Respective Roles of H-Atpase and H-K-Atpase in Ion Transport in the Kidney1

Total Page:16

File Type:pdf, Size:1020Kb

Respective Roles of H-Atpase and H-K-Atpase in Ion Transport in the Kidney1 Respective Roles of H-ATPase and H-K-ATPase in Ion Transport in the Kidney1 Lal C. Garg2 monia and titrable acid. Both of these functions are L.C. Garg, Department of Pharmacology and Thera- achieved by the acidification of the tubule fluid. Most peutics and Division of Nephrology, Hypertension and of the filtered bicarbonate is reabsorbed in the prox- Transplantation, University of Florida College of Medi- imal tubule. The acidification of the luminal fluid in cine, Gainesville, FL the distal tubule plays an important role in the trans- port of total ammonia and in the titration of phos- 1991; (J. Am. Soc. Nephrol. 2:949-960) phate and other buffers. During the last several years, it has been established that acidification of the tubule fluid is mediated, at least in part, by an ABSTRACT electrogenic proton pump (H-ATPase) that is located in the luminal membrane of renal tubule cells in both Two types of proton-translocating ATPases, H-ATPase proximal and distal nephron segments, including the and H-K-ATPase, are found in the renal tubular cells. collecting duct. Recent evidence suggests that an H-ATPase is present in both endocytic vesicles and electroneutral H-K-ATPase present in the collecting apical membranes In almost all nephron segments. duct may play a role in the acidification of tubule On the other hand, H-K-ATPase is present only in the fluid. In this article, we will review the biochemical, connecting tubule and collecting duct. There is evi- immunohistological, and physiological evidence for dence to suggest that H-ATPase may be involved the respective roles of H-ATPase and H-K-ATPase in In H secretion in almost all nephron segments. ion transport in various nephron segments. we will H-K-ATPase is involved not only in H secretion but also also consider here the effects of certain physiological in K absorption in the collecting duct segments. Al- and pharmacological factors on the two enzymes. dosterone administration and metabolic acidosis The synthesis and transport of ammonia, which also play an important role in maintaining the acid-base stimulate the activity of H-ATPase in all collecting balance, will not be discussed here. Several excellent duct segments, whereas hypokalemia has only a and recent reviews are available on this topic (1,2). lImited effect on H-ATPase activity. On the other hand, hypokalemia, as well as metabolic acidosis, stimulates H-K-ATPase activity in the collecting duct GENERAL PROPERTIES OF DIFFERENT TYPES OF segments, whereas aldosterone administration H-ATPases alone plays a minor role in the regulation of this There are three types of H-ATPases. The FO-Fi enzyme. The physiological role and regulation of H- type of H-ATPase is present in the mitochondria ATPase in the proximal tubule has not been estab- where it acts as ATP synthase. This type of H-ATPase lished. is also present in bacterial membranes and in chlo- Key Words: H-A TPase, H-K-A TPase, nephron segments, acid roplasts (3). It is composed of 8 to 14 polypeptides. secretion, potassium transport, aldosterone The mammalian enzyme is inhibited by oligomycin, azide, and low concentrations of dicyclohexylcarbo- diimide (DCCD), but not by ouabain (inhibitor of Na- o maintain acid-base balance, the human kid- T K-ATPase) or vanadate (inhibitor of El -E2 type ney not only reabsorbs the filtered bicarbonate ATPases, including Na-K-ATPase). but also generates bicarbonate by excretion of am- The second type of H-ATPase is present in the membranes of intracellular organelles, such as en- Received June 4, 1991. Accepted July 22, 1991. dosomes, lysosomes, and clathrin-coated vesicles (4), 2Correspondence to Dr. L.C. Garg, Department of Pharmacology and Thera- peutics, University of Florida College of