Molecules Involved in the Spider, Cupiennius Salei, Mechanotransduction

Total Page:16

File Type:pdf, Size:1020Kb

Molecules Involved in the Spider, Cupiennius Salei, Mechanotransduction MOLECULES INVOLVED IN THE SPIDER, CUPIENNIUS SALEI, MECHANOTRANSDUCTION by Jessica Johnson Submitted in partial fulfilment of the requirements for the degree of Master of Science at Dalhousie University Halifax, Nova Scotia July 2019 © Copyright by Jessica Johnson, 2019 TABLE OF CONTENTES LIST OF TABLES .........................................................................................................v LIST OF FIGURES ..................................................................................................... vi ABSTRACT ................................................................................................................ vii LIST OF ABBREVIATIONS AND SYMBOLS USED ........................................... viii ACKNOWLEDGMENTS ........................................................................................... xi CHAPTER 1. INTRODUCTION..................................................................................1 1.1. Mechanotransduction ............................................................................................1 1.2. Mechanotransduction channels ..............................................................................2 1.2.1. DEG/ENAC/ASIC channels ...........................................................................2 1.2.2. TRP channels .................................................................................................4 1.2.3. TMC proteins .................................................................................................7 1.2.4. Piezo proteins .................................................................................................8 1.3. Arthropod mechanosensilla ...................................................................................9 1.4. Cupiennius salei .................................................................................................. 11 1.4.1. C. salei central nervous system ..................................................................... 12 1.4.2. C. salei mechanosensilla .............................................................................. 14 1.4.3. C. salei VS-3 slit sensillum .......................................................................... 15 1.4.4. C. salei transcriptome ................................................................................... 17 1.4.5. C. salei Piezo protein.................................................................................... 18 1.5. Objectives ........................................................................................................... 21 CHAPTER 2. MATERIALS AND METHODS ......................................................... 23 2.1. Experimental animals and dissection ................................................................... 23 2.1.1. Dissection of the patella and VS-3 organ ...................................................... 23 2.1.2. Central nervous system dissection ................................................................ 24 2.2. RNA probe construction for in-situ hybridization ................................................ 25 2.3. In-situ hybridization protocol for patellar samples ............................................... 26 2.3.1 Post hybridization washes ............................................................................. 29 2.3.2 Immunohistochemical detection .................................................................... 29 ii 2.4. Central nervous system embedding, sectioning and in-situ hybridization ............. 30 2.5. Electrophysiology ............................................................................................... 32 2.5.1. Experimental preparation ............................................................................. 32 2.5.2. Intracellular recording and mechanical stimulation ....................................... 34 2.5.3. Ion channel blockers and an activator ........................................................... 35 2.6. RNA interference ................................................................................................ 36 2.6.1. Construction of double stranded RNA .......................................................... 36 2.6.2. Tissue culture and processing ....................................................................... 37 2.7. Statistical analysis ............................................................................................... 38 CHAPTER 3. RESULTS ............................................................................................. 39 3.1. Putative mechanotransduction channels in C. salei transcriptomes ...................... 