Plants to Attract Butterflies to Your Backyard

Total Page:16

File Type:pdf, Size:1020Kb

Plants to Attract Butterflies to Your Backyard Plants to Attract Butterflies to Your Backyard Butterflies are happy to come to our backyards if we provide what they need. Some things to consider in making plant choices are that nectar plants (flowers) attract a wide variety of butterflies, and that larval foodplants attract very specific kinds of butterflies seeking plants on which to lay eggs and that will nourish the caterpillars. Since many common butterflies are on the wing throughout the year in our valley—as long as it isn’t too cold or hot and dry—we can use different flowering plants to provide nectar throughout the year. In late fall, mountain marigold and rabbitbrush robe themselves in golden heads attracting a host of species. During the spring, patches of wildflowers come alive with butterflies. Late summer flowering shrubs include red bird of paradise, butter- fly bush, Mexican sunflower, lantana, desert lavender, and bee-brush; perennials include desert verbena, butterfly mist, floss-flower, and native passion vine. Strategic plantings or massing of these plants will fill a garden with a wide variety of butterflies. Some caterpillar food plants make excellent background plantings, screens, or spots of greenery. Desert hackberry, a tall native shrub of desert washes is the foodplant of the Empress Leilia, and the American Snout. Fern acacia, a tropical-looking, low native shrub that makes a soft accent near a patio or pool, is also the foodplant of the Acacia Skipper, and the Mexican Yellow. Native mesquites are foodplants for hairstreaks, feather tree for sulphurs, kidneywood for the often numerous Marine Blue butterflies; and citrus trees for the Giant Swallowtail— the caterpillars resemble bird droppings. The plants listed here make a good start on a butterfly garden. Many of these species look their fullest and best from late summer through fall, a time when there are normally many butterflies in the garden. Desert Connections is a joint project of Tucson Botanical Gardens and Tucson-Pima Public Library and is funded by the Institute of Museum and Library Services. BUTTERFLY PLANT LIST Perennials Ageratum corymbosum, Flossflower, nectar plant for male Queens Aristolochia watsonii, Native pipevine, foodplant for Pipevine Swallowtail Bouteloua curtipendula, Sideoats grama (grass), foodplant for Orange Skipperling Cosmos sulphureus, Cosmos, nectar plant Dicliptera resupinata, Twinseed, foodplant for Texan Crescent Eupatorium greggii, Butterfly mist, nectar plant for male Queens Eupatorium odoratum, Eupatorium, nectar plant for many butterflies Galvezia juncea, Galvezia, foodplant for Tropical Buckeye Glandularia gooddingii, Desert verbena, nectar plant for many butterflies Passiflora foetida, Native passionvine (vine), foodplant for Gulf Fritillary Petroselinum crispum, Parsley (biennial), foodplant for Black Swallowtail Senna covesii, Desert senna, foodplant for Sleepy Orange, Cloudless Sulphur Thymophylla pentachaeta, Dogweed, nectar plant; foodplant for Dainty Sulphur Shrubs Acacia angustissima, Fern acacia, foodplant for Acacia Skipper, Mexican Sulphur Aloysia gratissima, Beebrush, nectar plant for gossamer wings Anisacanthus thurberi, Native honeysuckle, nectar plant; foodplant for Elada Checkerspot Asclepias linaria, Pineleaf milkweed, foodplant for Queen, Monarch Asclepias subulata, Desert milkweed, foodplant for Queen, Monarch Atriplex spp., Saltbush, foodplant for Western Pygmy Blue Baccharis sarothroides, Desert Broom, nectar (winter) for many, esp. Great Purple Hairstreak Bebbia juncea, Sweet bush, nectar plant for gossamer wings and sulphurs Buddleia davidii, Butterfly bush, nectar plant Caesalpinia