Medicine, Health Science Center, P.O. and it acidifies the interior of these organelles. Be- Box 100267, GainesvIlle, FL 32610-0267. cause this H-ATPase is present in the intracellular 1046-6673/0205-0949$03.O0/0 vacuoles, it has been called vacuolar (or V) H-ATPase Journal of the American Society of Nephrology Copyright C 1991 by the American Society of Nephrology (5). The vacuolar H-ATPase is also present in the Journal of the American Society of Nephrology 949 H-ATPase and H-K-ATPase plasma membranes of subpopulations of cells in the differences in the enzyme activity of V type mammalian collecting duct and turtle urinary blad- H-ATPases in different organelles may also be be- der where it is responsible for urinary acidification cause of secondary factors present in the organelles. (6,7). In addition, this type of H-ATPase is located in These include the presence or absence of a Cl chan- synaptic vesicles and chromaffin granules (8). The V nd and the lipid composition of the organelle mem- type H-ATPases are composed of nine or more differ- brane (8). The acidification by V type H-ATPase in ent polypeptides. They contain more cystelne resi- various organelles may be controlled by the primary dues than mitochondrial H-ATPase and are Inhibited and secondary factors mentioned above. In contrast, by low concentrations of N-ethylmaleimide (NEM). a the acidification of urine by V type H-ATPase is sulfhydryl alkylating agent (9). In addition, V type probably controlled by the rates of enzyme biogenesis H-ATPases are inhibited by higher concentrations of and by enzyme insertion into and retrieval from the DCCD than is the mitochondrial H-ATPase (ATP syn- plasma membrane (7). There is evidence that the thase) (5). They are not inhibited by azide, ouabain, activity of the H-ATPase and its insertion into and or vanadate. retrieval from the plasma membrane in the collecting The functions of V type H-ATPases in various spe- duct are influenced by adrenal hormones and cies and in various organs in mammals have been changes in acid-base balance (discussed below). reviewed recently (3,5,8). In brief, the major function The third type of H-ATPase is characteristic of the of V type H-ATPases is to acidify the interior of mammalian gastric mucosa (13). It belongs to the El- intracellular organelles. This acidification leads to E2 type of ATPases that form phosphorylated inter- activation of several secondary processes. For cx- mediates and are vanadate sensitive. It is composed ample, it has been demonstrated In several tissues of two subunits and is inhibited by omeprazole and that the acidification of endosomes is important for an imidazopyridine compound (SCH 28080). It resem- the dissociation of ligands from receptors after recep- bles Na-K-ATPase but is not inhibited by ouabain. tor-mediated endocytosis and the subsequent recy- This type of H-ATPase is also present in certain cling of the receptors (5). Under normal conditions, fungi. Recently, ouabain-insensitive K-ATPase activ- endocytosed ligands such as low-density lipopro- ity has been demonstrated in the mammalian col- teins, Insulin, and epidermal growth factor dissociate lecting duct (14,15). The renal K-ATPase is pharma- from their receptors in the acidic pH of the endo- cologically similar to gastric H-K-ATPase (15). somes. However, treatment of cells with weak bases, The gastric H-K-ATPase is responsible for trans- such as NH4C1 or chloroquine, that neutralize acidic port of H into the lumen in exchange for K. This compartments in the cells results in accumulation of transport process is accompanied by a back diffusion ligand-receptor complexes in the endosomes and a of K into the lumen via a K channel and transport of depletion of cell surface receptors. Similarly, the Cl from cell to the lumen via an apical Cl channel. maintenance of an acidic pH within lysosomes is These processes lead to net secretion of HC1 into the necessary for