39 3.2. In-situ hybridization ............................................................................................ 40 3.2.1. Expression of four genes in the DEG/ENAC/ASIC channel family .............. 40 3.2.2. Expression of two genes coding TRP channels ............................................. 43 3.2.3. Expression of two genes coding TMC channels ............................................ 44 3.2.4. Expression of Piezo in the C. salei hypodermis and CNS ............................. 45 3.2.5. In-situ hybridization summary ...................................................................... 48 3.3. Mechanotransduction channel inhibitors and an activator .................................... 49 3.3.1. Ruthenium Red had no effect on VS-3 neurons receptor current ................... 51 3.3.2. GsMTx4 had no effect on VS-3 neuron receptor current ............................... 53 3.3.3. Yoda1 had an excitatory effect on VS-3 neurons .......................................... 54 3.3.4. Amiloride effects on VS-3 neuron excitability .............................................. 58 3.4. Knockdown of C. salei Piezo by RNA interference ............................................ 63 CHAPTER 4. DISCUSSION ....................................................................................... 65 4.1. Expression of putative mechanotransduction channels in C. salei ........................ 65 4.2. Mechanotransduction channel pharmacology ...................................................... 67 4.3. Knockdown of Piezo gene ................................................................................... 71 4.4. Conclusions ........................................................................................................ 72 4.5. Future directions ................................................................................................. 73 REFERENCES ............................................................................................................ 74 ii i Appendix 1. Primer sequences used for generation of RNA probes .......................... 81 Appendix 2. Copyright Permission for Figure 1.2. ..................................................... 83 iv LIST OF TABLES Table 2.1. In-situ hybridization conditions .................................................................... 27 Table 2.2. Hybridization solution .................................................................................. 28 Table 2.3. Post hybridization washing buffers ............................................................... 29 Table 3.1. Parameters for all successful experiments under control conditions. ............. 50 v LIST OF FIGURES Figure 1.1. Photograph of a male C. salei ...................................................................... 12 Figure 1.2. A schematic diagram showing the C. salei CNS and the VS-3 organ. .......... 13 Figure 1.3. C. salei VS-3 slit sesillum ........................................................................... 17 Figure 1.4. Cartoon model of the trimeric mouse Piezo1 ............................................... 19 Figure 1.5. Western blot of the C. salei brain homogenate with Piezo antibody ............. 20 Figure 1.6. Immunocytochemistry with the C. salei Piezo antibody .............................. 21 Figure 2.1. The VS-3 organ preparation for electrophysiology ...................................... 33 Figure 2.2. Experimental setup for the VS-3 organ ........................................................ 33 Figure 3.1. Relative abundances of putative mechanotransduction channel transcripts .. 39 Figure 3.2. In situ hybridization using the Amil-1 probes. .............................................. 41 Figure 3.3. In situ hybridization using probes for three ENaC channels ......................... 42 Figure 3.4. In situ hybridization using the Trp probes ................................................... 44 Figure 3.5. In situ hybridization results for Tmc channels .............................................. 45 Figure 3.6. In situ hybridization of VS-3 organ for Piezo .............................................. 46 Figure 3.7. In-situ hybridization of subesophageal ganglion with Piezo probes ............. 47 Figure 3.8. Typical responses of a Type B VS-3 neuron to mechanical stimulation ....... 50 Figure 3.9. Ruthenium Red had no effect on VS-3 neuron receptor current ................... 52 Figure 3.10. GsMTx4 had no effect on VS-3 neuron receptor current ............................ 54 Figure 3.11. Effect of Yoda1 application on a VS-3 neuron .......................................... 55 Figure 3.12. Yoda1 effects on VS-3 neuron receptor potentials and excitability ............ 56 Figure 3.13 Yoda effects on VS-3 neuron action potentials ........................................... 58 Figure 3.14. Amiloride effect of VS-3 neurons receptor potential.................................