pulcherrima, Red bird of paradise, nectar plant for swallowtails and sulphurs Calliandra californica, Baja fairy duster, foodplant for various Blues Chrysothamnus nauseosus, Rabbitbrush, nectar (fall) for many species Dalea spp., Indigo bush, nectar plant; foodplant for Southern Dogface Hyptis emoryi, Desert lavender, nectar plant Lycium spp., Wolfberry, nectar plant (winter) Lantana spp., Lantana, nectar plant Senna hirsuta var. glaberrima, Long-pod senna, foodplant for Sleepy Orange, Cloudless Sulphur Tagetes lemmoni, Mountain marigold, nectar (fall) for many species Tithonia fruticosa, Mexican sunflower, nectar; foodplant for Bordered Patch Trees & Large Shrubs Acacia greggii, Catclaw, nectar plant Celtis pallida, Desert hackberry, foodplant for Empress Leilia, American Snout Celtis reticulata, Canyon hackberry, foodplant for Empress Leilia, American Snout Citrus spp., Citrus trees, foodplant for Giant Swallowtail Eysenhardtia orthocarpa, Kidneywood, nectar; foodplant for Marine Blue Havardia pallens, Tenaza, nectar plant Lysiloma watsoni, Feather tree, foodplant for Agarithe Sulphur Prosopis velutina, Native mesquite, nectar; foodplant for Leda Hairstreak, Palmers Metalmark Tips for the Butterfly Garden Choose a warm, sunny location. Butterflies are warm-weather fans. Take advantage of warm southern exposures to prolong flowers of fall-blooming species. Plant in masses. Masses of colorful, fragrant flowers are more likely to capture the attention of a passing butterfly. One plant here and there will not be nearly as effective as five flowering plants grouped together. Choose flowers that are flat-topped or clustered and have short flower tubes. Butterflies like landing pads where they can sit comfortably to sip nectar. Choose flowers in the yellow, orange, red, and pink range. These are preferred by butterflies, but they will also visit flowers of other colors. Plant with different blooming periods in mind. Butterflies may be on the wing year round in our area. Include larval foodplants for different species. For a truly effective butterfly garden, you need to provide places for the adults to lay eggs and leaves for the caterpillars to eat. Provide windbreaks. The butterflies won’t be buffeted by the wind and won’t have to expend extra energy as they fly about looking for food and mates. Provide shade. Even warm weather creatures need some shade, particularly when temperatures rise above 95 degrees. Provide flat stones or rocks. Butterflies like places to rest and places to bask in the sun. Provide areas of damp soil. Male butterflies like to take in salts and nutrients from muddy soils. Don’t use herbicides or pesticides. Herbicides may kill the larval foodplants; pesticides may kill both the caterpillars and adults. Desert Connections is a joint project of Tucson Botanical Gardens and Tucson-Pima Public Library and is funded by the Institute of Museum and Library Services. Desert Connections Wild About Butterflies Annotated Bibliography Alcock, John. In a Desert Garden: Love and Death Among the Insects. W. W. Norton & Company, 1997. Introduces the reader to the lives and loves of desert insects as they forage through a backyard oasis. Arizona Native Plant Society and Sonoran Arthropod Studies Institute. Desert Butterfly Gardening, 1996. This $2. booklet describes desert and low water use plants for attracting butterflies. Both nectar and larval food plants are covered and small color photos show both plants and butterflies. Bailowitz, Richard A. and Brock, James P. Butterflies of Southeastern Arizona. Sonoran Arthropod Studies Institute, 1991. Includes distribution, flight period, and larval food plants for butterflies found in southeastern Arizona. Mostly black and white photos with a few color plates at the end. Bailowitz, Richard A. and Danforth, Douglas. 