ATP Synthase: Structure,Abstract: Functionlet F Denote a Eld and and Let Inhibitionv Denote a Vector Space Over F with Nite Positive Dimension

Total Page:16

File Type:pdf, Size:1020Kb

ATP Synthase: Structure,Abstract: Functionlet F Denote a Eld and and Let Inhibitionv Denote a Vector Space Over F with Nite Positive Dimension Spec. Matrices 2019; 7:1–19 Research Article Open Access Kazumasa Nomura* and Paul Terwilliger BioMol Concepts 2019; 10: 1–10 Self-dual Leonard pairs Research Article Open Access https://doi.org/10.1515/spma-2019-0001 Prashant Neupane*, Sudina Bhuju, Nita Thapa,Received Hitesh May 8, 2018; Kumar accepted Bhattarai September 22, 2018 ATP Synthase: Structure,Abstract: FunctionLet F denote a eld and and let InhibitionV denote a vector space over F with nite positive dimension. Consider a pair A, A∗ of diagonalizable F-linear maps on V, each of which acts on an eigenbasis for the other one in an irreducible tridiagonal fashion. Such a pair is called a Leonard pair. We consider the self-dual case in which https://doi.org/10.1515/bmc-2019-0001 there exists an automorphism of the endomorphism algebra of V that swaps A and A∗. Such an automorphism phosphate (Pi), along with considerable release of energy. received September 18, 2018; accepted December 21, 2018. is unique, and called the duality A A∗. In the present paper we give a comprehensive description of this ADP can absorb energy and regain↔ the group to regenerate duality. In particular, we display an invertible F-linear map T on V such that the map X TXT− is the duality Abstract: Oxidative phosphorylation is carried out by an ATP molecule to maintain constant ATP concentration. → A A∗. We express T as a polynomial in A and A∗. We describe how T acts on ags, decompositions, five complexes, which are the sites for electron transport↔ Other than supporting almost all the cellular and ATP synthesis. Among those, Complex V (also knownand 24 basesfunctions for V that. require energy, ATP also works as a as the F F ATP Synthase or ATPase) is responsible for coenzyme during phosphorylation reactions. Besides, ATP 1 0 Keywords: Leonard pair, tridiagonal matrix, self-dual the generation of ATP through phosphorylation of ADP has crucial role in RNA and DNA synthesis and in amino by using electrochemical energy generated by protonClassication: acid activation17B37,15A21 during protein synthesis. Khakh and gradient across the inner membrane of mitochondria. A Burnstock, established that ATP also serves as a critical multi subunit structure that works like a pump functions signaling molecule that allows inter and intracellular along the proton gradient across the membranes which communications. The ubiquitous distribution of ATP not only results in ATP synthesis and breakdown, but alsoIntroduction allows for signaling functions that have a uniquely broad facilitates electron transport. Since ATP is the major energy influence on physiological functioning [1]. currency in all living cells, its synthesis and functionLet haveF denoteEstimates a eld andshow let thatV denotethe normal a vector body spaceuses 40 over kg ofF with nite positive dimension. We consider a widely been studied over the last few decades uncoveringpair A , AATP∗ of on diagonalizable a daily basis; henceF-linear ATP maps production on V, eachis one of of which the acts on an eigenbasis for the other one in an several aspects of ATP synthase. This review intendsirreducible to most tridiagonal frequent processes fashion. Suchoccurring a pair in is the called body a Leonard[2]. The pair (see [13, Denition 1.1]). The Leonard pair summarize the structure, function and inhibition of the aggregate amount of ATP in the human body is about 0.1 A, A∗ is said to be self-dual whenever there exists an automorphism of the endomorphism algebra of V that ATP synthase. Mole. The energy utilized every day by an adult requires swaps A and A∗. In this case such an automorphism is unique, and called the duality A A∗. the hydrolysis of 100 to 150 Moles of ATP. This implies ↔ Keywords: ATP, ATP Synthase, Electron Transport Chain,The literatureevery ATP molecule contains must many be examples reused 1000 of self-dualor more multiple Leonard pairs. For instance (i) the Leonard pair associ- Proton motive force, Rotational Catalysis, ATP synthaseated withtimes an irreducible in a day [3]. moduleATP cannot for be the stored Terwilliger and so its algebra synthesis of