Recommended publications
  • The House Spider Genome Reveals an Ancient Whole-Genome Duplication During Arachnid Evolution Evelyn E
    Schwager et al. BMC Biology (2017) 15:62 DOI 10.1186/s12915-017-0399-x RESEARCHARTICLE Open Access The house spider genome reveals an ancient whole-genome duplication during arachnid evolution Evelyn E. Schwager1,2†, Prashant P. Sharma3†, Thomas Clarke4,5,6†, Daniel J. Leite1†, Torsten Wierschin7†, Matthias Pechmann8,9, Yasuko Akiyama-Oda10,11, Lauren Esposito12, Jesper Bechsgaard13, Trine Bilde13, Alexandra D. Buffry1, Hsu Chao14, Huyen Dinh14, HarshaVardhan Doddapaneni14, Shannon Dugan14, Cornelius Eibner15, Cassandra G. Extavour16, Peter Funch13, Jessica Garb2, Luis B. Gonzalez1, Vanessa L. Gonzalez17, Sam Griffiths-Jones18, Yi Han14, Cheryl Hayashi5,19, Maarten Hilbrant1,9, Daniel S. T. Hughes14, Ralf Janssen20, Sandra L. Lee14, Ignacio Maeso21, Shwetha C. Murali14, Donna M. Muzny14, Rodrigo Nunes da Fonseca22, Christian L. B. Paese1, Jiaxin Qu14, Matthew Ronshaugen18, Christoph Schomburg8, Anna Schönauer1, Angelika Stollewerk23, Montserrat Torres-Oliva8, Natascha Turetzek8, Bram Vanthournout13,24, John H. Werren25, Carsten Wolff26, Kim C. Worley14, Gregor Bucher27*, Richard A. Gibbs14*, Jonathan Coddington17*, Hiroki Oda10,28*, Mario Stanke7*, Nadia A. Ayoub4*, Nikola-Michael Prpic8*, Jean-François Flot29*, Nico Posnien8*, Stephen Richards14* and Alistair P. McGregor1* Abstract Background: The duplication of genes can occur through various mechanisms and is thought to make a major contribution to the evolutionary diversification of organisms. There is increasing evidence for a large-scale duplication of genes in some chelicerate lineages
    [Show full text]
  • Aranhas (Araneae, Arachnida) Do Estado De São Paulo, Brasil: Diversidade, Esforço Amostral E Estado Do Conhecimento
    Biota Neotrop., vol. 11(Supl.1) Aranhas (Araneae, Arachnida) do Estado de São Paulo, Brasil: diversidade, esforço amostral e estado do conhecimento Antonio Domingos Brescovit1,4, Ubirajara de Oliveira2,3 & Adalberto José dos Santos2 1Laboratório de Artrópodes, Instituto Butantan, Av. Vital Brasil, n. 1500, CEP 05503-900, São Paulo, SP, Brasil, e-mail: [email protected] 2Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais – UFMG, Av. Antonio Carlos, n. 6627, CEP 31270-901, Belo Horizonte, MG, Brasil, e-mail: [email protected], [email protected] 3Pós-graduação em Ecologia, Conservação e Manejo da Vida Silvestre, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais – UFMG 4Autor para correspondência: Antonio Domingos Brescovit, e-mail: [email protected] BRESCOVIT, A.D., OLIVEIRA, U. & SANTOS, A.J. Spiders (Araneae, Arachnida) from São Paulo State, Brazil: diversity, sampling efforts, and state-of-art. Biota Neotrop. 11(1a): http://www.biotaneotropica.org. br/v11n1a/en/abstract?inventory+bn0381101a2011. Abstract: In this study we present a database of spiders described and registered from the Neotropical region between 1757 and 2008. Results are focused on the diversity of the group in the State of São Paulo, compared to other Brazilian states. Data was compiled from over 25,000 records, published in scientific papers dealing with Neotropical fauna. These records enabled the evaluation of the current distribution of the species, the definition of collection gaps and priority biomes, and even future areas of endemism for Brazil. A total of 875 species, distributed in 50 families, have been described from the State of São Paulo.
