Field Methods

Total Page:16

File Type:pdf, Size:1020Kb

Field Methods Hawai‘i Volcanoes National Park Island of Hawai‘i EMERGENCY SALVAGE PROJECT HAWAIÿI VOLCANOES NATIONAL PARK Written by: Catherine Glidden, M.A. With Contributions by: Edited by: Mike Heilen, Kilian Melloy, Jadelyn J. Moniz Nakamura, Ph.D Leslie Morlock, Susan Lebo, Jerome Ward, and Gail Murakami Pacific Island Cluster Publications in Anthropology 8 National Park Service 2006 U.S. Department of the Interior Paliuli Emergency Salvage Project Hawai‘i Volcanoes National Park Written by: Catherine Glidden, M.A. With Contributions by: Mike Heilen Kilian Melloy, Leslie Morlock, Susan Lebo, Jerome Ward and Gail Murakami Edited by: Jadelyn J. Moniz Nakamura, Ph.D. National Park Service Hawai‘I Volcanoes National Park 2006 TABLE OF CONTENTS ACKNOWLEDGMENTS ................................................................................................................. v EDITORS SUMMARY ................................................................................................................... vii CHAPTER 1. INTRODUCTION ..................................................................................................... 1 OBJECTIVES AND RESEARCH DESIGN.......................................................................................................... 2 Research Questions ............................................................................................................................... 3 FIELD METHODS ......................................................................................................................................... 4 PREVIOUS RESEARCH................................................................................................................................ 11 HISTORICAL BACKGROUND ...................................................................................................................... 12 Settlements and Subsistence Activities................................................................................................. 12 Historic Industries ............................................................................................................................... 14 CHAPTER 2. ANALYTICAL UNITS ............................................................................................ 21 FEATURE TYPES........................................................................................................................................ 26 Alignments ........................................................................................................................................... 26 Ahu....................................................................................................................................................... 26 Bashed Area......................................................................................................................................... 26 Caves ................................................................................................................................................... 26 Cobble Mounds.................................................................................................................................... 27 C-shapes .............................................................................................................................................. 27 Cupboards ........................................................................................................................................... 27 Enclosures ........................................................................................................................................... 27 Filled Cracks ....................................................................................................................................... 28 Filled Depressions............................................................................................................................... 28 Modified Outcrops............................................................................................................................... 28 Mounds ................................................................................................................................................ 28 Mound Concentration.......................................................................................................................... 28 Papamū................................................................................................................................................ 29 Pavement ............................................................................................................................................. 29 Petroglyphs.......................................................................................................................................... 29 Pits....................................................................................................................................................... 29 Terraces............................................................................................................................................... 29 Terraced Slope..................................................................................................................................... 30 Trails.................................................................................................................................................... 30 Walls.................................................................................................................................................... 30 SITE DESCRIPTIONS................................................................................................................................... 33 Phase I Area ........................................................................................................................................ 33 Phase II Area....................................................................................................................................... 38 CHAPTER 3. EXCAVATIONS ..................................................................................................... 57 EXCAVATIONS UNITS................................................................................................................................ 58 Phase I Area ........................................................................................................................................ 58 Phase II Area....................................................................................................................................... 64 CHAPTER 4. LABORATORY RESULTS.................................................................................... 73 RADIOCARBON DATING ANALYSIS ........................................................................................................... 73 MIDDEN .................................................................................................................................................... 74 Invertebrates........................................................................................................................................ 74 Shell ................................................................................................................................................................. 75 Echinoderms..................................................................................................................................................... 76 Crustacea.......................................................................................................................................................... 76 i Vertebrates........................................................................................................................................... 76 Surface Vertebrate Material ............................................................................................................................. 77 Excavated Vertebrate Material............................................................................................................ 78 Phase I Area ..................................................................................................................................................... 78 Phase II Area .................................................................................................................................................... 79 POLLEN ANALYSIS.................................................................................................................................... 80 CHARCOAL ANALYSIS .............................................................................................................................. 81 Total ................................................................................................................................................................. 88 CHAPTER 5. INDIGENOUS ARTIFACTS................................................................................. 103 BASALT................................................................................................................................................... 103 Adz Fragment .................................................................................................................................... 103 Basalt Disc........................................................................................................................................