70 Common Butterflies of the Southwest. Southwest Parks and Monument Association, 1997. Compact guide to some of the butterflies of the Southwest. Includes information on where to find them. Large color photographs. Brock, Jim P. and Kaufman, Kenn. The Kaufman Focus Guide to Butterflies of North America. Houghton Mifflin Co., 2003. Comprehensive field guide to the butterflies of North America. Introduction includes useful information on how to find and identify butterflies as well as ways to help in their conservation. Brooklyn Botanic Garden. Butterfly Gardening. Handbook #175, 2003. Accounts of some common butterfly species in North American; practical gardening information on butterfly and caterpillar plants for different regions of the U. S. Buchmann, Stephen L. and Nabhan, Gary Paul. The Forgotten Pollinators. Island Press/ Shearwater Books, 1996. Explores the relationships between plants and the animals they depend on for reproduction. Grissell, Eric. Insects and Gardens. Timber Press, 2001. Introduces the reader to insect biology and the role of insects in garden ecology. Casts an appreciative eye on the doings of insects. Mikula, Rick. The Family Butterfly Book. Storey Books, 2000. Offers family projects and activies for identifying, carying for, and raising caterpillars in the backyard. Stokes, Donald and Lillian and Williams, Ernest. The Butterfly Book. Little, Brown and Company, 1991. An easy guide to butterfly identification and behavior as well as gardening to attract them. The Xerces Society and Smithsonian Institute. Butterfly Gardening – Creating Summer Magic in your Garden. Sierra Club Books, 1998. Covers basics of gardening for butterflies. Includes sections on garden design and butterfly photography. Desert Connections is a joint project of Tucson Botanical Gardens and Tucson-Pima Public Library and is funded by the Institute of Museum and Library Services. Desert Connections Wild About Butterflies Children’s Bibliography Carle, Eric. The Very Hungry Caterpillar. Philomel Books, 1987. Board book describes the hatching of an egg and the life of a caterpillar as it
Recommended publications
  • Self-Repair and Self-Cleaning of the Lepidopteran Proboscis
    Clemson University TigerPrints All Dissertations Dissertations 8-2019 Self-Repair and Self-Cleaning of the Lepidopteran Proboscis Suellen Floyd Pometto Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Recommended Citation Pometto, Suellen Floyd, "Self-Repair and Self-Cleaning of the Lepidopteran Proboscis" (2019). All Dissertations. 2452. https://tigerprints.clemson.edu/all_dissertations/2452 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. SELF-REPAIR AND SELF-CLEANING OF THE LEPIDOPTERAN PROBOSCIS A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy ENTOMOLOGY by Suellen Floyd Pometto August 2019 Accepted by: Dr. Peter H. Adler, Major Advisor and Committee Co-Chair Dr. Eric Benson, Committee Co-Chair Dr. Richard Blob Dr. Patrick Gerard i ABSTRACT The proboscis of butterflies and moths is a key innovation contributing to the high diversity of the order Lepidoptera. In addition to taking nectar from angiosperm sources, many species take up fluids from overripe or sound fruit, plant sap, animal dung, and moist soil. The proboscis is assembled after eclosion of the adult from the pupa by linking together two elongate galeae to form one tube with a single food canal. How do lepidopterans maintain the integrity and function of the proboscis while foraging from various substrates? The research questions included whether lepidopteran species are capable of total self- repair, how widespread the capability of self-repair is within the order, and whether the repaired proboscis is functional.