optimum activity of lysosomal hydro- lumen (16). The recognition of the role of H-K-ATPase lases (10). in gastric acid secretion led to the development of The proton-motive force generated by V type omeprazole (PRILOSEC; Merck Sharp & Dohme, H-ATPases in synaptic vesicles and chromaffin West Point, PA), which is used in pathological hy- granules is used for the uptake and storage of neu- persecretory conditions such as Zollinger-Ellison rotransmitters (8). The mechanism of neurotrans- syndrome and in gastroesophageal reflux diseases mitter uptake may vary with the transporter of the (13). The physiological role of renal H-K-ATPase in H neurotransmitter. Thus, like Na-K-ATPase, V type and K transport is discussed in a later section. H-ATPases provide energy for several secondary processes. In fact, it has been suggested that the DISTRIBUTION OF H-ATPase ALONG THE NEPHRON nervous system cannot function without V type H- ATPases because of a lack of accumulation of neu- The distribution of H-ATPase in the various neph- rotransmitters in the absence of H-ATPase (8). ron segments has been studied by both biochemical V type H-ATPases isolated from different kidney and immunohistochemical techniques. Because NEM membrane compartments have been shown to differ has been used as an inhibitor of the V type H-ATPase, in their enzymatic and structural properties. For ex- the enzyme is also called NEM-sensitive ATPase. ample, two H-ATPases isolated from brush borders We will use the term NEM-sensitive ATPase and and microsomes of the bovine kidney differ in their H-ATPase interchangeably. Figure 1 illustrates the 56K subunit, substrate specificity. pH optimum, and locations of the major nephron segments in which sensitivity to inhibition by Cu2’ (11). It has been enzyme activities have been measured in both the rat suggested that the activity of V type H-ATPase In vlvo and rabbit. The distribution of NEM-sensitive may be regulated by two cytosolic proteins, a stimu- ATPase activity along the rabbit nephron is given in latory protein and an inhibitory protein (12).
Recommended publications
  • Molecular Regulation and Physiology of the H ,K -Atpases in Kidney
    Molecular Regulation and Physiology of the H؉,K؉-ATPases in Kidney Juan Codina and Thomas D. DuBose Jr Two H؉,K؉-adenosine triphosphatase (ATPase) proteins participate in K؉ absorption and ؉ ؉ ؉ H secretion in the renal medulla. Both the gastric (HK␣1) and colonic (HK␣2)H,K - ATPases have been localized and characterized by a number of techniques, and are known to be highly regulated in response to acid-base and electrolyte disturbances. Both ATPases are dimers of composition ␣/␤ that localize to the apical membrane and both interact with the tetraspanin protein CD63. Although CD63 interacts with the carboxy-terminus of the subunit of the colonic H؉,K؉-ATPase, it interacts with the ␤-subunit of the gastric-␣ H؉,K؉-ATPase. Pharmacologically, both ATPases are distinct; for example, the gastric H؉,K؉-ATPase is inhibited by Sch-28080, but the colonic H؉,K؉-ATPase is inhibited by .ouabain (a classic inhibitor of the Na؉-pump) and is completely insensitive to Sch-28080 The ␣-subunit of the colonic H؉,K؉-ATPase is the only subunit of the X؉,K؉-ATPase superfamily that has 3 different splice variants that emerge by deletion or elongation of the amino-terminus. The messenger RNA and protein of one of these splice variants (HK␣2C)is specifically up-regulated in newborn rats and becomes undetectable in adult rats. There- fore, HK␣2, in addition to its role in potassium and acid-base homeostasis, appears to play a significant role in early growth and development. Finally, because chronic hypokalemia appears to be the most potent stimulus for upregulation of HK␣2, we propose that the HK␣2 participates importantly in the maintenance of chronic metabolic alkalosis.
    [Show full text]
  • SERCA in Genesis of Arrhythmias: What We Already Know and What Is New?
