (not speaking the truth) (iii) reciting the natural number set (iv) singing a song in a particular raga. Computer: A computational machine In this lecture, we shall discuss a computational machine called computer.