    [Show full text]
  • Overview of the Anyphaenids (Araneae, Anyphaeninae, Anyphaenidae) Spider Fauna from the Chocó Forest of Ecuador, with the Description of Thirteen New Species
    European Journal of Taxonomy 255: 1–50 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2016.255 www.europeanjournaloftaxonomy.eu 2016 · Dupérré N. & Tapia E. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:0E8DA4DC-FF4C-436E-94FB-CB89F6416C6E Overview of the Anyphaenids (Araneae, Anyphaeninae, Anyphaenidae) spider fauna from the Chocó forest of Ecuador, with the description of thirteen new species Nadine DUPÉRRÉ 1,* & Elicio TAPIA 2 1 Research Associate, Fundación OTONGA, Calle Rither y Bolivia, Quito, Ecuador, and Research Associate, American Museum of Natural History, New York, NY, U.S.A. 2 Researcher, Centro Jambatu de Investigación y Conservación de Anfibios, Geovanny Farina 566, San Rafael, Ecuador. * Corresponding author: [email protected] 2 Email: [email protected] 1 urn:lsid:zoobank.org:author:F15E1FF2-2DF5-479A-AD10-8076CE96E911 2 urn:lsid:zoobank.org:author:E842405B-5E5B-43AB-8BCD-586657AD5CFC Abstract. The spider diversity of the family Anyphaenidae in premontane, low evergreen montane and cloud forest from the Chocó region of Ecuador is examined. A total of 287 adult specimens were collected and 19 morphospecies were identified based on male specimens. Thirteen new species are described and one new genus is proposed. Five new species are described in the genus Katissa Brescovit, 1997: Katissa kurusiki sp. nov., K. puyu sp. nov., K. tamya sp. nov., K. yaya sp. nov. and K. guyasamini sp. nov. The new genus Shuyushka gen. nov. is proposed and includes three species: Shuyushka achachay gen. et sp. nov., S. moscai gen. et sp. nov. and S.
    [Show full text]
  • The House Spider Genome Reveals an Ancient Whole-Genome Duplication During Arachnid Evolution
    The house spider genome reveals an ancient whole-genome duplication during arachnid evolution The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Schwager, E. E., P. P. Sharma, T. Clarke, D. J. Leite, T. Wierschin, M. Pechmann, Y. Akiyama-Oda, et al. 2017. “The house spider genome reveals an ancient whole-genome duplication during arachnid evolution.” BMC Biology 15 (1): 62. doi:10.1186/s12915-017-0399-x. http://dx.doi.org/10.1186/s12915-017-0399-x. Published Version doi:10.1186/s12915-017-0399-x Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:34375350 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Schwager et al. BMC Biology (2017) 15:62 DOI 10.1186/s12915-017-0399-x RESEARCHARTICLE Open Access The house spider genome reveals an ancient whole-genome duplication during arachnid evolution Evelyn E. Schwager1,2†, Prashant P. Sharma3†, Thomas Clarke4,5,6†, Daniel J. Leite1†, Torsten Wierschin7†, Matthias Pechmann8,9, Yasuko Akiyama-Oda10,11, Lauren Esposito12, Jesper Bechsgaard13, Trine Bilde13, Alexandra D. Buffry1, Hsu Chao14, Huyen Dinh14, HarshaVardhan Doddapaneni14, Shannon Dugan14, Cornelius Eibner15, Cassandra G. Extavour16, Peter Funch13, Jessica Garb2, Luis B. Gonzalez1, Vanessa L. Gonzalez17, Sam Griffiths-Jones18, Yi Han14, Cheryl Hayashi5,19, Maarten Hilbrant1,9, Daniel S. T. Hughes14, Ralf Janssen20, Sandra L. Lee14, Ignacio Maeso21, Shwetha C.