    Review 43 SERCA in genesis of arrhythmias: what we already know and what is new? Nilüfer Erkasap Department of Physiology, Medical Faculty, Eskiflehir Osmangazi University, Eskiflehir, Turkey ABSTRACT This review mainly focuses on the structure, function of the sarco(endo)plasmic reticulum calcium pump (SERCA) and its role in genesis of arrhythmias. SERCA is a membrane protein that belongs to the family of P-type ion translocating ATPases and pumps free cytosolic calcium into intracellular stores. Active transport of Ca2+ is achieved, according to the E1-E2 model, changing of SERCA structure by Ca2+. The affinity of Ca2+ -binding sites varies from high (E1) to low (E2). Three different SERCA genes were identified-SERCA1, SERCA2, and SERCA3. SERCA is mainly represented by the SERCA2a isoform in the heart. In heart muscle, during systole, depolarization triggers the release of Ca2+ from the sarcoplasmic reticulum (SR) and starts contraction. During diastole, muscle relaxation occurs as Ca2+ is again removed from cytosol, predominantly by accumulation into SR via the action of SERCA2a. The main regulator of SERCA2a is phospholamban and another regulator proteolipid of SERCA is sarcolipin. There are a lot of studies on the effect of decreased and/or increased SERCA activity in genesis of arrhythmia. Actually both decrease and increase of SERCA activity in the heart result in some pathological mechanisms such as heart failure and arrhythmia. (Anadolu Kardiyol Derg 2007: 7 Suppl 1; 43-6) Key words: sarco(endo)plasmic reticulum, SERCA, arrhythmia, calcium channels Introduction from cytosol, predominantly by accumulation into sarcoplasmic reticulum via the action of sarco(endo)plasmic reticulum Cardiac physiology is a major area of research in basic and Ca ATPase (SERCA).
    [Show full text]
  • Specific Copb Transporter: Revising P1B-Type Atpase Classification
    + Cu -specific CopB transporter: Revising P1B-type ATPase classification Rahul Purohita,b, Matthew O. Rossa,b, Sharon Bateluc, April Kusowskic,d, Timothy L. Stemmlerc,d, Brian M. Hoffmana,b, and Amy C. Rosenzweiga,b,1 aDepartment of Molecular Biosciences, Northwestern University, Evanston, IL 60208; bDepartment of Chemistry, Northwestern University, Evanston, IL 60208; cDepartment of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201; and dSchool of Medicine, Wayne State University, Detroit, MI 48201 Contributed by Amy C. Rosenzweig, January 12, 2018 (sent for review December 14, 2017; reviewed by Megan M. McEvoy and Gabriele Meloni) The copper-transporting P1B-ATPases, which play a key role in cellu- metal specificities of the P1B-5 (PCP motif), P1B-6 (SCA motif), lar copper homeostasis, have been divided traditionally into two and P1B-7-ATPases (CSC motif) remain unclear, although some 2+ 2+ subfamilies, the P1B-1-ATPases or CopAs and the P1B-3-ATPases or evidence links the P1B-5-ATPases to Ni and Fe (20, 21). The + CopBs. CopAs selectively export Cu whereas previous studies and remaining two groups are the copper transporters. The P1B-1- + bioinformatic analyses have suggested that CopBs are specific for ATPases, which include ATP7A and ATP7B, transport Cu 2+ 2+ Cu export. Biochemical and spectroscopic characterization of (9, 22), whereas the P1B-3-ATPases are proposed to transport Cu Sphaerobacter thermophilus CopB (StCopB) show that, while it does (23, 24). These two subfamilies differ from one another in several 2+ bind Cu , the binding site is not the prototypical P1B-ATPase trans- ways. First, the TM helix 4 motif is CPC in the P1B-1-ATPases and membrane site and does not involve sulfur coordination as proposed CPH in the P1B-3-ATPases.