Recommended publications
  • Origin and Character of Loesslike Silt in the Southern Qinghai-Xizang (Tibet) Plateau, China
    Origin and Character of Loesslike Silt in the Southern Qinghai-Xizang (Tibet) Plateau, China U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1549 Cover. View south-southeast across Lhasa He (Lhasa River) flood plain from roof of Potala Pal­ ace, Lhasa, Xizang Autonomous Region, China. The Potala (see frontispiece), characteristic sym­ bol of Tibet, nses 308 m above the valley floor on a bedrock hill and provides an excellent view of Mt. Guokalariju, 5,603 m elevation, and adjacent mountains 15 km to the southeast These mountains of flysch-like Triassic clastic and volcanic rocks and some Mesozoic granite character­ ize the southernmost part of Northern Xizang Structural Region (Gangdese-Nyainqentanglha Tec­ tonic Zone), which lies just north of the Yarlung Zangbo east-west tectonic suture 50 km to the south (see figs. 2, 3). Mountains are part of the Gangdese Island Arc at south margin of Lhasa continental block. Light-tan areas on flanks of mountains adjacent to almost vegetation-free flood plain are modern and ancient climbing sand dunes that exhibit evidence of strong winds. From flood plain of Lhasa He, and from flood plain of much larger Yarlung Zangbo to the south (see figs. 2, 3, 13), large dust storms and sand storms originate today and are common in capitol city of Lhasa. Blowing silt from larger braided flood plains in Pleistocene time was source of much loesslike silt described in this report. Photograph PK 23,763 by Troy L. P6w6, June 4, 1980. ORIGIN AND CHARACTER OF LOESSLIKE SILT IN THE SOUTHERN QINGHAI-XIZANG (TIBET) PLATEAU, CHINA Frontispiece.
    [Show full text]
  • Analogues for Radioactive Waste For~1S •
    PNL-2776 UC-70 3 3679 00049 3611 ,. NATURALLY OCCURRING GLASSES: ANALOGUES FOR RADIOACTIVE WASTE FOR~1S • Rodney C. Ewing Richard F. Haaker Department of Geology University of New Mexico Albuquerque, ~ew Mexico 87131 April 1979 Prepared for the U.S. Department of Energy under Contract EY-76-C-06-1830 Pacifi c i'lorthwest Laboratory Richland, Washington 99352 TABLE OF CONTENTS List of Tables. i i List of Figures iii Acknowledgements. Introduction. 3 Natural Glasses 5 Volcanic Glasses 9 Physical Properties 10 Compos i ti on . 10 Age Distributions 10 Alteration. 27 Devitrification 29 Hydration 32 Tekti tes. 37 Physical Properties 38 Composition . 38 Age Distributions . 38 Alteration, Hydration 44 and Devitrification Lunar Glasses 44 Summary . 49 Applications to Radioactive Waste Disposal. 51 Recommenda ti ons 59 References 61 Glossary 65 i LIST OF TABLES 1. Petrographic Properties of Natural Glasses 6 2. Average Densities of Natural Glasses 11 3. Density of Crystalline Rock and Corresponding Glass 11 4. Glass and Glassy Rocks: Compressibility 12 5. Glass and Glassy Rocks: Elastic Constants 13 6. Glass: Effect of Temperature on Elastic Constants 13 7. Strength of Hollow Cylinders of Glass Under External 14 Hydrostatic Pressure 8. Shearing Strength Under High Confining Pressure 14 9. Conductivity of Glass 15 10. Viscosity of Miscellaneous Glasses 16 11. Typical Compositions for Volcanic Glasses 18 12. Selected Physical Properties of Tektites 39 13. Elastic Constants 40 14. Average Composition of Tektites 41 15. K-Ar and Fission-Track Ages of Tektite Strewn Fields 42 16. Microprobe Analyses of Various Apollo 11 Glasses 46 17.