the hypercube (see [4, Corollaries 6.8, 8.5]); (ii) a Inhibition. Leonardis pair closely of Krawtchouk linked to its type consumption. (see [10, Denition ATP is 6.1]);produced (iii) the Leonard pair associated with an irreducible module forunder the aerobic Terwilliger conditions algebra through of a distance-regular glycolysis, citric graph acid that has a spin model in the Bose-Mesner alge- bra (seecycle/oxidative [1, Theorem], [3,phosphorylation Theorems 4.1, 5.5]);and (iv)beta-oxidation an appropriately normalized totally bipartite Leonard pair ATP: The Fuel for Life (see [11,and Lemma under 14.8]); anaerobic (v) the condition Leonard pairthrough consisting fermentation, of any two of a modular Leonard triple A, B, C (see [2, Denitionphotophosphorylation 1.4]); (vi) the Leonard and pair replenishment consisting of areactions pair of opposite generators for the q-tetrahedron alge- Often referred as “molecular currency” for intracellularbra, acting catalyzed on an evaluationby nucleoside module diphosphate (see [5, kinase Proposition [4]. 9.2]). The example (i) is a special case of (ii), and the energy transfer, Adenosine Triphosphate (ATP) functions examples (iii), (iv) are special cases of (v). as a chemical fuel by powering many organic processes Let A, A∗ denote a Leonard pair on V. We can determine whether A, A∗ is self-dual in the following way. of life. ATP generation is the principle energy generating ATP Synthase d procedure found in all forms of life. ATP is the fuel forBy the [13, Lemma 1.3] each eigenspace of A, A∗ has dimension one. Let θi i= denote an ordering of the eigen- { } d operation of almost all metabolic pathways of thevalues cell. ofATPA. Foris synthesized ≤ i ≤ d letfromvi denoteits precursor, a θi-eigenvector ADP, by ATP for A. The ordering θi i= is said to be standard d { } d In an ATP molecule, two high-energy phosphate bonds,whenever synthases.A∗ acts onThese the basisenzymesvi arei= infound an irreduciblein the cristae tridiagonal and fashion. If the ordering θi i= is standard d { } { } called phosphoanhydride bonds, are responsible forthen high the the ordering inner membraneθd−i i= is alsoof mitochondria, standard, and the no furtherthylakoid ordering is standard. Similar comments apply to d { } d energy content. Hydrolysis of the third phosphate Agroup∗. Let membraneθ denote of chloroplasts, a standard orderingand the plasma of the eigenvaluesmembrane of of A. Then A, A∗ is self-dual if and only if θ { i}i= { i}i= produces adenosine diphosphate (ADP) and inorganicis a standard bacteria ordering [5]. Usually, of the there eigenvalues is a general of understandingA∗ (see [7, Proposition that 8.7]). ATP generation occurs in mitochondria. However, in the case of bacteria and archaea that lack mitochondria, ATP *Corresponding author: Prashant Neupane, Kathmandu University, synthase is found in their plasma membrane. Additionally, Dhulikhel, Nepal, E-mail: [email protected]*Corresponding ATP synthases Author: Kazumasaare licensed Nomura: to inhabitTokyo the Medical chloroplast and Dental of University, Ichikawa, 272-0827,Japan, Sudina Bhuju: Department of Biotechnology, Kathmandu UniversityE-mail: [email protected] cells. The structure and procedure of ATP synthesis is Nita Thapa: Department of Biotechnology, Kathmandu UniversityPaul Terwilliger:similar inDepartment all three locations of Mathematics, except that University light energy of Wisconsin, excites Madison, WI53706, USA, E-mail: Hitesh Kumar Bhattarai: Department of Biotechnology, [email protected] electrons enabling transmembrane movement of H+ ions in University Journal xyz 2017; 1 (2): 122–135 Open Access. © 2019 Prashant Neupane et al., published byOpen De Gruyter. Access. ©This2019 work Kazumasa is licensed Nomura under and the Paul Creative Terwilliger, Commons published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial NoDerivatives 4.0 License. Attribution alone 4.0 License. The First Decade (1964-1972) Research Article Max Musterman, Paul Placeholder What Is So Different About Neuroenhancement? Was ist so anders am Neuroenhancement? Pharmacological and Mental Self-transformation in Ethic Comparison Pharmakologische und mentale Selbstveränderung im ethischen Vergleich https://doi.org/10.1515/xyz-2017-0010 received February 9, 2013; accepted March 25, 2013; published online July 12, 2014 Abstract: In the concept of the aesthetic formation of knowledge and its as