    [Show full text]
  • Arcadia at Silverleaf
    Section Six - Landscape Design Mature Size ADWR Common Name Botanical Name (H x W) Size Zone Natural and Transitional Zones Streetscape Enhanced Zone Private Zone TREES X Acacia abyssinica Abyssinian Acacia 20’-25’ 20-25’ M x x X Acacia aneura Mulga 20’ 12’ M x x X Acacia berlandieri Berlandier Acacia 15’ 15’ S x x X Acacia constricta Whitethorn Acacia 10’ 15’ S x x x X Acacia craspedocarpa Leatherleaf Acacia 18’ 10’ M x x X Acacia crassifolia Butterfly-leaf Acacia 10’-15’ 10’-15’ S x x X Acacia gerrardii Gray-thorn Acacia 25’ 25’ M x x X Acacia greggii Catclaw Acacia 10’ 15’ S x x x x X Acacia rigidula Black-brush acacia 10’-15’ 7’-9’ S x April24,2015 October21,2005,revised Design,LLC.,andDCRanchLLC.Allrightsreserved. ©2005 DaleGardon X Acacia roemeriana Roemer Acacia 20’ 25’ M x X Acacia saligna Willow Acacia 15’-25’ 10’-20’ M x X Acacia schaffneri Twisted Acacia 15’-25’ 15’-25’ M x X Acacia smallii (farnesiana) Sweet Acacia 15’-20’ 15’-20’ M x x x X Acacia tortillia Umbrella Thorn 20’-30’ 30’ L x X Acacia willardiana Palo Blanco 20’ 10’ M x x Albizia julibrissin Mimosa 20’-40’ 40’ L x Apple ‘Anna’ Anna Apple Tree 15’ 15’ S x X Bauhinia congesta Anacacho Orchid Tree 6’-12’ 6’-12’ S x X Bauhinia congesta ‘Lunarioides’ Pink Orchid Tree 6’-12’ 6’-12’ S x X Caesalpinia cacalaco Cascalote 15’-20’ 15’ M x x X Caesalpinia mexicana Mexican Bird of Paradise 10’-15’ 6’-12’ S x x X Canotia holacantha Crucifixion Thorn 15’ 10’ S x x x X Cercidium ‘Desert Museum’ Hybrid Palo Verde 25’ 15’ M x x x X Cercidium floridum Blue Palo Verde 30’ 30’-40’ L x x x x Cercidium microphyllum Foothills Palo Verde 20’ 25’ M x x x x X Cercidium praecox Palo Brea 20’ 25’ M x x x X Cercis canadensis v.
    [Show full text]
  • Biological Technical Report for the Nichols Mine Project
    Biological Technical Report for the Nichols Mine Project June 8, 2016 Prepared for: Nichols Road Partners, LLC P.O. Box 77850 Corona, CA 92877 Prepared by: Alden Environmental, Inc. 3245 University Avenue, #1188 San Diego, CA 92104 Nichols Road Mine Project Biological Technical Report TABLE OF CONTENTS Section Title Page 1.0 INTRODUCTION ......................................................................................................1 1.1 Project Location ..................................................................................................1 1.2 Project Description ..............................................................................................1 2.0 METHODS & SURVEY LIMITATIONS .................................................................1 2.1 Literature Review ................................................................................................1 2.2 Biological Surveys ..............................................................................................2 2.2.1 Vegetation Mapping..................................................................................3 2.2.2 Jurisdictional Delineations of Waters of U.S. and Waters of the State ....4 2.2.3 Sensitive Species Surveys .........................................................................4 2.2.4 Survey Limitations ....................................................................................5 2.2.5 Nomenclature ............................................................................................5 3.0 REGULATORY
    [Show full text]
  • Cytogenetic Investigations in Colchicine Induced Tetraploid of Cosmos Sulphureus (Asteraceae)
    Chromosome Botany (2017)12(3): 41-45 ©Copyright 2017 by the International Society of Chromosome Botany Cytogenetic investigations in colchicine induced tetraploid of Cosmos sulphureus (Asteraceae) Rakesh Chandra Verma1, Preeti Dass2, Nilofar Shaikh1,3 and Mushtaq Ahmad Khah1 1School of Studies in Botany, Vikram University, Ujjain 456010, India 2 School of Studies in Microbiology, Vikram University, Ujjain 456010, India 1Author for correspondence: ([email protected]) Received March 10, 2017: accepted July 7, 2017 ABSTRACT: Polyploidy or whole genome duplication is an important mechanism for acquiring new genes and creating genetic novelty in plants. In the present study, successful induction of autotetraploidy has been achieved through seedling treatment of colchicine in Cosmos sulphureus. Young seedlings were treated with different concentrations of aqueous colchicine (0.15, 0.2%, each for different durations) using the cotton-swab method. Polyploidy was confirmed during meiotic behavior of pollen mother cells. Induced tetraploid was cytogenetically distinguished from diploid by the occurrence of 48 chromosomes at diakinesis/metaphase-I with different combinations of univalent, bivalents, trivalents, and multivalent. In addition, different types of chromosomal anomalies such as laggards, micronuclei etc. were also observed at anaphase/telophase-I. Various cytological features like chromosomal associations (quadrivalents, bivalents and univalents) and chiasmata frequency were recorded at diakinesis/metaphase-I. It is expected that the induced colchiploid, if established, could be used in further cytological and breeding programs. KEYWORDS: Cosmos sulphureus, colchiploid, quadrivalent, capitulum Polyploidy has been a recurrent process during the either in 0.15 or 0.20% aqueous colchicine were placed on evolution of flowering plant that has made a considerable the emerging apical tip between two cotyledonary leaves.
