Phylogenetic Relationships of Labeonine
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rainbow Sharkminnow (Epalzeorhynchos Frenatum) ERSS
Rainbow Sharkminnow (Epalzeorhynchos frenatum) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, June 2012 Revised, November 2018 Web Version, 2/1/2019 Photo: Drachenschwertträger36/Wikimedia. Licensed under Creative Commons BY-SA 2.0 Germany. Available: https://commons.wikimedia.org/wiki/File:Z%C3%BCgelfransenlipper.jpg. (November 8, 2018). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2018): “Asia: Mekong, Chao Phraya and Xe Bangfai basins [Kottelat 1998] and Maeklong basin [Yang and Winterbottom 1998].” 1 “[In Cambodia:] Occurs in the Mekong River [Kottelat 1998]. Known from Tonlé Sap and Phnom Penh [Kottelat 1985].” “[In Laos:] Occurs in the Mekong and the lower Xe Bangfai [Kottelat 1998]. Found in Ban Hang Khone, a village on an island in the middle of the mainstream Mekong River just below the Great Khone Waterfalls in Khong District, Champasak Province [Baird 1998].” “[In Thailand:] Occurs in the Maeklong [Vidthayanon et al. 1997], Mekong and Chao Phraya basins [Vidthayanon et al. 1997; Kottelat 1998]. Known from Chiang Mai and the Tachin (Samut Sakhon) River [Suvatti 1981]; also from Phra Nakhon Si Ayutthaya, Nakhon Sawan, Ubon Ratchathani, Kanchanaburi, Nakhon Ratchasima, Phrae and Phitsanulok [Monkolprasit et al. 1997].” From Vidthayanon (2012): “It has also been reported from Viet Nam.” Status in the United States Tuckett et al. (2017) caught 1 individual of Epalzeorhynchos frenatum in the wild in Florida but within 500m of an aquaculture facility. According to Chapman et al. (1994), Epalzeorhynchos frenatum (listed as Labeo frenatus) was imported to the United States for the ornamental trade in 1992. -
Scale Deformities in Three Species of the Genus Garra (Actinopterygii: Cyprinidae)
Scale deformities in three species of the genus Garra (Actinopterygii: Cyprinidae) Halimeh Zareian1,2, Hamid Reza Esmaeili1, Ali Gholamhosseini1* 1. Developmental Biosystematics Research Laboratory, Zoology Section, Department of Biology, School of Science, Shiraz University, Shiraz, Iran 2. Zand Institute of Higher Education, Shiraz, Iran *Corresponding author’s E-mail: [email protected] ABSTRACT Different types of scale deformities have been reported from fishes worldwide, however there is no available study on the abnormal scales in the genus Garra except for G. variabilis. In the present study, scale deformities of three species of Garra including G. rufa, G. persica and Garra sp. from 6 sites of the Iranian drainages were examined and described. Different deformations were observed in focus, anterior, posterior and lateral sides of scales in the studied species, showing both slight and severe abnormalities. The occurrence of twin scales was one of the most interesting cases among various types of scale deformities observed on G. persica and Garra sp. Genetic disorders, diseases (including infection and lesions), developmental anomalies, incomplete regeneration after wounding, physical, and chemical environmental variables including pollutions might be considered as potential factors for scale abnormalities remained to be investigated. Keywords: Garra, Scale morphology, Taxonomy, Abnormal scale, Iranian drainage basins. INTRODUCTION Among the morphological abnormalities reported in fishes (e.g. Poppe et al. 1997; Corrales -
Epalzeorhynchos Munense ERSS
Epalzeorhynchos munense (a fish, no common name) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, June 2012 Revised, November 2018 Web Version, 2/1/2019 Photo: W. J. Rainboth/FAO. Licensed under Creative Commons BY-NC 3.0 Unported. Available: http://www.fishbase.org/photos/PicturesSummary.php?StartRow=0&ID=27163&what=species& TotRec=2. (November 9, 2018). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2018a): “Asia: Mekong [Cambodia, Thailand, Laos] and Chao Phraya [Thailand] basins [Kottelat 2001] and Maeklong basin [Thailand] [Vidthayanon et al. 1997].” “[In Laos:] Known from the middle Xe Bangfai, a tributary of the Mekong basin [Kottelat 1998].” 