    [Show full text]
  • The Genomic Basis of Arthropod Diversity
    bioRxiv preprint doi: https://doi.org/10.1101/382945; this version posted August 4, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. The Genomic Basis of Arthropod Diversity Gregg W.C. Thomas1, Elias Dohmen2, Daniel S.T. Hughes3,a, Shwetha C. Murali3,b, Monica Poelchau4, Karl Glastad5,c, Clare A. Anstead6, Nadia A. Ayoub7, Phillip Batterham8, Michelle Bellair3,d, Gretta J. Binford9, Hsu Chao3, Yolanda H. Chen10, Christopher Childers4, Huyen Dinh3, HarshaVardhan Doddapaneni3, Jian J. Duan11, Shannon Dugan3, Lauren A. Esposito12, Markus Friedrich13, Jessica Garb14, Robin B. Gasser6, Michael A.D. Goodisman5, Dawn E. Gundersen-Rindal15, Yi Han3, Alfred M. Handler16, Masatsugu Hatakeyama17, Lars Hering18, Wayne B. Hunter19, Panagiotis Ioannidis20, e, Joy C. Jayaseelan3, Divya Kalra3, Abderrahman Khila21, Pasi K. Korhonen6, Carol Eunmi Lee22, Sandra L. Lee3, Yiyuan Li23, Amelia R.I. Lindsey24,f, Georg Mayer18, Alistair P. McGregor25, Duane D. McKenna26, Bernhard Misof27, Mala Munidasa3, Monica Munoz-Torres28,g, Donna M. Muzny3, Oliver Niehuis29, Nkechinyere Osuji-Lacy3, Subba R. Palli30, Kristen A. Panfilio31, Matthias Pechmann32, Trent Perry8, Ralph S. Peters33, Helen C. Poynton34, Nikola-Michael Prpic35, Jiaxin Qu3, Dorith Rotenberg36, Coby Schal37, Sean D. Schoville38, Erin D. Scully39, Evette Skinner3, Daniel B. Sloan40, Richard Stouthamer24, Michael R. Strand41, Nikolaus U. Szucsich42, Asela Wijeratne26,h, Neil D. Young6, Eduardo E. Zattara43, Joshua B. Benoit44, Evgeny M. Zdobnov20, Michael E. Pfrender23, Kevin J. Hackett45, John H. Werren46, Kim C.
    [Show full text]
  • A Preliminary Survey for Spiders on St. Eustatius, West Indies Joe Morpeth2, Jo-Anne Nina Sewlal1* and Christopher K
    A Preliminary Survey for Spiders on St. Eustatius, West Indies Joe Morpeth2, Jo-Anne Nina Sewlal1* and Christopher K. Starr1 1. Department of Life Sciences, University of the West Indies, St Augustine, Trinidad and Tobago 2. 37 Limethwaite Road, Windermere, Cumbria, LA23 2BQ, United Kingdom *Corresponding author: [email protected] ABSTRACT Three photographic surveys were conducted during the period; 2010 to 2011, 2013 and 2014, and supplemented by physi- cal sampling for a one-week period in January 2015, in a wide variety of habitats on the island of St. Eustatius, West In- dies, for the presence of spiders. Seventeen localities were surveyed from 15 habitats, including five man-made habitats. Twenty-four families representing 53 species were collected. Members of the family Araneidae comprised almost a quarter of the species found. More species in natural than in human-made or highly disturbed habitats. Key words: Anapidae, Araneidae, Barychelidae, Clubionidae, Corinnidae, Filistatidae, Gnaphosidae, Lycosidae, Mimeti- dae, Miturgidae, Mysmenidae, Ochyroceratidae, Oecobiidae, Oxyopidae, Pholcidae, Salticidae, Scytodidae, Sicariidae, Sparassidae, Tetragnathidae, Theridiidae, Theridiosomatidae, Thomisidae, Theraphosidae. INTRODUCTION Arthropods comprise the most diverse animal group tatius were conducted between 2010 and 2011, 2013 and in any terrestrial environment. However, sampling arthro- 2014. This data was supplemented by a survey that took pods is particularly challenging due to traits such as small place 10-17 January 2015 utilising specialised techniques size, short generation time, diversity, limited distribution aimed at collecting spiders. The sampling methodology and strict environmental requirements (microhabitats). was unstandardised with respect to sampling techniques, These traits make it possible in theory to map environmen- collecting team and sample period, and took place over a tal diversity and track environmental changes faster and five-year period.