soon as possible and success-oriented application, insights and profits without the reference to the arguments developed around 1900. The main investigation also includes the period between the entry into force and the presentation in its current version. Their function as part of the literary portrayal and narrative technique. Keywords: Function, transmission, investigation, principal, period Dedicated to Paul Placeholder 1 Studies and Investigations The main investigation also includes the period between the entry into force and the presentation in its current version. Their function as part of the literary por- trayal and narrative technique. *Max Musterman: Institute of Marine Biology, National Taiwan Ocean University, 2 Pei-Ning Road Keelung 20224, Taiwan (R.O.C), e-mail: [email protected] Paul Placeholder: Institute of Marine Biology, National Taiwan Ocean University, 2 Pei-Ning Road Keelung 20224, Taiwan (R.O.C), e-mail: [email protected] Open
Recommended publications
  • Mt-Atp8 Gene in the Conplastic Mouse Strain C57BL/6J-Mtfvb/NJ on the Mitochondrial Function and Consequent Alterations to Metabolic and Immunological Phenotypes
    From the Lübeck Institute of Experimental Dermatology of the University of Lübeck Director: Prof. Dr. Saleh M. Ibrahim Interplay of mtDNA, metabolism and microbiota in the pathogenesis of AIBD Dissertation for Fulfillment of Requirements for the Doctoral Degree of the University of Lübeck from the Department of Natural Sciences Submitted by Paul Schilf from Rostock Lübeck, 2016 First referee: Prof. Dr. Saleh M. Ibrahim Second referee: Prof. Dr. Stephan Anemüller Chairman: Prof. Dr. Rainer Duden Date of oral examination: 30.03.2017 Approved for printing: Lübeck, 06.04.2017 Ich versichere, dass ich die Dissertation ohne fremde Hilfe angefertigt und keine anderen als die angegebenen Hilfsmittel verwendet habe. Weder vorher noch gleichzeitig habe ich andernorts einen Zulassungsantrag gestellt oder diese Dissertation vorgelegt. ABSTRACT Mitochondria are critical in the regulation of cellular metabolism and influence signaling processes and inflammatory responses. Mitochondrial DNA mutations and mitochondrial dysfunction are known to cause a wide range of pathological conditions and are associated with various immune diseases. The findings in this work describe the effect of a mutation in the mitochondrially encoded mt-Atp8 gene in the conplastic mouse strain C57BL/6J-mtFVB/NJ on the mitochondrial function and consequent alterations to metabolic and immunological phenotypes. This work provides insights into the mutation-induced cellular adaptations that influence the inflammatory milieu and shape pathological processes, in particular focusing on autoimmune bullous diseases, which have recently been reported to be associated with mtDNA polymorphisms in the human MT-ATP8 gene. The mt-Atp8 mutation diminishes the assembly of the ATP synthase complex into multimers and decreases mitochondrial respiration, affects generation of reactive oxygen species thus leading to a shift in the metabolic balance and reduction in the energy state of the cell as indicated by the ratio ATP to ADP.
    [Show full text]
  • Systemic Hypoxia Inhibits T Cell Response by Limiting Mitobiogenesis
    RESEARCH ARTICLE Systemic hypoxia inhibits T cell response by limiting mitobiogenesis via matrix substrate-level phosphorylation arrest Amijai Saragovi1, Ifat Abramovich2, Ibrahim Omar1, Eliran Arbib1, Ori Toker3, Eyal Gottlieb2, Michael Berger1* 1The Lautenberg center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University Medical School, Jerusalem, Israel; 2The Ruth and Bruce Rappaport, Faculty of Medicine, Technion - Israel Institute of Technology, Jerusalem, Israel; 3Faculty of Medicine, Hebrew University of Jerusalem; The Allergy and Immunology Unit, Shaare Zedek Medical Center, Jerusalem, Israel Abstract Systemic oxygen restriction (SOR) is prevalent in numerous clinical conditions, including chronic obstructive pulmonary disease (COPD), and is associated with increased susceptibility to viral infections. However, the influence of SOR on T cell immunity remains uncharacterized. Here we show the detrimental effect of hypoxia on mitochondrial-biogenesis in activated mouse CD8+ T cells. We find that low oxygen level diminishes CD8+ T cell anti-viral response in vivo. We reveal that respiratory restriction inhibits ATP-dependent matrix processes that are critical for mitochondrial-biogenesis. This respiratory restriction-mediated effect could be rescued by TCA cycle re-stimulation, which yielded increased mitochondrial matrix-localized ATP via substrate-level phosphorylation. Finally, we demonstrate that the hypoxia-arrested CD8+ T cell anti-viral response could be rescued in vivo through brief exposure to atmospheric oxygen pressure. Overall, these findings elucidate the detrimental effect of hypoxia on mitochondrial- + *For correspondence: biogenesis in activated CD8 T cells, and suggest a new approach for reducing viral infections in [email protected] COPD. Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • Crystal Structures of the Gastric Proton Pump Reveal the Mechanism for Proton Extrusion
    Life Science Research Frontiers 2018 Research Frontiers 2018 Crystal structures of the gastric proton pump reveal the mechanism for proton extrusion After intaking food, the pH inside our stomach phosphorylation (P), and actuator (A) domains reaches around 1. This acidic environment, (Fig. 2(a)). The β-subunit has a single TM helix and generated by the gastric proton pump H+,K+-ATPase a large ectodomain with three of the six N-linked [1], is indispensable for food digestion and is also glycosylation sites visualized in the structure. The an important barrier to pathogen invasion via the electron density maps define the binding mode of oral route. However, excess stomach acidification vonoprazan (now available for clinical treatment) and induces ulcers, which considerably impair the health SCH28080 (a prototype of P-CAB), and the residues of those affected. Acid suppression in combination coordinating them, in a luminal-facing conduit that with antibiotics is a widely recognized treatment to extends to the cation-binding site (Figs. 2(b) and 2(c)). eradicate Helicobactor pylori, a strong risk factor for The binding sites of these P-CABs were previously gastric cancer. Proton pump inhibitors (PPIs) and a thought to overlap owing to similar inhibitory actions. recently developed class of acid suppressants called Our structures show that they do indeed partially K+-competitive acid blockers (P-CABs) are commonly overlap but are also distinct. The binding mode used for the treatment of acid-related diseases. of P-CABs determined in the crystal structure is Gastric H+,K+-ATPase therefore continues to be a consistent with mutagenesis studies, providing prominent target for the treatment of excess stomach the molecular basis for P-CAB binding to H+,K+- acidification.
    [Show full text]
  • Effect of Phosphate and Uncouplers on Substrate Transport And
    Plant Physiol. (1977) 59, 139-144 Effect of Phosphate and Uncouplers on Substrate Transport and Oxidation by Isolated Corn Mitochondria1 Received for publication May 25, 1976 and in revised form September 13, 1976 DAVID A. DAY2 AND JOHN B. HANSON Department of Botany, University of Illinois, Urbana, Illinois 61801 ABSTRACT ADP) stimulates the rate by increasing transport (3, 25, 27). However, Pi stimulation of exogenous NADH oxidation by corn A study was made to determine conditions under which malate oxida- mitochondria has also been reported (9). Oxidation of this tion rates in corn (Zea mays L.) mitochondria are limited by transport substrate does not require its penetration of the inner membrane processes. In the absence of added ADP, inorganic phosphate increased (3, 6) and the Pi stimulation was attributed to an accelerated malate oxidation rates by processes inhibited by mersalyl and oligomy- turnover of the coupling mechanism, since it was sensitive to cin, but phosphate did not stimulate uncoupled respiration. However, oligomycin (9). Oligomycin did not inhibit Pi stimulation of the uncoupled oxidation rates were inhibited by butylmalonate and malate oxidation by cauliflower mitochondria (27). mersalyl. When uncoupler was added prior to substrate, subsequent 02 Inhibition of substrate transport by uncouplers has been ob- uptake rates were reduced when malate and succinate, but not exoge- served with animal mitochondria (23), but the low rates of nous NADH, were used. Uncoupler and butylmalonate also inhibited substrate oxidation by plant mitochondria in the presence of swelling in malate solutions and malate accumulation by these mitochon- uncouplers have generally been attributed to a requirement for dria, which were found to have a high endogenous phosphate content.