    [Show full text]
  • Ca2+-Atpase Molecules As a Calcium-Sensitive Membrane-Endoskeleton of Sarcoplasmic Reticulum
    International Journal of Molecular Sciences Article Ca2+-ATPase Molecules as a Calcium-Sensitive Membrane-Endoskeleton of Sarcoplasmic Reticulum Jun Nakamura 1,*, Yuusuke Maruyama 1, Genichi Tajima 2, Yuto Komeiji 1, Makiko Suwa 3 and Chikara Sato 1,* 1 Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan; [email protected] (Y.M.); [email protected] (Y.K.) 2 Institute for Excellence in Higher Education, Tohoku University, 41 Kawauchi, Aoba-ku, Sendai, Miyagi 980-8576, Japan; [email protected] 3 Biological Science Course, Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuou-ku, Sagamihara, Kanagawa 252-5258, Japan; [email protected] * Correspondence: [email protected] (J.N.); [email protected] (C.S.) Abstract: The Ca2+-transport ATPase of sarcoplasmic reticulum (SR) is an integral, transmembrane protein. It sequesters cytoplasmic calcium ions released from SR during muscle contraction, and causes muscle relaxation. Based on negative staining and transmission electron microscopy of SR vesicles isolated from rabbit skeletal muscle, we propose that the ATPase molecules might also be a calcium-sensitive membrane-endoskeleton. Under conditions when the ATPase molecules scarcely transport Ca2+, i.e., in the presence of ATP and ≤ 0.9 nM Ca2+, some of the ATPase particles on the SR vesicle surface gathered to form tetramers. The tetramers crystallized into a cylindrical helical array in some vesicles and probably resulted in the elongated protrusion that extended from some round SRs.
    [Show full text]
  • ATP Synthase: Structure,Abstract: Functionlet F Denote a Eld and and Let Inhibitionv Denote a Vector Space Over F with Nite Positive Dimension
    Spec. Matrices 2019; 7:1–19 Research Article Open Access Kazumasa Nomura* and Paul Terwilliger BioMol Concepts 2019; 10: 1–10 Self-dual Leonard pairs Research Article Open Access https://doi.org/10.1515/spma-2019-0001 Prashant Neupane*, Sudina Bhuju, Nita Thapa,Received Hitesh May 8, 2018; Kumar accepted Bhattarai September 22, 2018 ATP Synthase: Structure,Abstract: FunctionLet F denote a eld and and let InhibitionV denote a vector space over F with nite positive dimension. Consider a pair A, A∗ of diagonalizable F-linear maps on V, each of which acts on an eigenbasis for the other one in an irreducible tridiagonal fashion. Such a pair is called a Leonard pair. We consider the self-dual case in which https://doi.org/10.1515/bmc-2019-0001 there exists an automorphism of the endomorphism algebra of V that swaps A and A∗. Such an automorphism phosphate (Pi), along with considerable release of energy. received September 18, 2018; accepted December 21, 2018. is unique, and called the duality A A∗. In the present paper we give a comprehensive description of this ADP can absorb energy and regain↔ the group to regenerate duality. In particular, we display an invertible F-linear map T on V such that the map X TXT− is the duality Abstract: Oxidative phosphorylation is carried out by an ATP molecule to maintain constant ATP concentration. → A A∗. We express T as a polynomial in A and A∗. We describe how T acts on ags, decompositions, five complexes, which are the sites for electron transport↔ Other than supporting almost all the cellular and ATP synthesis.
    [Show full text]
  • Gastric H,K-Atpase As a Drug Target
    UCLA UCLA Previously Published Works Title Gastric H,K-ATPase as a drug target Permalink https://escholarship.org/uc/item/1g5606x9 Journal Digestive Diseases and Sciences, 51(5) ISSN 0163-2116 Authors Shin, Jai M Sachs, G Publication Date 2006-05-01 Peer reviewed eScholarship.org Powered by the California Digital Library University of California The Gastric H,K-ATPase as a Drug Target Jai Moo Shin and George Sachs* Department of Physiology and Medicine, University of California at Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, CA90073, USA * To whom correspondence should be addressed: at Membrane Biology Laboratory, VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd., Bldg. 113, Rm. 324, Los Angeles, CA 90073 Tel: (310) 268-4672 Fax: (310) 312-9478 e-mail: [email protected] 1 Introduction Gastric acid is secreted by parietal cells in the stomach. These have two known acid stimulatory receptors the H2-receptor and the muscarinic M3 receptor. Gastrin, the major endocrine activator of acid secretion, exerts its action via release of histamine from the ECL cell as does pituitary adenylate cyclase activating peptide (PACAP), a neural mediator of activation of acid secretion. Antagonists of the former two stimulants inhibit gastric acid secretion. Cholinergic receptor antagonists have many side effects and are relatively weak inhibitors at therapeutic doses as compared toH2-receptor antagonists. These drugs were widely developed in the 1970’s and 1980’s and became the first really useful medications for healing of peptic ulcers. However, although good for healing peptic ulcers, they were less effective in treatment of erosive esophagitis.