1 Status in the United States No records of Epalzeorhynchos munense in the wild or in trade in the United States were found. Means of Introductions in the United States No records of Epalzeorhynchos munense in the wild in the United States were found. Remarks Information searches were conducted using the valid name Epalzeorhynchos munense and the synonym Labeo munensis. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing According to Fricke et al. (2018), Epalzeorhynchos munense is the valid name for this species. It was originally described as Labeo munensis. From Froese and Pauly (2018b): “Animalia (Kingdom) > Chordata (Phylum) > Vertebrata (Subphylum) > Gnathostomata (Superclass) > […] Actinopterygii (Class) > Cypriniformes (Order) > Cyprinidae (Family) > Epalzeorhynchos munense (Species)” Size, Weight, and Age Range From Froese and Pauly (2018a): “Max length : 9.3 cm SL male/unsexed; [Kottelat 1998]” Environment From Froese and Pauly (2018a): “Freshwater; benthopelagic.” Climate/Range From Froese and Pauly (2018a): “Tropical” 2 Distribution Outside the United States Native From Froese and Pauly (2018a): “Asia: Mekong [Cambodia, Thailand, Laos] and Chao Phraya [Thailand] basins [Kottelat 2001] and Maeklong basin [Thailand] [Vidthayanon et al. -
Genetic Differentiation Between Two Sympatric Morphs of the Blind Iran Cave Barb Iranocypris Typhlops
Journal of Fish Biology (2012) 81, 1747–1753 doi:10.1111/j.1095-8649.2012.03389.x, available online at wileyonlinelibrary.com BRIEF COMMUNICATIONS Genetic differentiation between two sympatric morphs of the blind Iran cave barb Iranocypris typhlops I. Hashemzadeh Segherloo*†, L. Bernatchez‡, K. Golzarianpour§, A. Abdoli, C. R. Primmer¶ and M. Bakhtiary** *Department of Aquaculture, Faculty of Natural Resources and Earth Sciences, University of Shahre Kord, Shahre Kord 115, Iran, ‡Institut de Biologie Int´egrative et des Syst`emes (IBIS), Pavillion Charles-Eugene-Marchant Universit´e Laval, Qu´ebec, GIV 046 Canada, §Department of Biology, Faculty of Science, Gonbad-e Kavous University, Golestan, Iran, Department of Biodiversity and Ecosystem Management, Environmental Science Research Institute, Shahid Beheshti University, G. C. Velenjak, Tehran, Iran, ¶Department of Biology, University of Turku, Turku 20014, Finland and **Department of Fisheries and Environmental Sciences, Faculty of Natural Resources, University of Tehran, Karaj 411, Iran (Received 11 April 2011, Accepted 29 May 2012) The phylogenetic relationship between two sympatric morphotypes of the Iran cave barb Iranocypris typhlops,andGarra rufa, was investigated by sequencing the cytochrome c oxidase I (coI ) region (788 bp) providing the first molecular evidence of their phylogeny. Consistent with their morpho- logical differences, the mean genetic distance between the two forms of I. typhlops was significantly higher than generally reported for intraspecific divergence in freshwater fishes. They were phyloge- netically closer to G. rufa than to any other species. © 2012 The Authors Journal of Fish Biology © 2012 The Fisheries Society of the British Isles Key words: cytochrome c oxidase; Garra rufa; morphotypes; phylogenetic relationship. -
Induction of Maturation and Ovulation of Red Fin Shark Fish
International Journal of Fisheries and Aquatic Studies 2017; 5(4): 418-424 E-ISSN: 2347-5129 P-ISSN: 2394-0506 (ICV-Poland) Impact Value: 5.62 Induction of maturation and ovulation of Red Fin (GIF) Impact Factor: 0.549 IJFAS 2017; 5(4): 418-424 Shark fish Epalzeorhynchos frenatus in non-spawning © 2017 IJFAS www.fisheriesjournal.com season Received: 03-05-2017 Accepted: 04-06-2017 Muhammad Faiz Islami, Agus Oman Sudrajat and Odang Carman Muhammad Faiz Islami Department of Aquaculture, Bogor Agricultural University, Abstract Bogor, Indonesia, Jl. Agatis There are constraints on the production of red fin shark Epalzeorhynchos frenatus due to the lack of Kampus Dramaga, Bogor, matured broodstocks in Non-spawning season and has a dependence on hormone induction during Indonesia spawning process, because it can’t spawn naturally in cultivation environments. Gonad maturation can be stimulated by the addition of hormones and