    [Show full text]
  • Biol 1020: Photosynthesis
    Chapter 10: Photosynthesis Energy and Carbon Sources Electromagnetic Spectrum and Light Chloroplasts Photosynthesis Overview Light Reactions C3 Cycle Photorespiration Supplemental Carbon Fixation: C4 and CAM pathways . • List and differentiate the 4 possible groups of organisms based on how they obtain energy and useful carbon. Classification by Energy and Carbon Sources energy source chemotrophs can only get energy directly from chemical compounds phototrophs can get energy directly from light (these organisms can use chemical compounds as energy sources as well) . Classification by Energy and Carbon Sources carbon source autotrophs can fix carbon dioxide, thus they can use CO2 as a carbon source heterotrophs cannot fix CO2; they use organic molecules from other organisms as a carbon source . Classification by Energy and Carbon Sources combined, these leads to 4 possible groups: photoautotrophs – carry out photosynthesis use light energy to fix CO2 store energy in chemical bonds of organic molecules includes green plants, algae, and some bacteria photoheterotrophs – use light energy but cannot fix CO2; some nonsulfur purple bacteria chemoautotrophs – obtain energy from reduced inorganic molecules and use some of it to fix CO2; some bacteria chemoheterotrophs – use organic molecules as both carbon and energy sources dependent completely on other organisms for energy capture and carbon fixation includes all animals, all fungi, most protists, and most bacteria . • List and differentiate the 4 possible groups of
    [Show full text]
  • Molecular Regulation and Physiology of the H ,K -Atpases in Kidney
    Molecular Regulation and Physiology of the H؉,K؉-ATPases in Kidney Juan Codina and Thomas D. DuBose Jr Two H؉,K؉-adenosine triphosphatase (ATPase) proteins participate in K؉ absorption and ؉ ؉ ؉ H secretion in the renal medulla. Both the gastric (HK␣1) and colonic (HK␣2)H,K - ATPases have been localized and characterized by a number of techniques, and are known to be highly regulated in response to acid-base and electrolyte disturbances. Both ATPases are dimers of composition ␣/␤ that localize to the apical membrane and both interact with the tetraspanin protein CD63. Although CD63 interacts with the carboxy-terminus of the subunit of the colonic H؉,K؉-ATPase, it interacts with the ␤-subunit of the gastric-␣ H؉,K؉-ATPase. Pharmacologically, both ATPases are distinct; for example, the gastric H؉,K؉-ATPase is inhibited by Sch-28080, but the colonic H؉,K؉-ATPase is inhibited by .ouabain (a classic inhibitor of the Na؉-pump) and is completely insensitive to Sch-28080 The ␣-subunit of the colonic H؉,K؉-ATPase is the only subunit of the X؉,K؉-ATPase superfamily that has 3 different splice variants that emerge by deletion or elongation of the amino-terminus. The messenger RNA and protein of one of these splice variants (HK␣2C)is specifically up-regulated in newborn rats and becomes undetectable in adult rats. There- fore, HK␣2, in addition to its role in potassium and acid-base homeostasis, appears to play a significant role in early growth and development. Finally, because chronic hypokalemia appears to be the most potent stimulus for upregulation of HK␣2, we propose that the HK␣2 participates importantly in the maintenance of chronic metabolic alkalosis.
    [Show full text]
  • A Model of Mitochonrial Calcium Induced Calcium
    A MODEL OF MITOCHONRIAL CALCIUM INDUCED CALCIUM RELEASE DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Balbir Thomas, The Ohio State University 2007 Dissertation Committee: Approved by David Terman, Adviser Douglas R. Pfeiffer Adviser Edward Overman Biophysics Graduate Program Christopher P. Fall ABSTRACT Cytoplasmic calcium plays a dual role in cellular physiology. On one hand it acts as a second messenger in intra-cellular signalling, and on the other hand it is also the trigger for calcium dependent apopotosis. A mechanistic explanation of this dual role of cytoplasmic calcium was proposed by Ichas and Mazat. Their hypothesis involved the permeability transition pore was based on the observation that the permeability transition pore can exist in multiple conductance states. Specifically there exist a persistent high conductance state and a transitory low conductance state. Ichas et.al. also observed that the low conductance state is opened by a rise in mitochondrial matrix pH, in contrast to what was already know about the high conductance state, which opens in response to prolonged elevation of mitochondrial calcium. In this dissertation we build a detailed, physiological model of the mitochondrial switch between calcium signalling and cell death based on a simple three state model of the permeability transition pore. This model agrees with the substance of the Ichas and Mazat hypothesis and provides a substrate for further modeling to study the spatial and temporal dynamics of mitochondrial involvement in intracellular calcium signalling, and the interaction of mitochondria and endoplasmic reticulum during this process.