    [Show full text]
  • Inhibin, Activin, Follistatin and FSH Serum Levels and Testicular
    REPRODUCTIONRESEARCH Expression of Atp8b3 in murine testis and its characterization as a testis specific P-type ATPase Eun-Yeung Gong, Eunsook Park, Hyun Joo Lee and Keesook Lee School of Biological Sciences and Technology, Hormone Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea Correspondence should be addressed to K Lee; Email: [email protected] Abstract Spermatogenesis is a complex process that produces haploid motile sperms from diploid spermatogonia through dramatic morphological and biochemical changes. P-type ATPases, which support a variety of cellular processes, have been shown to play a role in the functioning of sperm. In this study, we isolated one putative androgen-regulated gene, which is the previously reported sperm-specific aminophospholipid transporter (Atp8b3, previously known as Saplt), and explored its expression pattern in murine testis and its biochemical characteristics as a P-type ATPase. Atp8b3 is exclusively expressed in the testis and its expression is developmentally regulated during testicular development. Immunohistochemistry of the testis reveals that Atp8b3 is expressed only in germ cells, especially haploid spermatids, and the protein is localized in developing acrosomes. As expected, from its primary amino acid sequence, ATP8B3 has an ATPase activity and is phosphorylated by an ATP-producing acylphosphate intermediate, which is a signature property of the P-Type ATPases. Together, ATP8B3 may play a role in acrosome development and/or in sperm function during fertilization. Reproduction (2009) 137 345–351 Introduction the removal of testosterone by hypophysectomy or ethane dimethanesulfonate (EDS) treatment in rats leads to the Spermatogenesis is one of most complex processes of cell failure of spermatogenesis (Russell & Clermont 1977, differentiation in animals, in which diploid spermatogo- Bartlett et al.
    [Show full text]
  • Structure and Mechanism of the Atpase That Powers Viral Genome
    Structure and mechanism of the ATPase that powers PNAS PLUS viral genome packaging Brendan J. Hilberta,1, Janelle A. Hayesa,1, Nicholas P. Stonea, Caroline M. Duffya, Banumathi Sankaranb, and Brian A. Kelcha,2 aDepartment of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605; and bBerkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Edited by Wei Yang, National Institutes of Health, Bethesda, MD, and approved June 5, 2015 (received for review April 9, 2015) Many viruses package their genomes into procapsids using an with portal; (ii) consequently, it was proposed that the active site ATPase machine that is among the most powerful known biological residues that catalyze ATP hydrolysis are derived from one sub- motors. However, how this motor couples ATP hydrolysis to DNA unit exclusively; (iii) the pore of the ring has a net negative charge translocation is still unknown. Here, we introduce a model system and is largely unconserved; and (iv) DNA was proposed to be with unique properties for studying motor structure and mecha- bound primarily by the nuclease domain. This model is sub- nism. We describe crystal structures of the packaging motor ATPase stantially different from models observed for other nucleic acid domain that exhibit nucleotide-dependent conformational changes translocases of the ASCE family, in which the pore is largely involving a large rotation of an entire subdomain. We also identify conserved and positively charged, and ATP hydrolysis is cata- the arginine finger residue that catalyzes ATP hydrolysis in a neigh- lyzed in trans (11–15). Resolving these disparities between the boring motor subunit, illustrating that previous models for motor proposed assembly and conserved features of the ASCE family is structure need revision.