    [Show full text]
  • Josephine County, Oregon, Historical Society Document Oregonłs
    Finding fossils in Oregon is not so much a question of Places to see fossils: where to look for them as where not to look. Fossils are rare John Day Fossil Beds National Monument in the High Lava Plains and High Cascades, but even there, , _ Contains a 40-million year record of plant and animal life . ·� � .11�'!]�:-.: some of the lakes are famous for their fossils. Many of the ill the John Day Basill ill central Oregon near the towns of .• .� . ' · sedimentary rocks in eastern Oregon contain fossil leaves or · ,,����<:l. · . ' · •· Dayville' Fossil, and Mitchell. The Cant Ranch Visitor ; ' " ' ' j ' .- � bones. Leaffossils are especially abundant in the - Center at Sheep Rock on Highway 19 includes museum : ,· .,, 1 • , .. rocks at the far side of the athletic · exhibits of fossils. Open every day 8:30-5. For general l· · . ., ;: . · : field at Wheeler High School ,...,..;� information, contact John Day Fossil Beds National . -- - ' '· in the town of Fossil. Monument, 420 West Main St., John Day, OR 97845, ' l-, Although it is rare to phone (503) 575-0721. find a complete Oregon Museum of Science and Industry animal fossil, a 1945 SE Water Ave., Portland, OR 97214. Open Thurs. & search of river Fri. 9:30-9; Sat. through Wed. 9:30-7(sumrner hours); beds may turn . l 9:30-5(rest of year), phone (503) 797-4000 up c h1ps or Condon Museum, University of Oregon even teeth. In Pacific Hall, Eugene, OR 97403. Open only by western appointment, phone (503) 346-4577. Oregon, the ' . ; Douglas County Museum of History and sedimentary ' r Natural History rocks that are 1 primarily off1-5 at exit 123 at Roseburg (PO Box 1550, Roseburg, marine in OR 97470).
    [Show full text]
  • Volcanic Glass Textures, Shape Characteristics
    Cent. Eur. J. Geosci. • 2(3) • 2010 • 399-419 DOI: 10.2478/v10085-010-0015-6 Central European Journal of Geosciences Volcanic glass textures, shape characteristics and compositions of phreatomagmatic rock units from the Western Hungarian monogenetic volcanic fields and their implications for magma fragmentation Research Article Károly Németh∗ Volcanic Risk Solutions CS-INR, Massey University, Palmerston North, New Zealand Received 2 April 2010; accepted 17 May 2010 Abstract: The majority of the Mio-Pleistocene monogenetic volcanoes in Western Hungary had, at least in their initial eruptive phase, phreatomagmatic eruptions that produced pyroclastic deposits rich in volcanic glass shards. Electron microprobe studies on fresh samples of volcanic glass from the pyroclastic deposits revealed a primarily tephritic composition. A shape analysis of the volcanic glass shards indicated that the fine-ash fractions of the phreatomagmatic material fragmented in a brittle fashion. In general, the glass shards are blocky in shape, low in vesicularity, and have a low-to-moderate microlite content. The glass-shape analysis was supplemented by fractal dimension calculations of the glassy pyroclasts. The fractal dimensions of the glass shards range from 1.06802 to 1.50088, with an average value of 1.237072876, based on fractal dimension tests of 157 individual glass shards. The average and mean fractal-dimension values are similar to the theoretical Koch- flake (snowflake) value of 1.262, suggesting that the majority of the glass shards are bulky with complex boundaries. Light-microscopy and backscattered-electron-microscopy images confirm that the glass shards are typically bulky with fractured and complex particle outlines and low vesicularity; features that are observed in glass shards generated in either a laboratory setting or naturally through the interaction of hot melt and external water.
    [Show full text]
  • Volcanic Glass As a Paleoenvironmental Proxy: Comparing Preparation Methods on Ashes from the Lee of the Cascade Range in Oregon, USA
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Spring 7-6-2018 Volcanic Glass as a Paleoenvironmental Proxy: Comparing Preparation Methods on Ashes from the Lee of the Cascade Range in Oregon, USA Tessa Boe Carlson Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Geochemistry Commons, and the Volcanology Commons Let us know how access to this document benefits ou.y Recommended Citation Carlson, Tessa Boe, "Volcanic Glass as a Paleoenvironmental Proxy: Comparing Preparation Methods on Ashes from the Lee of the Cascade Range in Oregon, USA" (2018). Dissertations and Theses. Paper 4472. https://doi.org/10.15760/etd.6356 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Volcanic Glass as a Paleoenvironmental Proxy: Comparing Preparation Methods on Ashes from the Lee of the Cascade Range in Oregon, USA by Tessa Boe Carlson A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology Thesis Committee: John Bershaw, Chair Ashley Streig Martin Streck Portland State University 2018 Abstract Deuterium ratios (δD) of hydrated volcanic glass have been used to reconstruct paleoenvironments, although the reliability and proper sample preparation protocol have been debated. In this study, hydrated volcanic ash samples from the lee of the Cascades were prepared using two separate methods. Method 1 involves sonicating and rinsing samples with hydrochloric acid (HCl) followed by hand-selection of glass shards (125 –212µm).
