Marine Invertebrates Collected During the Kermadec Biodiscovery Expedition 2011
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diversity and Phylogeography of Southern Ocean Sea Stars (Asteroidea)
Diversity and phylogeography of Southern Ocean sea stars (Asteroidea) Thesis submitted by Camille MOREAU in fulfilment of the requirements of the PhD Degree in science (ULB - “Docteur en Science”) and in life science (UBFC – “Docteur en Science de la vie”) Academic year 2018-2019 Supervisors: Professor Bruno Danis (Université Libre de Bruxelles) Laboratoire de Biologie Marine And Dr. Thomas Saucède (Université Bourgogne Franche-Comté) Biogéosciences 1 Diversity and phylogeography of Southern Ocean sea stars (Asteroidea) Camille MOREAU Thesis committee: Mr. Mardulyn Patrick Professeur, ULB Président Mr. Van De Putte Anton Professeur Associé, IRSNB Rapporteur Mr. Poulin Elie Professeur, Université du Chili Rapporteur Mr. Rigaud Thierry Directeur de Recherche, UBFC Examinateur Mr. Saucède Thomas Maître de Conférences, UBFC Directeur de thèse Mr. Danis Bruno Professeur, ULB Co-directeur de thèse 2 Avant-propos Ce doctorat s’inscrit dans le cadre d’une cotutelle entre les universités de Dijon et Bruxelles et m’aura ainsi permis d’élargir mon réseau au sein de la communauté scientifique tout en étendant mes horizons scientifiques. C’est tout d’abord grâce au programme vERSO (Ecosystem Responses to global change : a multiscale approach in the Southern Ocean) que ce travail a été possible, mais aussi grâce aux collaborations construites avant et pendant ce travail. Cette thèse a aussi été l’occasion de continuer à aller travailler sur le terrain des hautes latitudes à plusieurs reprises pour collecter les échantillons et rencontrer de nouveaux collègues. Par le biais de ces trois missions de recherches et des nombreuses conférences auxquelles j’ai activement participé à travers le monde, j’ai beaucoup appris, tant scientifiquement qu’humainement. -
The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization OPEN ACCESS
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/328063815 The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization OPEN ACCESS Article · January 2018 CITATIONS READS 0 6 5 authors, including: Ferdinard Olisa Megwalu World Fisheries University @Pukyong National University (wfu.pknu.ackr) 3 PUBLICATIONS 0 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Population Dynamics. View project All content following this page was uploaded by Ferdinard Olisa Megwalu on 04 October 2018. The user has requested enhancement of the downloaded file. Review Article Published: 17 Sep, 2018 SF Journal of Biotechnology and Biomedical Engineering The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization Rahman MA1*, Molla MHR1, Megwalu FO1, Asare OE1, Tchoundi A1, Shaikh MM1 and Jahan B2 1World Fisheries University Pilot Programme, Pukyong National University (PKNU), Nam-gu, Busan, Korea 2Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh Abstract The Sea stars (Asteroidea: Echinodermata) are comprising of a large and diverse groups of sessile marine invertebrates having seven extant orders such as Brisingida, Forcipulatida, Notomyotida, Paxillosida, Spinulosida, Valvatida and Velatida and two extinct one such as Calliasterellidae and Trichasteropsida. Around 1,500 living species of starfish occur on the seabed in all the world's oceans, from the tropics to subzero polar waters. They are found from the intertidal zone down to abyssal depths, 6,000m below the surface. Starfish typically have a central disc and five arms, though some species have a larger number of arms. The aboral or upper surface may be smooth, granular or spiny, and is covered with overlapping plates. -
Anti-Inflammatory Components of the Starfish Astropecten Polyacanthus