potential plant-based materials to feed. Thus, the present Agus Oman Sudrajat study attempted alternative hormonal combination to induce both ovulation and spawning in order to Department of Aquaculture, provide farmers with alternative choices for reproduction. This research was divided into two sub- Bogor Agricultural University, research (maturation and ovulation) in one main title. The first section of the study dealt with Bogor, Indonesia, Jl. Agatis maturational induction and it used Completely Randomized Design with 5 treatments. Ten broodstocks Kampus Dramaga, Bogor, were used in each treatment which was as follows: Oodev (0.25 and 0.5 mL. kg-1 fish) addition to feed, Indonesia turmeric powder (250 and 500 mg 100 g-1 feed), and commercial feed (at least 30 % protein) as the control. -
Monograph of the Cyprinid Fis~Hes of the Genus Garra Hamilton (173)
MONOGRAPH OF THE CYPRINID FIS~HES OF THE GENUS GARRA HAMILTON By A. G. K. MENON, Zoologist, ,Zoological Surt1ey of India, Oalcutta. (With 1 Table, 29 Text-figs. and 6 Plates) CONTENTS Page I-Introduction 175 II-Purpose and general results 176 III-Methods and approaches 176 (a) The definition of Measurements 176 (b) The analysis of Intergradation 178 (c) The recognition of subspecies. 179 (d) Procedures in the paper 180 (e) Evaluation of systematic characters 181 (I) Abbreviations of names of Institutions 181 IV-Historical sketch 182 V-Definition of the genus 187 VI-Systematic section 188 (a) The variabilis group 188 (i) The variabilis Complex 188 1. G. variabilis 188 2. G. rossica 189 (b) The tibanica group 191 (i) The tibanica Complex 191 3. G. tibanica. 191 4. G. quadrimaculata 192 5. G. ignestii 195 6. G. ornata 196 7. G. trewavasi 198 8. G. makiensis 198 9. G. dembeensis 199 10. G. ethelwynnae 202 (ii) The rufa complex 203 11. G. rufa rufa 203 12. G. rufa obtusa 205 13. O. barteimiae 206 (iii) The lamta complex 208 14. G. lamta 208 15. G. mullya 212 16. G. 'ceylonensis ceylonensis 216 17. G. c. phillipsi 216 18. G. annandalei 217 (173) 174 page (iv) The lissorkynckus complex 219 19. G. lissorkynchus 219 20. G. rupecula 220 ~ (v) The taeniata complex 221 21. G. taeniata. 221 22" G. borneensis 224 (vi) The yunnanensis complex 224 23. G. yunnanensis 225 24. G. gracilis 229 25. G. naganensis 226 26. G. kempii 227 27. G. mcOlellandi 228 28. G. -
Beta Diversity Patterns of Fish and Conservation Implications in The
A peer-reviewed open-access journal ZooKeys 817: 73–93 (2019)Beta diversity patterns of fish and conservation implications in... 73 doi: 10.3897/zookeys.817.29337 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Beta diversity patterns of fish and conservation implications in the Luoxiao Mountains, China Jiajun Qin1,*, Xiongjun Liu2,3,*, Yang Xu1, Xiaoping Wu1,2,3, Shan Ouyang1 1 School of Life Sciences, Nanchang University, Nanchang 330031, China 2 Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engi- neering, Nanchang University, Nanchang 330031, China 3 School of Resource, Environment and Chemical Engineering, Nanchang University, Nanchang 330031, China Corresponding author: Shan Ouyang ([email protected]); Xiaoping Wu ([email protected]) Academic editor: M.E. Bichuette | Received 27 August 2018 | Accepted 20 December 2018 | Published 15 January 2019 http://zoobank.org/9691CDA3-F24B-4CE6-BBE9-88195385A2E3 Citation: Qin J, Liu X, Xu Y, Wu X, Ouyang S (2019) Beta diversity patterns of fish and conservation implications in the Luoxiao Mountains, China. ZooKeys 817: 73–93. https://doi.org/10.3897/zookeys.817.29337 Abstract The Luoxiao Mountains play an important role in maintaining and supplementing the fish diversity of the Yangtze River Basin, which is also a biodiversity hotspot in China. However, fish biodiversity has declined rapidly in this area as the result of human activities and the consequent environmental changes. Beta diversity was a key concept for understanding the ecosystem function and biodiversity conservation. Beta diversity patterns are evaluated and important information provided for protection and management of fish biodiversity in the Luoxiao Mountains. -
Carp (No Common Name) (Labeo Longipinnis)