    [Show full text]
  • Volcanic Glass on the Water Chemistry in a Tuflaceoiis Aquifer, Rainier Mesa, Nevada
    Volcanic Glass on the Water Chemistry in a Tuflaceoiis Aquifer, Rainier Mesa, Nevada GEOLOGICAL SURVEY WATER-SUPPLY PAPER The Effect of Dissolution of Volcanic Glass on the Water Chemistry in a Tuffaceous Aquifer, Rainier Mesa, Nevada By ART F. WHITE, HANS C. CLAASSEN, and LARRY V. BENSOI 7 GEOCHEMISTRY OF WATER GEOLOGICAL SURVEY WATER-.SUPPLY PAPER 1535-Q, UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1980 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY H. William Menaid, Director Library of Congress Cataloging in Publication Data White Art F. The effect of dissolution of volcanic glass on the water chemistry in a tuffaceous aquifer, Rainier Mesa, Nevada. (Geochemistry of water) (U.S. Geological Survey Water-Supply Paper 1535-Q) Bibliography: p. 33 I. Water, Underground Nevada Rainier Mesa. 2. Volcanic ash, tuff, etc. Nevada- Rainier Mesa. 3. Aquifers Nevada-Rainier Mesa. I. Claassen, Hans C., joint author. II. Benson, Larry V., joint author. III. Title. IV. Series. V. Series: United States Geological Survey Water-Supply Paper 1535-Q. TC801.U2 no. 1535-Q [GB1025.N4] 553.7'0973s [551.49] 80-6O7124 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Abstract.......................................................... Ql Introduction....................................................... 1 Setting of Rainier Mesa .......................................... 2 Previous studies ................................................ 2 Acknowledgments..............................................
    [Show full text]
  • Atoll Research Bulletin No. 548
    ATOLL RESEARCH BULLETIN NO. 548 STOMACH CONTENTS AND FEEDING OBSERVATIONS OF SOME EASTER ISLAND FISHES BY LOUIS H. DISALVO, JOHN E. RANDALL, AND ALFREDO CEA ISSUED BY NATIONAL MUSEUM OF NATURAL HISTORY SMITHSONIAN INSTITUTION WASHINGTON, D.C. U.S.A. DECEMBER 2007 STOMACH CONTENTS AND FEEDING OBSERVATIONS OF SOME EASTER ISLAND FISHES BY LOUIS H. DISALVO,1 JOHN E. RANDALL,2 AND ALFREDO CEA3 ABSTRACT Stomach contents of 42 species in 25 familes of Easter Island shore fishes were examined in comparative terms to determine prey items and feeding behavior at this isolated island outpost in the southeastern Pacific. The island’s impoverished marine fauna and flora have resulted in considerable dietary overlap among the inshore fishes. Some endemic species appear to feed mainly on endemic invertebrates. Some prey species which were found in the fish stomachs, such as the stomatopodOdontodactylus hawaiiensis, the pandalid shrimp Plesionika edwardsi, and several tiny molluscs were previously unrecorded for the island. INTRODUCTION Easter Island (Rapa Nui) lies 3750 km west of the South American continent and 2250 km. East of the Pitcairn Islands. This island represents the most isolated landfall in the South Pacific Ocean along with its small rocky neighbor Salas y Gómez I. 415 km to the east. Although Easter Island is often regarded as part of the Indo-Pacific region, and most of its fauna consist of tropical species (in the case of shore fishes, 32.5%), it lies outside the 20° isotherm (Wells 1957) where seawater temperature and insolation are below that required for the development of structural coral reefs; water temperature can undergo interannual drops unfavorable to tropical organisms and may produce mass mortalities of corals (Wellington et al., 2001).