Mar. Drugs 2013, 11, 2917-2926; doi:10.3390/md11082917 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Anti-Inflammatory Components of the Starfish Astropecten polyacanthus Nguyen Phuong Thao 1,2, Nguyen Xuan Cuong 1, Bui Thi Thuy Luyen 1,2, Tran Hong Quang 1, Tran Thi Hong Hanh 1, Sohyun Kim 3, Young-Sang Koh 3, Nguyen Hoai Nam 1, Phan Van Kiem 1, Chau Van Minh 1 and Young Ho Kim 2,* 1 Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Nghiado, Caugiay, Hanoi 10000, Vietnam; E-Mails: [email protected] (N.P.T.); [email protected] (N.X.C.); [email protected] (B.T.T.L.); [email protected] (T.H.Q.); [email protected] (T.T.H.H.); [email protected] (N.H.N.); [email protected] (P.V.K.); [email protected] (C.V.M.) 2 College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea 3 School of Medicine, Brain Korea 21 Program, and Institute of Medical Science, Jeju National University, Jeju 690-756, Korea; E-Mails: [email protected] (S.K.); [email protected] (Y.-S.K.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +82-42-82-5933; Fax: +82-42-823-6566. Received: 20 June 2013; in revised form: 17 July 2013 / Accepted: 19 July 2013 / Published: 13 August 2013 Abstract: Inflammation is important in biomedical research, because it plays a key role in inflammatory diseases including rheumatoid arthritis and other forms of arthritis, diabetes, heart disease, irritable bowel syndrome, Alzheimer’s disease, Parkinson’s disease, allergies, asthma, and even cancer. -
(Approx) Mixed Micro Shells (22G Bags) Philippines € 10,00 £8,64 $11,69 Each 22G Bag Provides Hours of Fun; Some Interesting Foraminifera Also Included
Special Price £ US$ Family Genus, species Country Quality Size Remarks w/o Photo Date added Category characteristic (€) (approx) (approx) Mixed micro shells (22g bags) Philippines € 10,00 £8,64 $11,69 Each 22g bag provides hours of fun; some interesting Foraminifera also included. 17/06/21 Mixed micro shells Ischnochitonidae Callistochiton pulchrior Panama F+++ 89mm € 1,80 £1,55 $2,10 21/12/16 Polyplacophora Ischnochitonidae Chaetopleura lurida Panama F+++ 2022mm € 3,00 £2,59 $3,51 Hairy girdles, beautifully preserved. Web 24/12/16 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 30mm+ € 4,00 £3,45 $4,68 30/04/21 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 27.9mm € 2,80 £2,42 $3,27 30/04/21 Polyplacophora Ischnochitonidae Stenoplax limaciformis Panama F+++ 16mm+ € 6,50 £5,61 $7,60 Uncommon. 24/12/16 Polyplacophora Chitonidae Acanthopleura gemmata Philippines F+++ 25mm+ € 2,50 £2,16 $2,92 Hairy margins, beautifully preserved. 04/08/17 Polyplacophora Chitonidae Acanthopleura gemmata Australia F+++ 25mm+ € 2,60 £2,25 $3,04 02/06/18 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 41mm+ € 4,00 £3,45 $4,68 West Indian 'fuzzy' chiton. Web 24/12/16 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 32mm+ € 3,00 £2,59 $3,51 West Indian 'fuzzy' chiton. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 44mm+ € 5,00 £4,32 $5,85 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F++ 35mm € 2,50 £2,16 $2,92 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 29mm+ € 3,00 £2,59 $3,51 Caribbean. -
Atoll Research Bulletin No. 548
ATOLL RESEARCH BULLETIN NO. 548 STOMACH CONTENTS AND FEEDING OBSERVATIONS OF SOME EASTER ISLAND FISHES BY LOUIS H. DISALVO, JOHN E. RANDALL, AND ALFREDO CEA ISSUED BY NATIONAL MUSEUM OF NATURAL HISTORY SMITHSONIAN INSTITUTION WASHINGTON, D.C. U.S.A. DECEMBER 2007 STOMACH CONTENTS AND FEEDING OBSERVATIONS OF SOME EASTER ISLAND FISHES BY LOUIS H. DISALVO,1 JOHN E. RANDALL,2 AND ALFREDO CEA3 ABSTRACT Stomach contents of 42 species in 25 familes of Easter Island shore fishes were examined in comparative terms to determine prey items and feeding behavior at this isolated island outpost in the southeastern Pacific. The island’s impoverished marine fauna and flora have resulted in considerable dietary overlap among the inshore fishes. Some endemic species appear to feed mainly on endemic invertebrates. Some prey species which were found in the fish stomachs, such as the stomatopodOdontodactylus hawaiiensis, the pandalid shrimp Plesionika edwardsi, and several tiny molluscs were previously unrecorded for the island. INTRODUCTION Easter Island (Rapa Nui) lies 3750 km west of the South American continent and 2250 km. East of the Pitcairn Islands. This island represents the most isolated landfall in the South Pacific Ocean along with its small rocky neighbor Salas y Gómez I. 415 km to the east. Although Easter Island is often regarded as part of the Indo-Pacific region, and most of its fauna consist of tropical species (in the case of shore fishes, 32.5%), it lies outside the 20° isotherm (Wells 1957) where seawater temperature and insolation are below that required for the development of structural coral reefs; water temperature can undergo interannual drops unfavorable to tropical organisms and may produce mass mortalities of corals (Wellington et al., 2001). -