    [Show full text]
  • ASTERACEAE José Ángel Villarreal-Quintanilla* José Luis Villaseñor-Ríos** Rosalinda Medina-Lemos**
    FLORA DEL VALLE DE TEHUACÁN-CUICATLÁN Fascículo 62. ASTERACEAE José Ángel Villarreal-Quintanilla* José Luis Villaseñor-Ríos** Rosalinda Medina-Lemos** *Departamento de Botánica Universidad Autónoma Agraria Antonio Narro **Departamento de Botánica Instituto de Biología, UNAM INSTITUTO DE BIOLOGÍA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO 2008 Primera edición: octubre de 2008 D.R. © Universidad Nacional Autónoma de México Instituto de Biología. Departamento de Botánica ISBN 968-36-3108-8 Flora del Valle de Tehuacán-Cuicatlán ISBN 970-32-5084-4 Fascículo 62 Dirección de los autores: Departamento de Botánica Universidad Autónoma Agraria Antonio Narro Buenavista, Saltillo C.P. 25315 Coahuila, México Universidad Nacional Autónoma de México Instituto de Biología. Departamento de Botánica. 3er. Circuito de Ciudad Universitaria Coyoacán, 04510. México, D.F. 1 En la portada: 2 1. Mitrocereus fulviceps (cardón) 2. Beaucarnea purpusii (soyate) 3 4 3. Agave peacockii (maguey fibroso) 4. Agave stricta (gallinita) Dibujo de Elvia Esparza FLORA DEL VALLE DE TEHUACÁN-CUICATLÁN 62: 1-59. 2008 ASTERACEAE1 Bercht. & J.Presl Tribu Tageteae José Ángel Villarreal-Quintanilla José Luis Villaseñor-Ríos Rosalinda Medina-Lemos Bibliografía. Bremer, K. 1994. Asteraceae. Cladistics & Classification. Timber Press. Portland, Oregon. 752 p. McVaugh, R. 1984. Compositae. In: W.R. Anderson (ed.). Flora Novo-Galiciana. Ann Arbor The University of Michi- gan Press 12: 40-42. Panero, J.L. & V.A. Funk. 2002. Toward a phylogene- tic subfamily classification for the Compositae (Asteraceae). Proc. Biol. Soc. Washington 115: 909-922. Villaseñor Ríos, J.L. 1993. La familia Asteraceae en México. Rev. Soc. Mex. Hist. Nat. 44: 117-124. Villaseñor Ríos, J.L. 2003. Diversidad y distribución de las Magnoliophyta de México.