    [Show full text]
  • The Coastal Molluscan Fauna of the Northern Kermadec Islands, Southwest Pacific Ocean
    Journal of the Royal Society of New Zealand ISSN: 0303-6758 (Print) 1175-8899 (Online) Journal homepage: http://www.tandfonline.com/loi/tnzr20 The coastal molluscan fauna of the northern Kermadec Islands, Southwest Pacific Ocean F. J. Brook To cite this article: F. J. Brook (1998) The coastal molluscan fauna of the northern Kermadec Islands, Southwest Pacific Ocean, Journal of the Royal Society of New Zealand, 28:2, 185-233, DOI: 10.1080/03014223.1998.9517560 To link to this article: http://dx.doi.org/10.1080/03014223.1998.9517560 Published online: 30 Mar 2010. Submit your article to this journal Article views: 405 View related articles Citing articles: 14 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tnzr20 Download by: [86.95.75.143] Date: 27 January 2017, At: 05:34 © Journal of The Royal Society of New Zealand, Volume 28, Number 2, June 1998, pp 185-233 The coastal molluscan fauna of the northern Kermadec Islands, Southwest Pacific Ocean F. J. Brook* A total of 358 species of molluscs (excluding pelagic species) is recorded here from coastal marine habitats around the northern Kermadec Islands. The fauna is dominated by species that are widely distributed in the tropical western and central Pacific Ocean. The majority of these are restricted to the tropics and subtropics, but some range south to temperate latitudes. Sixty-eight species, comprising 19% of the fauna, are thought to be endemic to the Kermadec Islands. That group includes several species that have an in situ fossil record extending back to the Pleistocene.
    [Show full text]
  • Contextualizing the Archaeometric Analysis of Roman Glass
    Contextualizing the Archaeometric Analysis of Roman Glass A thesis submitted to the Graduate School of the University of Cincinnati Department of Classics McMicken College of Arts and Sciences in partial fulfillment of the requirements of the degree of Master of Arts August 2015 by Christopher J. Hayward BA, BSc University of Auckland 2012 Committee: Dr. Barbara Burrell (Chair) Dr. Kathleen Lynch 1 Abstract This thesis is a review of recent archaeometric studies on glass of the Roman Empire, intended for an audience of classical archaeologists. It discusses the physical and chemical properties of glass, and the way these define both its use in ancient times and the analytical options available to us today. It also discusses Roman glass as a class of artifacts, the product of technological developments in glassmaking with their ultimate roots in the Bronze Age, and of the particular socioeconomic conditions created by Roman political dominance in the classical Mediterranean. The principal aim of this thesis is to contextualize archaeometric analyses of Roman glass in a way that will make plain, to an archaeologically trained audience that does not necessarily have a history of close involvement with archaeometric work, the importance of recent results for our understanding of the Roman world, and the potential of future studies to add to this. 2 3 Acknowledgements This thesis, like any, has been something of an ordeal. For my continued life and sanity throughout the writing process, I am eternally grateful to my family, and to friends both near and far. Particular thanks are owed to my supervisors, Barbara Burrell and Kathleen Lynch, for their unending patience, insightful comments, and keen-eyed proofreading; to my parents, Julie and Greg Hayward, for their absolute faith in my abilities; to my colleagues, Kyle Helms and Carol Hershenson, for their constant support and encouragement; and to my best friend, James Crooks, for his willingness to endure the brunt of my every breakdown, great or small.
    [Show full text]
  • Forms and Dynamics of Silica Gel in a Tuff-Dominated Soil Complex: Results of Micromorphological Studies in the Central Highlands of Mexico
    Revista Mexicana de Ciencias Geológicas,Forms and v. dynamics21, núm. 1,of 2004,silica p.gel 195-201 in a tuff-dominated soil complex 195 Forms and dynamics of silica gel in a tuff-dominated soil complex: Results of micromorphological studies in the Central Highlands of Mexico Thomas Poetsch Universität Hamburg, Institut für Geographie, Bundesstr.55, D-20146 Hamburg, Germany [email protected] ABSTRACT Within the basins of Mexico and Tlaxcala in the Central Highlands of Mexico, thick pyroclastics– paleosol sequences, grouped into units T1 to T7, can be found. Unit T2 at the site Tlalpan was chosen for a mineralogical-microscopical study. The unit consists of four late Pleistocene strata of pyroclastics (toba) with associated clayey soil horizons. Apart from magmatic particles, the pyroclastics contain many opal particles, especially diatom fragments and other bio-opals. In the basal stratum of pyroclastics ‘i’, the opals are orientated within the layers and, therefore, must have been deposited together with the other components. They were not, consequently, admixed later through soil formation or bioturbation. The very well-preserved microlamination and the orientation of the individual particles render a significant loss of pore volume (compaction) after sedimentation unlikely. According to the microscopic findings, in-situ weathering is the dominating process in this stratum, as it is, probably, in the other pyroclastic strata (‘c’, ‘e’ and ‘g’) as well. The clayey soils –as the tobas– are characterized not only by weathering of volcanic glass, but also by weathering of opal particles. Colloidal silica gel is the result of weathering of opal and volcanic glass, in addition to which clay minerals are formed from the glass.