Macrofauna Associated with the Brown Algae Dictyota Spp. (Phaeophyceae, Dictyotaceae) in the Sebastião Gomes Reef and Abrolhos Archipelago, Bahia, Brazil
Continental Shelf Research 70 (2013) 140–149 Contents lists available at ScienceDirect Continental Shelf Research journal homepage: www.elsevier.com/locate/csr Research papers Macrofauna associated with the brown algae Dictyota spp. (Phaeophyceae, Dictyotaceae) in the Sebastião Gomes Reef and Abrolhos Archipelago, Bahia, Brazil Tauana Junqueira Cunha n, Arthur Ziggiatti Güth, Sandra Bromberg, Paulo Yukio Gomes Sumida Universidade de São Paulo, Instituto Oceanográfico, Room 139. Praça do Oceanográfico, 191, Cidade Universitária, CEP 05508-120, São Paulo, SP, Brazil article info abstract Available online 12 September 2013 The taxonomic richness and distributional patterns of the macrofauna associated with the algae genus Dictyota from the Abrolhos Bank (Eastern Brazilian coast) are analyzed. Macrofauna comprised a total of Keywords: 9586 specimens; a complete faunal list of the most abundant taxa (Crustacea, Polychaeta and Mollusca, Abrolhos fi Brazil accounting for 95.6%) resulted in 64 families and 120 species. Forty six species are registered for the rst Dictyota time for the Abrolhos Bank, of which 3 are also new for the Brazilian coast. The most abundant families Phytal macrofauna were Ampithoidae amphipods (with Ampithoe ramondi as the main faunal component), Janiridae Spatial distribution isopods, Rissoellidae gastropods and Syllidae polychaetes. Comparisons were made between summer Temporal distribution and winter periods and among sites from Sebastião Gomes Reef, near the coast, and from Siriba Island, in the Abrolhos Archipelago, away from the mainland. Algae size was lower in the summer, when faunal density was higher, suggesting a possible effect of grazing. Macrofaunal communities were significantly different among sites and periods. Coastal and external communities were markedly different and winter had the greatest effects on the fauna. -
The Coastal Molluscan Fauna of the Northern Kermadec Islands, Southwest Pacific Ocean
Journal of the Royal Society of New Zealand ISSN: 0303-6758 (Print) 1175-8899 (Online) Journal homepage: http://www.tandfonline.com/loi/tnzr20 The coastal molluscan fauna of the northern Kermadec Islands, Southwest Pacific Ocean F. J. Brook To cite this article: F. J. Brook (1998) The coastal molluscan fauna of the northern Kermadec Islands, Southwest Pacific Ocean, Journal of the Royal Society of New Zealand, 28:2, 185-233, DOI: 10.1080/03014223.1998.9517560 To link to this article: http://dx.doi.org/10.1080/03014223.1998.9517560 Published online: 30 Mar 2010. Submit your article to this journal Article views: 405 View related articles Citing articles: 14 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tnzr20 Download by: [86.95.75.143] Date: 27 January 2017, At: 05:34 © Journal of The Royal Society of New Zealand, Volume 28, Number 2, June 1998, pp 185-233 The coastal molluscan fauna of the northern Kermadec Islands, Southwest Pacific Ocean F. J. Brook* A total of 358 species of molluscs (excluding pelagic species) is recorded here from coastal marine habitats around the northern Kermadec Islands. The fauna is dominated by species that are widely distributed in the tropical western and central Pacific Ocean. The majority of these are restricted to the tropics and subtropics, but some range south to temperate latitudes. Sixty-eight species, comprising 19% of the fauna, are thought to be endemic to the Kermadec Islands. That group includes several species that have an in situ fossil record extending back to the Pleistocene. -
Genetic Structure of Pleurobranchaea Maculata in New Zealand
Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. GENETIC STRUCTURE OF PLEUROBRANCHAEA MACULATA IN NEW ZEALAND A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy (PhD) in Genetics The New Zealand Institute for Advanced Study Massey University, Auckland, New Zealand YEŞERİN YILDIRIM 2016 ACKNOWLEDEGEMENTS I have a long list of people to acknowledge, as my PhD project would not have been possible without their support. Firstly, I would like to thank my supervisor, Professor Paul B. Rainey (New Zealand Institute of Advanced Study, Massey University), for providing me with the opportunity to join his research group. He gave me constant support, insightful guidance, valuable input, and showed me how to think like a scientist. I would also like to thank my co- supervisor, Dr Craig D. Millar, who welcomed me into his genetics laboratory at the Department of Biological Sciences at the University of Auckland whenever I needed help. He guided me patiently right from the beginning of my PhD project, was generous with his time, encouraging, and taught me how to troubleshoot where necessary. I would like to extend a special mention to Selina Patel, a very talented technician at Dr Millar’s Lab who shared her extensive technical and theoretical knowledge with me generously, but also allocated considerable time to help me progress with my research. -
Crustacea: Anomura: Diogenidae)
Memoirs of Museum Victoria 60(1): 91–97 (2003) ISSN 1447-2546 (Print) 1447-2554 (On-line) http://www.museum.vic.gov.au/memoirs Calcinus hermit crabs from Easter Island, with biogeographic considerations (Crustacea: Anomura: Diogenidae) JOSEPH POUPIN1, CHRISTOPHER B. BOYKO2 AND GUILLERMO L. GUZMÁN3 1Institut de Recherche de l'École navale, IRENav, École navale, Lanvéoc-Poulmic, BP 600, 29240 Brest Naval, France ([email protected]) 2Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA ([email protected]) 3Museo del Mar Universidad Arturo Prat, Casilla 121, Iquique, Chile ([email protected]) Abstract Poupin, J., Boyko, C.B., and Guzmán, G.L. 2003. Calcinus hermit crabs from Easter Island, with biogeographic consid- erations (Crustacea: Anomura: Diogenidae). In: Lemaitre, R., and Tudge, C.C. (eds), Biology of the Anomura. Proceedings of a symposium at the Fifth International Crustacean Congress, Melbourne, Australia, 9–13 July 2001. Memoirs of Museum Victoria 60(1): 91–97. From collections made in 1998 and 1999, three species of Calcinus are recorded from Easter I.: Calcinus pascuensis Haig, 1974; C. imperialis Whitelegge, 1901; and C. vachoni Forest, 1958. A redescription of Calcinus pascuensis is given and a neotype is selected. Occurrence of Calcinus imperialis is confirmed by examination of almost 80 specimens, including many juveniles. Calcinus vachoni is recorded for the first time from the island. The Easter I. Calcinus fauna is compared with that of other localities in the Pacific, and biogeographic affinities are discussed. Keywords Crustacea, Anomura, Diogenidae, Calcinus, biogeography, Easter Island Introduction genus Calcinus were obtained, with only three species repre- sented: C. -
128 Freiberg, 2012 Protoconch Characters of Late Cretaceous
Freiberger Forschungshefte, C 542 psf (20) 93 – 128 Freiberg, 2012 Protoconch characters of Late Cretaceous Latrogastropoda (Neogastropoda and Neomesogastropoda) as an aid in the reconstruction of the phylogeny of the Neogastropoda by Klaus Bandel, Hamburg & David T. Dockery III, Jackson with 5 plates BANDEL, K. & DOCKERY, D.T. III (2012): Protoconch characters of Late Cretaceous Latrogastropoda (Neogastropoda and Neomesogastropoda) as an aid in the reconstruction of the phylogeny of the Neogastropoda. Paläontologie, Stratigraphie, Fazies (20), Freiberger Forschungshefte, C 542: 93–128; Freiberg. Keywords: Latrogastropoda, Neogastropoda, Neomesogastropoda, Cretaceous. Addresses: Prof. Dr. Klaus Bandel, Universitat Hamburg, Geologisch Paläontologisches Institut und Museum, Bundesstrasse 55, D-20146 Hamburg, email: [email protected]; David T. Dockery III, Mississippi Department of Environmental Quality, Office of Geology, P.O. Box 20307, 39289-1307 Jackson, MS, 39289- 1307, U.S.A., email: [email protected]. Contents: Abstract Zusammenfassung 1 Introduction 2 Palaeontology 3 Discussion 3.1 Characters of protoconch morphology among Muricoidea 3.2 Characteristics of the protoconch of