    [Show full text]
  • Diversidad Y Distribución De La Familia Asteraceae En México
    Taxonomía y florística Diversidad y distribución de la familia Asteraceae en México JOSÉ LUIS VILLASEÑOR Botanical Sciences 96 (2): 332-358, 2018 Resumen Antecedentes: La familia Asteraceae (o Compositae) en México ha llamado la atención de prominentes DOI: 10.17129/botsci.1872 botánicos en las últimas décadas, por lo que cuenta con una larga tradición de investigación de su riqueza Received: florística. Se cuenta, por lo tanto, con un gran acervo bibliográfico que permite hacer una síntesis y actua- October 2nd, 2017 lización de su conocimiento florístico a nivel nacional. Accepted: Pregunta: ¿Cuál es la riqueza actualmente conocida de Asteraceae en México? ¿Cómo se distribuye a lo February 18th, 2018 largo del territorio nacional? ¿Qué géneros o regiones requieren de estudios más detallados para mejorar Associated Editor: el conocimiento de la familia en el país? Guillermo Ibarra-Manríquez Área de estudio: México. Métodos: Se llevó a cabo una exhaustiva revisión de literatura florística y taxonómica, así como la revi- sión de unos 200,000 ejemplares de herbario, depositados en más de 20 herbarios, tanto nacionales como del extranjero. Resultados: México registra 26 tribus, 417 géneros y 3,113 especies de Asteraceae, de las cuales 3,050 son especies nativas y 1,988 (63.9 %) son endémicas del territorio nacional. Los géneros más relevantes, tanto por el número de especies como por su componente endémico, son Ageratina (164 y 135, respecti- vamente), Verbesina (164, 138) y Stevia (116, 95). Los estados con mayor número de especies son Oaxa- ca (1,040), Jalisco (956), Durango (909), Guerrero (855) y Michoacán (837). Los biomas con la mayor riqueza de géneros y especies son el bosque templado (1,906) y el matorral xerófilo (1,254).
    [Show full text]
  • Anatomical Characteristics.Pdf (631.3
    Title Anatomical Characteristics of Comos sulphureus Cav. from Family Asteraceae Author Dr. Ngu Wah Win Issue Date 1 Anatomical Characteristics of Comos sulphureus Cav. from Family Asteraceae Ngu Wah Win Associate Professor Department of Botany University of Mandalay Abstract In this research, morphological and anatomical structures of leaves, stems, and roots of Comos sulphureus Cav. of tribe Heliantheae belonging to the family Asteraceae were studied, photomicrographed and described. This species is annual erect herb, compound leaves and flowers are bisexual head. Anatomical characters of Cosmos sulphureus Cav. are dorsiventral type of leaves, anomocytic type of stomata, and collateral type of vascular bundles were found. The shapes of midrib are found to be oval-shaped, the petioles were oval or heart-shaped, and the stem was tetragonal or polygonal in shape. Key words – Asteraceae, dorsiventral, anomocytic, collateral Introduction In people's lives plants were important and were essential to balance the nature. Plants served the most important part in the cycle of nature. Without plants, there could be no life on earth. Plants were the only organisms and they can make their own food. People and animals were incapable to make their own food and depend directly or indirectly on plants for their supply of food. There were many plants that were edible and that were used by rural people but the main emphasis was on commercial important plants (Wyk 2005). Comos sulphureus Cav. is also known as crest lemon, sunset, cosmic yellow and cosmic orange. It is well known as cosmos in English name (McLeod 2007). Comos sulphureus Cav. is known as dye plant and is cultivated for this purpose.