    [Show full text]
  • Corrosion Mechanism in the Obsidian and Its Comparison with the Nuclear Waste Glass for Long-Term Performance Assessment in the Geological Repository Nishi Rani1, J
    16 The Open Corrosion Journal, 2010, 3, 16-27 Open Access Corrosion Mechanism in the Obsidian and its Comparison with the Nuclear Waste Glass for Long-Term Performance Assessment in the Geological Repository Nishi Rani1, J. P. Shrivastava*,1 and R. K. Bajpai2 1Department of Geology, University of Delhi, Delhi - 110007, India 2BETDD, Nuclear Recycle Group, BARC, Mumbai - 400008, India Abstract: Present paper discusses experimental work on obsidian glass to understand corrosion mechanism at variable pressure temperature conditions. For comparison, Advanced Vitrification System, a nuclear waste glass was studied simultaneously under similar conditions. Owing to massive weight loss the glass samples were unable to sustain beyond 4 hour during the experiments. Corrosion experiments on both these glasses were performed under hydrothermal like conditions and observed that the changes in the experimental conditions have major control over the release of sodium and other ions from obsidian and nuclear waste glass, hence effecting corrosion mechanism. X-ray diffraction patterns of the residue obtained after the experiments on obsidian glass revealed appearance of neo-formed minerals, such as quartz, celadonite, halloysite, sodalite, heulandites and wairakite. High degree of corrosion and formation of amorphous residue observed in case of the experiments performed at 3000C over the granules of the nuclear waste glass. The back scattered electron images of the scanning electron microscope indicate distinctive microstructures, associated with the neo-formed minerals, and their formation is linked with the release of sodium, potassium and other ions, causing changes in the pH and conductivity of the leachate. In case of nuclear waste glass back scattered images of the scanning electron microscope indicates formation of multiple alteration layers and secondary alteration products.
    [Show full text]
  • Crustacea: Anomura: Diogenidae)
    Memoirs of Museum Victoria 60(1): 91–97 (2003) ISSN 1447-2546 (Print) 1447-2554 (On-line) http://www.museum.vic.gov.au/memoirs Calcinus hermit crabs from Easter Island, with biogeographic considerations (Crustacea: Anomura: Diogenidae) JOSEPH POUPIN1, CHRISTOPHER B. BOYKO2 AND GUILLERMO L. GUZMÁN3 1Institut de Recherche de l'École navale, IRENav, École navale, Lanvéoc-Poulmic, BP 600, 29240 Brest Naval, France ([email protected]) 2Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA ([email protected]) 3Museo del Mar Universidad Arturo Prat, Casilla 121, Iquique, Chile ([email protected]) Abstract Poupin, J., Boyko, C.B., and Guzmán, G.L. 2003. Calcinus hermit crabs from Easter Island, with biogeographic consid- erations (Crustacea: Anomura: Diogenidae). In: Lemaitre, R., and Tudge, C.C. (eds), Biology of the Anomura. Proceedings of a symposium at the Fifth International Crustacean Congress, Melbourne, Australia, 9–13 July 2001. Memoirs of Museum Victoria 60(1): 91–97. From collections made in 1998 and 1999, three species of Calcinus are recorded from Easter I.: Calcinus pascuensis Haig, 1974; C. imperialis Whitelegge, 1901; and C. vachoni Forest, 1958. A redescription of Calcinus pascuensis is given and a neotype is selected. Occurrence of Calcinus imperialis is confirmed by examination of almost 80 specimens, including many juveniles. Calcinus vachoni is recorded for the first time from the island. The Easter I. Calcinus fauna is compared with that of other localities in the Pacific, and biogeographic affinities are discussed. Keywords Crustacea, Anomura, Diogenidae, Calcinus, biogeography, Easter Island Introduction genus Calcinus were obtained, with only three species repre- sented: C.
    [Show full text]