    [Show full text]
  • The Sejugal Furrow in Camel Spiders and Acariform Mites
    Arachnologische Mitteilungen 43 Nuremberg, July 2012 The sejugal furrow in camel spiders and acariform mites Jason A. Dunlop, Jessica Krüger & Gerd Alberti doi: 10.5431/aramit4303 Abstract: Camel spiders (Arachnida: Solifugae) are one of the arachnid groups characterised by a prosomal dorsal shield composed of three distinct elements: the pro-, meso- and metapeltidium. These are associated respectively with prosomal appendages one to four, five, and six. What is less well known, although noted in the historical literature, is that the coxae of the 4th and 5th prosomal segments (i.e. walking legs 2 and 3) of camel spiders are also separated ventrally by a distinct membranous region, which is absent between the coxae of the other legs. We suggest that this essentially ventral division of the prosoma specifically between coxae 2 and 3 is homolo- gous with the so-called sejugal furrow (the sejugal interval sensu van der Hammen). This division constitutes a fundamental part of the body plan in acariform mites (Arachnida: Acariformes). If homologous, this sejugal furrow could represent a further potential synapomorphy for (Solifugae + Acariformes); a relationship with increasing morphological and molecular support. Alternatively, outgroup comparison with sea spiders (Pycnogonida) and certain early Palaeozoic fossils could imply that the sejugal furrow defines an older tagma, derived from a more basal grade of organisation. In this scenario the (still) divided prosoma of acariform mites and camel spiders would be plesiomorphic. This interpretation challenges the textbook arachnid character of a peltidium (or ‘carapace’) covering an undivided prosoma. Key words: Acariformes, morphology, outgroups, phylogeny, Solifugae, tagmosis Camel spiders (Arachnida, Solifugae) are a fascinating In camel spiders, schizomids (Schizomida) and pal- group of arachnids which, as their name implies, pre- pigrades (Palpigradi) the peltidium is not a single dominantly occur in arid habitats.
    [Show full text]
  • UC Riverside UC Riverside Electronic Theses and Dissertations
    UC Riverside UC Riverside Electronic Theses and Dissertations Title Molecular Evolution of Silk Genes in Mesothele and Mygalomorph Spiders, With Implications for the Early Evolution and Functional Divergence of Silk Permalink https://escholarship.org/uc/item/8q80p6s5 Author Starrett, James Richard Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE Molecular Evolution of Silk Genes in Mesothele and Mygalomorph Spiders, With Implications for the Early Evolution and Functional Divergence of Silk A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Genetics, Genomics, and Bioinformatics by James Richard Starrett September 2012 Dissertation Committee: Dr. Cheryl Y. Hayashi, Chairperson Dr. Renyi Liu Dr. Mark Springer i Copyright by James Richard Starrett 2012 i i The Dissertation of James Richard Starrett is approved: ____________________________________________ ____________________________________________ ____________________________________________ Committee Chairperson University of California, Riverside ii i Acknowledgements The first chapter of this dissertation is a reprint of the material as it appears in PLoS ONE 7(6): e38084. doi:10.1371/journal.pone.0038084, published 22 June 2012. It is reproduced with permission from James Starrett, Jessica E. Garb, Amanda Kuelbs, Ugochi O. Azubuike, and Cheryl Y. Hayashi and is an open-access article distributed under the terms of the Creative Commons Attribution License. Co-authors Jessica E. Garb, Amanda Kuelbs, and Ugochi O. Azubuike provided research assistance. Co-author Cheryl Y. Hayashi supervised the research and provided lab materials. Research was supported by National Science Foundation (NSF) Doctoral Dissertation Improvement Grant DEB-0910365 to James Starrett and Cheryl Y.