    [Show full text]
  • Fruits of the Land 120X80
    Fruits of the Land Les Fruits de la Terre Original flavors of St. Martin Saveurs originales de St. Martin The first foods on St. Martin were here Les premiers aliments sur St. Martin étaient long before the first people. Many là bien avant les premiers habitants. De different native fruits were already part of nombreux fruits indigènes faisaient déjà partie the landscape when the first people came. du paysage lorsque les premiers habitants sont Before the first people, these fruits were arrivés. Avant les premiers habitants, ces fruits food for native birds and other animals. étaient un aliment pour les oiseaux indigènes We can thank the birds for eating these et d’autres animaux. Nous pouvons remercier fruits and then spreading the seeds from les oiseaux d’avoir mangé ces fruits et d’avoir island to island. ensuite disséminé les graines d’île en île. Sea Grape (Coccoloba uvifera) and Coco Mark Catesby, 1754 Le Raisinier Bord De Mer (Coccoloba Plum (Chrysobalanus icaco) are often The Coco Plum (Chrysobalanus icaco) is seen here with uvifera) et l’Icaquier (Chrysobalanus icaco) se found near the sea, and still grow wild the White-crowned Pigeon (Patagioenas leucocephala), trouvent souvent près de la mer et poussent near many of our beaches. Guava a Caribbean bird that eats the fruit and spreads the encore à l'état sauvage près de beaucoup de seeds of many native trees. (Psidium guajava) and Guavaberry nos plages. Le Goyavier (Psidium guajava) et le (Myrciaria floribunda) do well in valleys On voit ici l'Icaque (Chrysobalanus icaco) avec le Guavaberry (Myrciaria floribunda) croissent Pigeon à Couronne Blanche (Patagioenas leucocephala), with rich soil and plenty of water.
    [Show full text]
  • IP Athos Renewable Energy Project, Plan of Development, Appendix D.2
    APPENDIX D.2 Plant Survey Memorandum Athos Memo Report To: Aspen Environmental Group From: Lehong Chow, Ironwood Consulting, Inc. Date: April 3, 2019 Re: Athos Supplemental Spring 2019 Botanical Surveys This memo report presents the methods and results for supplemental botanical surveys conducted for the Athos Solar Energy Project in March 2019 and supplements the Biological Resources Technical Report (BRTR; Ironwood 2019) which reported on field surveys conducted in 2018. BACKGROUND Botanical surveys were previously conducted in the spring and fall of 2018 for the entirety of the project site for the Athos Solar Energy Project (Athos). However, due to insufficient rain, many plant species did not germinate for proper identification during 2018 spring surveys. Fall surveys in 2018 were conducted only on a reconnaissance-level due to low levels of rain. Regional winter rainfall from the two nearest weather stations showed rainfall averaging at 0.1 inches during botanical surveys conducted in 2018 (Ironwood, 2019). In addition, gen-tie alignments have changed slightly and alternatives, access roads and spur roads have been added. PURPOSE The purpose of this survey was to survey all new additions and re-survey areas of interest including public lands (limited to portions of the gen-tie segments), parcels supporting native vegetation and habitat, and windblown sandy areas where sensitive plant species may occur. The private land parcels in current or former agricultural use were not surveyed (parcel groups A, B, C, E, and part of G). METHODS Survey Areas: The area surveyed for biological resources included the entirety of gen-tie routes (including alternates), spur roads, access roads on public land, parcels supporting native vegetation (parcel groups D and F), and areas covered by windblown sand where sensitive species may occur (portion of parcel group G).
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2009/0263516 A1 CYR (43) Pub
    US 20090263516A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0263516 A1 CYR (43) Pub. Date: Oct. 22, 2009 (54) PLANT EXTRACT COMPOSITION AND Publication Classification THEIR USE TO MODULATE CELLULAR (51) Int. Cl. ACTIVITY A636/8962 (2006.01) A636/00 (2006.01) (75) Inventor: Benoit CYR, St. Augustin de A6IP35/00 (2006.01) Desmaures (CA) CI2N 5/06 (2006.01) Correspondence Address: A6IR 36/3 (2006.01) SHEPPARD, MULLIN, RICHTER & HAMPTON A 6LX 36/899 (2006.01) LLP (52) U.S. Cl. ......... 424/754; 424/725; 435/375; 424/774; 990 Marsh Road 424/779; 424/755; 424/750; 424/777 Menlo Park, CA 94025 (US) (57) ABSTRACT (73) Assignee: Biopharmacopae Design Extracts from plant material, or semi-purified/purified mol International Inc., Saint-Foy (CA) ecules or compounds prepared from the extracts that demon strate the ability to modulate one or more cellular activities (21) Appl. No.: 12/263,114 are provided. The extracts are capable of slowing down, inhibiting or preventing cell migration, for example, the (22) Filed: Oct. 31, 2008 migration of endothelial cells or neoplastic cells and thus, the use of the extracts to slow down, inhibit or prevent abnormal Related U.S. Application Data cell migration in an animal is also provided. Methods of selecting and preparing the plant extracts and methods of (63) Continuation of application No. 10/526,387, filed on screening the extracts to determine their ability to modulate Oct. 6, 2005, now abandoned, filed as application No. one or more cellular activity are described. The purification or PCT/CA03/01284 on Sep.