Buccinidae, Nassariidae, Columbellinidae and Mitridae 3.3 Characteristics of the protoconch morphology among Toxoglossa References Abstract Late Cretaceous Naticidae, Cypraeidae and Calyptraeidae can be recognized by the shape of their teleoconch, as well as by their characteristic protoconch morphology. The stem group from which the Latrogastropoda originated lived during or shortly before Aptian/Albian time (100–125 Ma). Several groups of Latrogastropoda that lived at the time of deposition of the Campanian to Maastrichtian (65–83 Ma) Ripley Formation have no recognized living counterparts. These Late Cretaceous species include the Sarganoidea, with the families Sarganidae, Weeksiidae and Moreidae, which have a rounded and low protoconch with a large embryonic whorl. -
Clathurellidae
WMSDB - Worldwide Mollusc Species Data Base Family: CLATHURELLIDAE Author: Claudio Galli - [email protected] (updated 03/mag/2015) Class: GASTROPODA --- Clade: CAENOGASTROPODA-HYPSOGASTROPODA-NEOGASTROPODA-CONOIDEA ------ Family: CLATHURELLIDAE Adams & Adams, 1858 (Sea) - Alphabetic order - when first name is in bold the species has images Taxa=565, Genus=26, Subgenus=3, Species=298, Subspecies=23, Synonyms=214, Images=152 abyssicola, Pleurotomoides abyssicola L.A. Reeve, 1844 - syn of: Pleurotoma abyssicola L.A. Reeve, 1844 acclivicallis , Euclathurella acclivicallis J.H. McLean & R. Poorman, 1971 acricula , Nannodiella acricula (C. Hedley, 1922) acrolineata , Lienardia acrolineata A.E. Fedosov, 2011 adana , Glyphostoma adana W.H. Dall, 1919 - syn of: Glyphostoma neglecta (R.B. Hinds, 1843) aditicola, Paraclathurella aditicola C. Hedley, 1922 adria , Glyphostoma adria W.H. Dall, 1919 aegrota, Antimitra aegrota L.A. Reeve, 1845 - syn of: Metula aegrota (L.A. Reeve, 1845) aequalis , Pleurotomoides aequalis J.G. Jeffreys, 1867 - syn of: Raphitoma linearis aequalis (J.G. Jeffreys, 1867) affinis , Clathurella affinis W.H. Dall, 1871 - syn of: Clathurella rigida (R.B. Hinds, 1843) aguadillanum , Glyphostoma aguadillanum W.H. Dall & C.T. Simpson, 1901 - syn of: Lioglyphostoma aguadillanum (W.H. Dall & C.T. Simpson, 1901) albata, Etremopsis albata (E.A. Smith, 1882) albescens, Etrema trigonostomum albescens R.P.J. Hervier, 1896 albocincta, Clathurella albocincta G.F. Angas, 1871 - syn of: Apispiralia albocincta (G.F. Angas, 1871) albotaeniata , Clathurella albotaeniata J.L. Bouge & P. Dautzenberg, 1914 - syn of: Pseudodaphnella nexa (L.A. Reeve, 1845) aliciae , Etrema aliciae (J.C. Melvill & R. Standen, 1895) aliciae , Etrema aliciae C. Hedley, 1909 - syn of: Etrema labiosa C. Hedley, 1922 aliciae minor, Etrema aliciae minor J.L. -
Documents Félix A
Click Here & Upgrade Expanded Features PDF Unlimited Pages CompleteDocuments Félix A. Grana Raffucci. Junio, 2007. NOMENCLATURA DE LOS ORGANISMOS ACUÁTICOS Y MARINOS DE PUERTO RICO E ISLAS VÍRGENES. Volumen 4: Moluscos de Puerto Rico e Islas Vírgenes. Parte 3. Clase Gastropoda Órden Caenogastropoda Familias Eulimidae a Conidae Click Here & Upgrade Expanded Features PDF Unlimited Pages CompleteDocuments CLAVE DE COMENTARIOS: M= organismo reportado de ambientes marinos E= organismo reportado de ambientes estuarinos D= organismo reportado de ambientes dulceacuícolas int= organismo reportado de ambientes intermareales T= organismo reportado de ambientes terrestres L= organismo pelágico B= organismo bentónico P= organismo parasítico en alguna etapa de su vida F= organismo de valor pesquero Q= organismo de interés para el acuarismo A= organismo de interés para artesanías u orfebrería I= especie exótica introducida p=organismo reportado específicamente en Puerto Rico u= organismo reportado específicamente en las Islas Vírgenes de Estados Unidos b= organismo reportado específicamente en las Islas Vírgenes Británicas números= profundidades, en metros, en las que se ha reportado la especie Click Here & Upgrade Expanded Features PDF Unlimited Pages CompleteDocuments INDICE DE FAMILIAS EN ESTE VOLUMEN Aclididae Aclis Buccinidae Antillophos Bailya Belomitra Colubraria Engina Engoniophos Manaria Monostiolum Muricantharus Parviphos Pisania Pollia Cerithiopsidae Cerithiopsis Horologica Retilaskeya Seila Cancellariidae Agatrix Cancellaria Trigonostoma