    [Show full text]
  • Molecular Cloning and Sequence of Cdna Encoding the Plasma
    Proc. Nad. Acad. Sci. USA Vol. 86, 1234-1238, February 1989 Botany Molecular cloning and sequence of cDNA encoding the plasma membrane proton pump (H+-ATPase) of Arabidopsis thaliana (cation pumps/nucleotide sequence/amino add homology/oligonucleotide screening/transmembrane segments) JEFFREY F. HARPER, TERRY K. SUROWY*, AND MICHAEL R. SUSSMAN Department of Horticulture, University of Wisconsin, 1575 Linden Drive, Madison, WI 53706 Communicated by Luis Sequeira, November 14, 1988 ABSTRACT In plants, the transport of solutes across the synthesized an oligonucleotide probe to screen an oat cDNA plasma membrane is driven by a proton pump (H -ATPase) library and then used a purified oat clone to isolate a that produces an electric potential and pH gradient. We have full-length A. thaliana cDNA clone. Here we provide evi- isolated and sequenced a full-length cDNA clone that encodes dence for the presence of at least two genes encoding plasma this enzyme inArabidopsis thaiana. The protein predicted from membrane proton pumps in A. thaliana and report the its nucleotide sequence encodes 959 amino acids and has a predicted amino acid sequence from one. molecular mass of 104,207 Da. The plant protein shows structural features common to a family of cation-translocating MATERIALS AND METHODS ATPases found in the plasma membrane of prokaryotic and eukaryotic cells, with the greatest overall identity in amino acid Plants. A. thaliana L. cv. Columbia and Avena sativa L. sequence (36%) to the H+-ATPase observed in the plasma cv. Gary (oat) were plant materials used in this study. Unless membrane of fungi. The structure predicted from a hydropa- otherwise noted, standard molecular techniques were per- thy plot contains at least eight transmembrane segments, with formed according to Maniatis et al.
    [Show full text]
  • Assembling the Mitochondrial ATP Synthase Jiyao Songa, Nikolaus Pfannera,B,1, and Thomas Beckera,B
    COMMENTARY COMMENTARY Assembling the mitochondrial ATP synthase Jiyao Songa, Nikolaus Pfannera,b,1, and Thomas Beckera,b Mitochondria are known as the powerhouses of the of the ATP synthase (5–7). A recent high-resolution cell. The F1Fo-ATP synthase of the mitochondrial inner cryoelectron microscopic structure of the dimeric Fo membrane produces the bulk of cellular ATP. The re- region of yeast ATP synthase revealed that the subunits spiratory chain complexes pump protons across the Atp6 and i/j form the contact sites between two ATP inner membrane into the intermembrane space and synthase monomers, supported by interaction between thereby generate a proton-motive force that drives subunits e and k (8). In mitochondria, rows of ATP syn- the ATP synthase. In a fascinating molecular mecha- thase dimers localize to the rims of the cristae mem- nism, the ATP synthase couples the synthesis of ATP branes, which are invaginations of the inner membrane. to the transport of protons into the matrix (1–3). For- The ATP synthase dimers bend the inner membrane mation of the ATP synthase depends on the associa- and are crucial for forming the typical cristae shape (9, tion of 17 different structural subunits of dual genetic 10). The supernumerary subunits e and g, together with origin. Whereas a number of assembly factors and the N-terminal portion of the peripheral stalk subunit b, steps have been identified in the model organism affect the curvature of the inner membrane (8, 9, 11). baker’s yeast, little has been known about the assem- Thus, the ATP synthase not only synthesizes ATP but bly of the human ATP synthase.