    [Show full text]
  • Butterfly Gardening Tips & Tricks Gardening for Butterflies Is Fun, Beautiful, and Good for the Environment
    Butterfly Gardening Tips & Tricks Gardening for butterflies is fun, beautiful, and good for the environment. It is also simple and can be done in almost any location. The key guidelines are listed below: NO PESTICIDES! Caterpillars are highly susceptible to almost all pesticides so keep them away from your yard if you want butterflies to thrive. Select the right plants. You will need to provide nectar sources for adults and host plants for caterpillars. See the lists below for inspiration. Keep to native varieties as much as possible. Plants come in lots and lots of varieties and cultivars. When selecting plants, especially host plants, try to find native species as close to the natural or wild variety as possible. Provide shelter. Caterpillars need shelter from the sun and shelter from cold nights. Adults need places to roost during the night. And protected areas are needed for the chrysalis to safely undergo its transformation. The best way to provide shelter is with large clumps of tall grasses (native or ornamental) and medium to large evergreen trees and/or shrubs. Nectar Sources Top Ten Nectar Sources: Asclepias spp. (milkweed) Aster spp. Buddleia spp. (butterfly bush) Coreopsis spp. Echinacea spp. (coneflower) Eupatorium spp. (joe-pye weed) Lantana spp. Liatris spp. Pentas spp. Rudbeckia spp. (black-eyed susan) Others: Agastache spp. (hyssop), Apocynum spp. (dogbane), Ceanothus americanus (New Jersey tea), Cephalanthus occidentalis (button bush), Clethra alnifolia, Cuphea spp. (heather), Malus spp. (apple), Mentha spp. (mint), Phlox spp., Pycanthemum incanum (mountain mint), Salivs spp. (sage), Sedum spectabile (stonecrop), Stokesia laevis (cornflower), Taraxacum officinale (dandelion), Triofolium spp.
    [Show full text]
  • Larval-Ant Interactions in the Mojave Desert: Communication Brings Us Together
    UNLV Theses, Dissertations, Professional Papers, and Capstones May 2018 Larval-Ant Interactions in the Mojave Desert: Communication Brings Us Together Alicia Mellor Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Environmental Sciences Commons, and the Terrestrial and Aquatic Ecology Commons Repository Citation Mellor, Alicia, "Larval-Ant Interactions in the Mojave Desert: Communication Brings Us Together" (2018). UNLV Theses, Dissertations, Professional Papers, and Capstones. 3291. http://dx.doi.org/10.34917/13568598 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. LARVAL‐ANT INTERACTIONS IN THE MOJAVE DESERT: COMMUNICATION BRINGS US TOGETHER By Alicia M. Mellor Bachelor of Science – Biological Sciences Colorado Mesa University 2013 A thesis submitted in partial fulfillment of the requirements for the Master of Science – Biological Sciences College of Sciences School of Life Sciences The Graduate College University of Nevada, Las Vegas May 2018 Thesis Approval The Graduate College The University of Nevada, Las Vegas April 12, 2018 This thesis prepared by Alicia M.
    [Show full text]