    [Show full text]
  • A Taxonomic and Taphonomic Analysis of Late Jurassic
    A TAXONOMIC AND TAPHONOMIC ANALYSIS OF LATE JURASSIC HORSESHOE CRABS FROM A LAGERSTÄTTE IN CENTRAL POLAND A thesis submitted to the Kent State University in partial fulfillment of the requirements for the degree of Master of Science By Jessica N. Tashman December, 2014 Thesis written by Jessica N. Tashman B.S., Eastern Michigan University, Ypsilanti, MI, 2011 M.S., Kent State University, 2014 Approved by ___________________________________, Rodney Feldmann, Advisor ___________________________________, Daniel Holm, Chair, Department of Geology ___________________________________, Janis Crowther, Associate Dean, College of Arts and Sciences ii TABLE OF CONTENTS LIST OF FIGURES…..…………………….………………………………………..…….iv LIST OF TABLES………..……………………………………………………….………vi ACKNOWLEDGMENTS…………………………………………………………..……..vii SUMMARY…..………………………………………………………………….……..….1 INTRODUCTION………..………………………………………………………..………3 PALEOGEOGRAPHIC AND STRATIGRAPHIC SETTING……...………….…….…..6 SYSTEMATIC PALEONTOLOGY……………………………………………………..13 METHODS…..…………………………………………………………………………...22 TAPHONOMY………..……………………………………………………….…………23 GLOSSARY OF MORPHOLOGICAL TERMS……………………………….……….45 SYSTEMATIC ARRANGEMENT WITHIN XIPHOSURIDA……..…………….……49 HORSESHOE CRAB TAXONOMY WITH GENERIC ANNOTATIONS …………..54 CONCLUSIONS…..……………………………………………………………….…….68 REFERENCES………..………………………………………………………….………71 APPENDIX…………………………………………………………………………...…..91 iii LIST OF FIGURES Figure 1. Kimmeridgian-Tithonian sedimentology of Owadów-Brzezinki quarry of the Middle Polish Trough, and surrounding region…………………………………………….……10
    [Show full text]
  • Denver Museum of Nature & Science Reports
    DENVER MUSEUM OF NATURE & SCIENCE REPORTS DENVER MUSEUM OF NATURE & SCIENCE REPORTS DENVER MUSEUM OF NATURE & SCIENCE & SCIENCE OF NATURE DENVER MUSEUM NUMBER 3, JULY 2, 2016 WWW.DMNS.ORG/SCIENCE/MUSEUM-PUBLICATIONS 2001 Colorado Boulevard Denver, CO 80205 Frank Krell, PhD, Editor and Production REPORTS • NUMBER 3 • JULY 2, 2016 2, • NUMBER 3 JULY Logo: A solifuge standing on top of South Table Mountain, one of the two table-top mountains anking the city of Golden, Colorado. South Table Mountain with the sun (or moon, for the solifuge) rising in the background is the logo for the city of Golden. The solifuge is in honor of the main focus of research by the host’s lab. Logo designed by Paula Cushing and Eric Parrish. The Denver Museum of Nature & Science Reports (ISSN Program and Abstracts 2374-7730 [print], ISSN 2374-7749 [online]) is an open- access, non peer-reviewed scientific journal publishing 20th International Congress of papers about DMNS research, collections, or other Arachnology Museum related topics, generally authored or co-authored by Museum staff or associates. Peer review will only be July 2–9, 2016 arranged on request of the authors. Colorado School of Mines, Golden, Colorado The journal is available online at www.dmns.org/Science/ Museum-Publications free of charge. Paper copies are Paula E. Cushing (Ed.) exchanged via the DMNS Library exchange program ([email protected]) or are available for purchase from our print-on-demand publisher Lulu (www.lulu.com). DMNS owns the copyright of the works published in the Schlinger Foundation Reports, which are published under the Creative Commons WWW.DMNS.ORG/SCIENCE/MUSEUM-PUBLICATIONS Attribution Non-Commercial license.