    [Show full text]
  • The Summary Equation of Cellular Respiration. the Difference Between
    The summary equation of cellular respiration. The difference between fermentation and cellular respiration. The role of glycolysis in oxidizing glucose to two molecules of pyruvate. The process that brings pyruvate from the cytosol into the mitochondria and introduces it into the citric acid cycle. How the process of chemiosmosis utilizes the electrons from NADH and FADH2 to produce ATP. E flows into ecosystem as Sunlight Autotrophs transform it into chemical E O2 released as byproduct Cells use some of chemical E in organic molecules to make ATP E leaves as heat Catabolic Pathway Complex organic Simpler waste molecules products with less E Some E used to do work and dissipated as heat Introduction Respiration (15 min) Respiration: exergonic (releases E) C6H12O6 + 6O2 6H2O + 6CO2 + ATP (+ heat) Fermentation exergonic (releases E) C6H12O6 2-3 C products + ATP (small amounts) Photosynthesis: endergonic (requires E) 6H2O + 6CO2 + Light C6H12O6 + 6O2 oxidation (donor) lose e- Xe- + Y X + Ye- reduction (acceptor) gain e- Oxidation = lose e- OiLRiG or LeoGer Reduction = gain e- oxidation C6H12O6 + 6O2 6H2O + 6CO2 + ATP reduction Energy is released as electrons “fall” from organic molecules to O2 Broken down into steps: Food (Glucose) NADH ETC O2 . Coenzyme NAD+ = electron acceptor . NAD+ picks up 2e- and 2H+ NADH (stores E) . NADH carries electrons to the electron transport chain (ETC) - . ETC: transfers e to O2 to make H2O ; releases energy Generate small amount of ATP Phosphorylation: enzyme transfers a phosphate to other
    [Show full text]
  • Difference Between Atpase and ATP Synthase Key Difference
    Difference Between ATPase and ATP Synthase www.differencebetween.com Key Difference - ATPase vs ATP Synthase Adenosine triphosphate (ATP) is a complex organic molecule that participates in the biological reactions. It is known as “molecular unit of currency” of intracellular energy transfer. It is found in almost all forms of life. In the metabolism, ATP is either consumed or generated. When ATP is consumed, energy is released by converting into ADP (adenosine diphosphate) and AMP (adenosine monophosphate) respectively. The enzyme which catalyzes the following reaction is known as ATPase. ATP → ADP + Pi + Energy is released In other metabolic reactions which incorporate external energy, ATP is generated from ADP and AMP. The enzyme which catalyzes the below-mentioned reaction is called an ATP Synthase. ADP + Pi → ATP + Energy is consumed So, the key difference between ATPase and ATP Synthase is, ATPase is the enzyme that breaks down ATP molecules while the ATP Synthase involves in ATP production. What is ATPase? The ATPase or adenylpyrophosphatase (ATP hydrolase) is the enzyme which decomposes ATP molecules into ADP and Pi (free phosphate ion.) This decomposition reaction releases energy which is used by other chemical reactions in the cell. ATPases are the class of membrane-bound enzymes. They consist of a different class of members that possess unique functions such as Na+/K+-ATPase, Proton-ATPase, V-ATPase, Hydrogen Potassium–ATPase, F-ATPase, and Calcium-ATPase. These enzymes are integral transmembrane proteins. The transmembrane ATPases move solutes across the biological membrane against their concentration gradient typically by consuming the ATP molecules. So, the main functions of the ATPase enzyme family members are moving cell metabolites across the biological membrane and exporting toxins, waste and the solutes that can hinder the normal cell function.
    [Show full text]
  • Targeting Oncogenic Notch Signaling with SERCA Inhibitors Luca Pagliaro, Matteo Marchesini and Giovanni Roti*
    Pagliaro et al. J Hematol Oncol (2021) 14:8 https://doi.org/10.1186/s13045-020-01015-9 REVIEW Open Access Targeting oncogenic Notch signaling with SERCA inhibitors Luca Pagliaro, Matteo Marchesini and Giovanni Roti* Abstract P-type ATPase inhibitors are among the most successful and widely prescribed therapeutics in modern pharmacol- ogy. Clinical transition has been safely achieved for H+/K+ ATPase inhibitors such as omeprazole and Na+/K+-ATPase 2 inhibitors like digoxin. However, this is more challenging for Ca +-ATPase modulators due to the physiological role of 2 2 Ca + in cardiac dynamics. Over the past two decades, sarco-endoplasmic reticulum Ca +-ATPase (SERCA) modula- 2 tors have been studied as potential chemotherapy agents because of their Ca +-mediated pan-cancer lethal efects. Instead, recent evidence suggests that SERCA inhibition suppresses oncogenic Notch1 signaling emerging as an alternative to γ-secretase modulators that showed limited clinical activity due to severe side efects. In this review, we focus on how SERCA inhibitors alter Notch1 signaling and show that Notch on-target-mediated antileukemia proper- 2 ties of these molecules can be achieved without causing overt Ca + cellular overload. Keywords: SERCA , T cell acute lymphoblastic leukemia, Thapsigargin, Notch signaling, NOTCH1, CAD204520, T-ALL Background metalloprotease (ADAM-10 or TACE/ADAM-17). Te NOTCH receptors are transmembrane cell-surface pro- resulting short-lived protein fragments are substrates teins that control cell to cell communication, embryo-
    [Show full text]