    [Show full text]
  • Sarcoplasmic Reticulum Ca2+-Atpase (SERCA) Activity During the Transition to Endothermy in an Altricial Bird Edwin R
    © 2019. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2019) 222, jeb201111. doi:10.1242/jeb.201111 RESEARCH ARTICLE Sarcoplasmic reticulum Ca2+-ATPase (SERCA) activity during the transition to endothermy in an altricial bird Edwin R. Price§, Tushar S. Sirsat*, Sarah K. G. Sirsat‡ and Edward M. Dzialowski ABSTRACT endothermic response is dependent upon the maturation of multiple Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) is a physiological systems, including the neural thermoregulatory centers transmembrane pump critical to muscle calcium cycling during and networks, oxygen and substrate supply pathways, and the contraction, and SERCA has also been proposed as the basis for a oxidative and contractile machinery of skeletal muscles (reviewed by non-shivering thermogenesis mechanism in birds. Despite its potential Price and Dzialowski, 2018). 2+ importance to both shivering and non-shivering thermogenesis, the Sarco(endo)plasmic reticulum Ca -ATPase (SERCA) is a activity of this transporter has rarely been studied in altricial birds, membrane-bound transporter that pumps calcium ions from the and never during the developmental transition from ectothermy to cytosol into the lumen of the sarcoplasmic reticulum (SR) following endothermy. Here, we describe SERCA activity in the pectoralis muscle muscle contraction. High SERCA activity is crucial for rapid and heart ventricle of red-winged blackbird (Agelaius phoeniceus) contraction rates in muscles (Rome and Lindstedt, 1998), as the nestlings, fledglings and adults. Additionally, using a diet manipulation, transporter restores both cytosolic and SR calcium levels that are we tested the hypothesis that muscle SERCA activity is affected by necessary for signaling contraction. Maturation of SERCA activity ’ dietary fatty acid composition, as has been shown in some previous could therefore be important for developing the muscle scapacityfor studies.
    [Show full text]
  • Mechanism of Na-K-Atpase Inhibition by PGE2 in Intestinal Epithelial Cells
    cells Article Mechanism of Na-K-ATPase Inhibition by PGE2 in Intestinal Epithelial Cells Niraj Nepal , Subha Arthur, Jennifer Haynes, Balasubramanian Palaniappan and Uma Sundaram * Department of Clinical and Translational Sciences, Appalachian Clinical and Translational Science Institute, Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Drive, Huntington, WV 25701, USA; [email protected] (N.N.); [email protected] (S.A.); [email protected] (J.H.); [email protected] (B.P.) * Correspondence: [email protected]; Tel.: +1-304-691-1841 Abstract: The primary means of intestinal absorption of nutrients by villus cells is via Na-dependent nutrient co-transporters located in the brush border membrane (BBM). These secondary active co- transport processes require a favorable transcellular Na gradient that is provided by Na-K-ATPase. In chronic enteritis, malabsorption of essential nutrients is partially due to inhibition of villus Na- K-ATPase activity mediated by specific immune inflammatory mediators that are known to be elevated in the inflamed mucosa. However, how Prostaglandin E2 (PGE2), a specific mediator of nutrient malabsorption in the villus BBM, may mediate the inhibition of Na-K-ATPase is not known. Therefore, this study aimed to determine the effect of PGE2 on Na-K-ATPase in villus cells and define its mechanism of action. In vitro, in IEC-18 cells, PGE2 treatment significantly reduced Na-K-ATPase activity, accompanied by a significant increase in the intracellular levels of cyclic Adenosine Monophosphate (cAMP). The treatment with cAMP analog 8-Bromo-cAMP mimicked the PGE2-mediated effect on Na-K-ATPase activity, while Rp-cAMP (PKA inhibitor) pretreatment Citation: Nepal, N.; Arthur, S.; reversed the same.