Labeo longipinnis (a carp, no common name) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, April 2012 Revised, April 2018 Web Version, 5/16/2018 Photo: J. P. Sullivan. Licensed under CC BY-NC-SA 3.0. Available: http://eol.org/data_objects/17785833. (April 2018). 1 Native Range and Status in the United States Native Range From Moelants (2010): “This species is known from Central Africa Republic to Angola, and Tanzania.” “Central Africa: Labeo longipinnis is known from throughout the Congo River Basin.” “Eastern Africa: One record has been made from Lake Tanganyika (Reid 1985).” “Native: Angola (Angola); Central African Republic; Congo, The Democratic Republic of the; Tanzania, United Republic of” From Froese and Pauly (2018): “Africa: widespread in the Congo River basin, Luapula-Mweru excluded [Tshibwabwa 1997]. Single record from Lake Tanganyika [Reid 1985] unconfirmed [Tshibwabwa 1997] and doubtful.” 1 Status in the United States This species has not been reported as introduced or established in the U.S. There is no indication that this species is in trade in the U.S. Means of Introductions in the United States This species has not been reported as introduced or established in the U.S. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From ITIS (2018): “Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Actinopterygii Class Teleostei Superorder Ostariophysi Order Cypriniformes Superfamily Cyprinoidea Family Cyprinidae -
Meristic and Morphometric Characteristics of Crossocheilus Diplochilus (Heckel, 1838) from the Poonch Valley of Jammu and Kashmir, India
World Journal of Zoology 9 (3): 184-189, 2014 ISSN 1817-3098 © IDOSI Publications, 2014 DOI: 10.5829/idosi.wjz.2014.9.3.8570 Meristic and Morphometric Characteristics of Crossocheilus diplochilus (Heckel, 1838) from the Poonch Valley of Jammu and Kashmir, India 1Neeraj Kumar Sharma, 22Javaid Iqbal Mir, Nitya Nand Pandey, 2Mohd. Shahbaz Akhtar, 11Amir Bashir and Ravindra Singh 1Department of Zoology, Tehri Campus, Hemwati Nandan Bahuguna Garhwal University, Tehri Garhwal-249199, India 2Directorate of Coldwater Fisheries Research, Anusandhan Bhawan, Bhimtal 263136, India Abstract: The present study aims to describe the meristic and morphometric characteristics of Crossocheilus diplochilus from a tributary of Indus River basin, India. Altogether 41 specimens ranging from 10.0 - 17.0 cm total length (TL) and 12.16 - 41.22 g body weight (BW) were used for the study of the morphometric and meristic characteristics using different local fishing gears. The morphometric characteristics on the head express greater variation in head height (SD=7.46) than those from the body in pre-anal fin length (SD=4.14). The highly correlated body parameter in relation to total length was standard length (r=0.996) and distance from anal fin to caudal fin base was found least correlated (r=0.804) and strong correlations were observed between head length and pre-orbital length (r=0.931) and least correlation between head length and head height (r=0.829). Even though the values of correlation coefficient (r) vary between 0.804 (distance from anal fin to caudal fin base) and 0.996 (standard length), they are all strongly significant (P<0.001). -
(Teleostei: Cyprinidae) from Guangxi Province, South China
Zootaxa 3586: 17–25 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:11DCE264-A125-4EA0-A037-54B3B8953DB7 Sinigarra napoense, a new genus and species of labeonin fishes (Teleostei: Cyprinidae) from Guangxi Province, South China E ZHANG1,3 & WEI ZHOU2 1Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei Province, P. R. China 2Faculty of Conservation Biology, Southwest Forestry College, Kunming 650224, Yunnan Province, P. R. China 3Corresponding author, E-mail: [email protected] Abstract A new garrain genus and species are described from the Zuo-Jiang of the Zhu-Jiang (Pearl River) drainage in Guangxi Province, South China. Sinigarra, new genus, is characterized by having the lower lip modified into a mental adhesive disc posteriorly discontinuous with the mental region. It is distinguished from all other disc-bearing genera, namely