    [Show full text]
  • The Impact of Pinyon Mortality on Ground-Dwelling Arthropod
    THE IMPACT OF PINYON MORTALITY ON GROUND-DWELLING ARTHROPOD COMMUNITIES By Robert 1. Delph A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Mastel' of Science in Biology Northern Arizona University December 2008 Approved: m~A ;,; Neil S. Cobb, Ph.D., Chair (;~~~d#~/~ - Con Slobodchikoff, Ph.D~ 'O--~ This file was created by scanning the printed publication. I Errors identified by the software have been corrected; I however, some errors may remain. ...l ABSTRACT THE IMPACT OF PINYON MORTALITY ON GROUND-DWELLING ARTHROPOD COMMUNITIES Robert J. Delph We documented the indirect impact of drought-induced mortality of pinyon pine (Pinus edulis) on ground-dwelling arthropod communities. Tree mortality alters microhabitats utilized by ground-dwelling arthropods through increased solar radiation, dead woody debris, and understory vegetation. Our major objectives were to determine if there were differences in species composition, richness and abundance of ground dwelling- arthropods associated with environments experiencing high or low pinyon mortality and whether specific microhabitats could account for differences. We predicted significant impacts on arthropod community dynamics due to the increased complexity of micro- habitats from both standing and fallen trees. Despite only moderate increases in the amount of area that experienced new microhabitats, there were significant differences in arthropod community composition between high and low pinyon mortality environments. Overall, 22% (51 taxa) of the arthropod community were identified as being indicators of high or low pinyon mortality. Thus, our study supported the notion that arthropods are responsive to disturbance events that lead to even moderate changes in the environment. However, areas of high tree mortality also contained lower tree densities, allowing for the possibility that intrinsic differences in woodlands that vary in susceptibility to drought- induced mortality plays a significant role in structuring ground-dwelling arthropod communities.
    [Show full text]
  • (Arachnida: Araneae) Associated with Canopies of Vochysia Divergens (Vochysiaceae) in the Northern Region of the Brazilian Pantanal
    ZOOLOGIA 33(4): e20150170 ISSN 1984-4689 (online) www.scielo.br/zool ECOLOGY Spider assemblage (Arachnida: Araneae) associated with canopies of Vochysia divergens (Vochysiaceae) in the northern region of the Brazilian Pantanal Leandro D. Battirola1*, Daniel A. Batistella1, Germano H. Rosado-Neto2, Antonio D. Brescovit3& Marinêz I. Marques4 1Instituto de Ciências Naturais, Humanas e Sociais, Universidade Federal de Mato Grosso. Avenida Alexandre Ferronato 1200, Setor Industrial, 78557-267 Sinop, MT, Brazil. 2Departamento de Zoologia, Universidade Federal do Paraná. Caixa Postal 19020, 81531-980 Curitiba, PR, Brazil. 3Laboratório Especial de Coleções Zoológicas, Instituto Butantan. Avenida Vital Brasil 1500, Butantã, 05503-900 São Paulo, SP, Brazil. 4Instituto de Biociências, Universidade Federal de Mato Grosso. Avenida Fernando Corrêa da Costa 2367, Boa Esperança, 78060-900 Cuiabá, MT, Brazil. *Corresponding author. E-mail: [email protected] ABSTRACT. This study describes the composition and temporal variation of the spider assemblage (Arachnida: Araneae) associated with canopies of Vochysia divergens Pohl. (Vochysiaceae) in the northern region of the Brazilian Pantanal. Three V. divergens plants were sampled in 2004, at each seasonal period of the northern Pantanal (high water, receding water, dry season and rising water), using thermonebulization of the canopies with insecticide, totaling 396 m2 of sampled canopies. Analysis of abundance and richness of spider families were based on Non-Metric Multidimensional Scaling (NMDS) and Vari- ance Analysis (ANOVA and MANOVA). A total of 7,193 spiders were collected (6,330 immatures; 88.0%; 863 adults, 12.0%) distributed in 30 families. Araneidae (1,676 individuals), Anyphaenidae (1,631 individuals), Salticidae (1,542 individuals) and Pisauridae (906 individuals), were predominant, representing 80.0% of the sample.
    [Show full text]