    [Show full text]
  • THE ROLE of V-Atpase in NEURONAL and ENDOCRINE SYSTEMS
    J. exp. Biol. 172, 171-178 (1992) j-y j Printed in Great Britain © The Company of Biologists Limited 1992 THE ROLE OF V-ATPase IN NEURONAL AND ENDOCRINE SYSTEMS BY YOSHINORI M0R1YAMA*, MASATOMO MAEDA AND MASAMITSU FUTAI Department of Organic Chemistry and Biochemistry, Institute of Scientific and Industrial Research, Osaka University, Ibaraki Osaka 567, Japan Summary Synaptic vesicles have important roles in the neural transmission at nerve terminals: the storage and the controlled exocytosis of neurotransmitters. At least two different factors are responsible for the concentration process: the vacuolar-type H+-ATPase (V- ATPase), establishing an electrochemical gradient of protons, and specific transport systems for transmitters. We will discuss our recent progress on the energy-transducing systems in synaptic vesicles: (1) structural aspects of V-ATPase; (2) energy coupling of transport of transmitters; (3) reconstitution of transporters; (4) effects of neurotoxins and neuron blocking agents; (5) function of synaptic-vesicle-like microvesicles from endocrine tissues. Introduction Synaptic vesicles play an important role in neuronal transmission in nerve termini. They accumulate high concentrations of neurotransmitters and, upon receiving the proper signal, secrete them by exocytosis. Similarly, secretory granules in endocrine cells accumulate biogenic amines and secrete them by exocytosis (Ueda, 1986; Johnson, 1988; Njus et al. 1987). We have been interested in the bioenergetics of the accumulation process, which is an initial step in neuronal transmission or biogenic amine secretion. Our results are consistent with a chemiosmotic energy coupling mechanism for the accumulation: a V-ATPase forms an electrochemical gradient of protons across vesicular membranes and transmitters are taken up through specific transporters coupled with this gradient (Fig.
    [Show full text]
  • Characterization of Plasmodium Falciparum ATP-Dependent DNA
    Limudomporn et al. Malar J (2016) 15:526 DOI 10.1186/s12936-016-1573-2 Malaria Journal RESEARCH Open Access Characterization of Plasmodium falciparum ATP‑dependent DNA helicase RuvB3 Paviga Limudomporn1, Saengduen Moonsom1, Ubolsree Leartsakulpanich2, Pattra Suntornthiticharoen3, Songsak Petmitr4, Michael Weinfeld5 and Porntip Chavalitshewinkoon‑Petmitr1* Abstract Background: Malaria is one of the most serious and widespread parasitic diseases affecting humans. Because of the spread of resistance in both parasites and the mosquito vectors to anti-malarial drugs and insecticides, controlling the spread of malaria is becoming difficult. Thus, identifying new drug targets is urgently needed. Helicases play key roles in a wide range of cellular activities involving DNA and RNA transactions, making them attractive anti-malarial drug targets. Methods: ATP-dependent DNA helicase gene (PfRuvB3) of Plasmodium falciparum strain K1, a chloroquine and pyrimethamine-resistant strain, was inserted into pQE-TriSystem His-Strep 2 vector, heterologously expressed and affinity purified. Identity of recombinant PfRuvB3 was confirmed by western blotting coupled with tandem mass spectrometry. Helicase and ATPase activities were characterized as well as co-factors required for optimal function. Results: Recombinant PfRuvB3 has molecular size of 59 kDa, showing both DNA helicase and ATPase activities. Its 2 2 2 2 helicase activity is dependent on divalent cations (Cu +, Mg +, Ni+ or Zn+ ) and ATP or dATP but is inhibited by high NaCl concentration (>100 mM). PfPuvB3 is unable to act on blunt-ended duplex DNA, but manifests ATPase activity in the presence of either single- or double-stranded DNA. PfRuvB3.is inhibited by doxorubicin, daunorubicin and netrop‑ sin, known DNA helicase inhibitors.
    [Show full text]