Garra, Placocheilus, Discocheilus and Discogobio, by having the anterior edge of the mental adhesive disc not modified to form an anteromedian crescentic fold, an upper lip present, but separated from the upper jaw, and indistinct papillae scarcely scattered over the rostral cap and lower lip or absent. Key words: Cypriniformes, Labeonini, Garraina, taxonomy Introduction The Labeonini is a monophyletic assemblage of Cyprinidae that comprises a large number of fish species broadly known from the freshwaters of tropical Africa and Asia (sensu Reid 1982; Stiassny & Getahun 2007). There are about thirty-five genera presently referred to the Labeonini, with the high diversity of this tribe at the generic-level rank concentrated in South China where twenty-six genera occur, accounting for about 72.2% of the total (Yang & Mayden 2010; Zhu et al. -
Resolving Cypriniformes Relationships Using an Anchored Enrichment Approach Carla C
Stout et al. BMC Evolutionary Biology (2016) 16:244 DOI 10.1186/s12862-016-0819-5 RESEARCH ARTICLE Open Access Resolving Cypriniformes relationships using an anchored enrichment approach Carla C. Stout1*†, Milton Tan1†, Alan R. Lemmon2, Emily Moriarty Lemmon3 and Jonathan W. Armbruster1 Abstract Background: Cypriniformes (minnows, carps, loaches, and suckers) is the largest group of freshwater fishes in the world (~4300 described species). Despite much attention, previous attempts to elucidate relationships using molecular and morphological characters have been incongruent. In this study we present the first phylogenomic analysis using anchored hybrid enrichment for 172 taxa to represent the order (plus three out-group taxa), which is the largest dataset for the order to date (219 loci, 315,288 bp, average locus length of 1011 bp). Results: Concatenation analysis establishes a robust tree with 97 % of nodes at 100 % bootstrap support. Species tree analysis was highly congruent with the concatenation analysis with only two major differences: monophyly of Cobitoidei and placement of Danionidae. Conclusions: Most major clades obtained in prior molecular studies were validated as monophyletic, and we provide robust resolution for the relationships among these clades for the first time. These relationships can be used as a framework for addressing a variety of evolutionary questions (e.g. phylogeography, polyploidization, diversification, trait evolution, comparative genomics) for which Cypriniformes is ideally suited. Keywords: Fish, High-throughput -
Morphological and Molecular Studies on Garra Imberba and Its Related Species in China
Zoological Research 35 (1): 20−32 DOI:10.11813/j.issn.0254-5853.2014.1.020 Morphological and molecular studies on Garra imberba and its related species in China Wei-Ying WANG 1,2, Wei ZHOU3, Jun-Xing YANG1, Xiao-Yong CHEN1,* 1. State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 2. University of Chinese Academy of Sciences, Beijing 100049, China 3. Southwest Forestry University, Kunming, Yunnan 650224, China Abstract: Garra imberba is widely distributed in China. At the moment, both Garra yiliangensis and G. hainanensis are treated as valid species, but they were initially named as a subspecies of G. pingi, a junior synonym of G. imberba. Garra alticorpora and G. nujiangensis also have similar morphological characters to G. imberba, but the taxonomic statuses and phylogenetic relationships of these species with G. imberba remains uncertain. In this study, 128 samples from the Jinshajiang, Red, Nanpanjiang, Lancangjiang, Nujiang Rivers as well as Hainan Island were measured while 1 mitochondrial gene and 1 nuclear intron of 24 samples were sequenced to explore the phylogenetic relationship of these five species. The results showed that G. hainanensis, G. yiliangensis, G. alticorpora and G. imberba are the same species with G. imberba being the valid species name, while G. nujiangensis is a valid species in and of itself. Keywords: Garra imberba; Taxonomy; Morphology; Molecular phylogeny With 105 valid species Garra is one of the most from Jinshajiang River as G. pingi, but Kottelat (1998) diverse genera of the Labeoninae, and has a widespread treated G.