Fatigue Analysis for Extreme Environments Stress-Life Approach Stress-Life Approach Presented by Calvin M

Total Page:16

File Type:pdf, Size:1020Kb

Fatigue Analysis for Extreme Environments Stress-Life Approach Stress-Life Approach Presented by Calvin M Fatigue Analysis For Extreme Environments Stress-Life Approach Stress-Life Approach Presented by Calvin M. Stewart, PhD MECH 5390-6390 Spring 2021 Outline • Fatigue Loading • Stress-Life Approach • Unmodified Endurance Limit • Endurance Limit Modifiers • Mean Stress • Solving Problems Fatigue Loading Fatigue Loading • Components, structures, and vehicles are subjected to quite diverse load histories. • Some load histories may be simple and repetitive. • Others may be completely random. • The randomness may contain substantial portions of more deterministic loading. • For example, the ground-air-ground cycle of an aircraft has substantial similarity from flight to flight. Fatigue Loading Repetitive Randomness Ground-Air-Ground Cycle of AirCraft Fatigue Loading Environmental Effects Offshore Structures Aircraft Fatigue Loading Typical Load Histories From Actual Ground Vehicle Components Fatigue Loading A Typical Load History of Short-Span Bridge Fatigue Loading • These load histories are typical of those found in real-life engineering situations. • Fatigue from variable amplitude is discussed in Chapter 9. • Constant amplitude loading is introduced in this chapter. • Constant amplitude loading is used: • To obtain material fatigue behavior/properties for use in fatigue design, • Some real-life load histories can occasionally be modeled as essentially constant amplitude. Real World Laboratory Fluctuating stress with high Sinusoidal frequency Fluctuating ripples Stress Nonsinusoidal fluctuating stress Pulsating Tension Nonsinusoidal Completely fluctuating Reversed stress (S-N Curve) Shigley’s Mechanical Design Fig. 6–23 Fatigue Loading Shigley’s Mechanical Design Period 1 = f Fatigue Loading Frequency • Def’s: 1 f = – Stress range = r = max − min – Stress amplitude − = max min a 2 –Mean stress + = max min m 2 – Stress ratio, R R = min max – Amplitude ratio, A A = a m Shigley’s Mechanical Design Fatigue Loading R = 0 • Fully Reversed: R = -1; A = ∞ • Zero to Tension: R = 0; A = 1 • Zero to Compression: R = ∞; A = -1 • R w.r.t A 1− A R = -1 R = 1+ A • A w.r.t. R 1− R A = 1+ R Shigley’s Mechanical Design Fatigue Loading • R= -1 and R= 0 are two common reference test conditions used for obtaining fatigue properties. • R= -1 is called the fully reversed condition since Smin= -Smax • R = 0, where Smin = 0, is called pulsating tension. • One cycle is the smallest segment of the stress versus time history which is repeated periodically. • Under variable amplitude loading, the definition of one cycle is not clear and hence reversals of stress are often considered. • In constant amplitude loading, one cycle equals two reversals. Stress-Life Approach Stress-Life Approach: (S-N) • The Stress-Life, S-N, method was the first approach used to understand and quantify metal fatigue. • It was the standard fatigue design method for almost 100 years. • The S-N approach is still widely used in design applications where the applied stress is primarily within the elastic range of the material and the resultant lives (cycles to failure) are long, such as power transmission shaft. • The Stress-Life method does not work well in low-cycle fatigue, where the applied strain have a significant plastic component. • In low-cycle fatigue the Strain-Life method is more appropriate. Stress-Life Approach: Typical Curve Stress-Life Approach • Typical schematic S-N curve obtained under axial load or stress control test conditions with smooth specimens. • Constant amplitude S-N curves of this type are plotted on semi-log or log- log coordinates. • S-N curves obtained under torsion or bending load-control test conditions often do not have data at the shorter fatigue lives (say 10^3 or 10^4 cycles and less) due to significant plastic deformation. • Torsion and bending stress equations τ=T r / J and σ= M y /I can only be used for nominal elastic behavior. Stress-Life Approach: Variability • Typical variability with less variability at shorter lives and greater variability at longer lives. • Variability in life for a given stress level can range from less than a factor of two to more than an order of magnitude. • Variability and statistical aspects of fatigue data are discussed in Ch. 13. Stress-Life Approach: Endurance Limit • Fig. (a) shows a continuous sloping curve, while Fig. (b) shows a discontinuity or “knee” in the S-N curve which indicates an endurance limit. • This endurance limit has been found in only a few materials (i.e. low and medium strength steels) between 10^6 and 10^7 cycles in non-corrosive conditions. • Most materials do not contain the endurance limit even under controlled environments. • Under corrosive environments all S-N data have a continuous sloping curve. • When sufficient data are available, S-N curves are usually drawn through median points and thus represent 50 percent expected failures. S-N Diagram for Steel in Laboratory Air 0 (10 , Sut ) Endurance Limit Shigley’s Mechanical Design S-N Diagram for Steel in Laboratory Air 0 (10 , Sut ) Finite Life Low Cycle Fatigue High Cycle Fatigue (LCF) Endurance Limit Infinite Life Shigley’s Mechanical Design Stress-Life Approach: Definitions • Definitions • Cycles to Failure, Nf – the number of cycles a material (or a component) can resistance fatigue failure connoted by fatigue life • Fatigue Strength, Sf – the value of fully reversed alternating stress, σa that corresponds to a particular number of Nf • Endurance/Fatigue Limit, Se – a stress level below which a material can be said to have infinite life 0 3 • Low Cycle Fatigue (LCF) - when Nf is in the range of 10 to 10 . • High Cycle Fatigue (HCF) - when the number of Cycles to failure, Nf , is in the range of 103 to 106. 6 • Infinite Life - when Nf is equal to or greater than 10 . Stress-Life Approach: FCG • Physically, Fatigue crack growth (FCG) typically consists of crack nucleation, growth, and final fracture. • The Stress-Life Approach measures Total Life and cannot distinguish the individual stages of FCG. • When tracking crack length is important, the LEFM approach should be applied. Stress-Life Approach: Basquin’s Equation • Basquin in 1910 suggest a log-log straight line S-N relationship Basquin Equation B SANff= ( ) Tri-Slope Model A How to Find A & B Constants B AS= u Basquin Model BSS= (1 6) log( eu) Note: the Tri-Slope Model can be used when a distinct bend in observed at the transition point between the LCF and HCF regimes. Shigley’s Mechanical Design Stress-Life Approach • The S-N diagram is applicable for completely reversed stresses (R=-1) only! • We must use Fatigue Failure Criterion to correct for mean stresses! • Assumptions: – High cycle fatigue regime – Strain range is dominated by elastic rather than plastic strain – Peak and valley stresses are constant – Only one component of loading (e.g., axial, torsional, bending) acting at a time – Stress amplitude is plotted against cycles to failure (e.g. S-N diagram) Unmodified Endurance Limit The Endurance Limit, Se • Def: Endurance limit, Se the stress below which a material can be consider to have infinite life. • The material can be subject to an infinite number of cycles without fatigue failure. INFINITE LIFE The Endurance Limit, Se • For a given material the endurance/fatigue limit has an enormous range depending on: • surface finish, • size, • type of loading, • Cyclic rate (frequency), • temperature, • corrosive, and other aggressive environments, • mean stresses, • residual stresses, and • stress concentrations. Unmodified Endurance Limit, S’e • The unmodified Endurance limit, S’e is measured in stress amplitude, σa under completely reverse stress (R=-1) with small highly polished unnotched specimens based on 106 to 5x108 cycles to failure in laboratory air environment. • Can range from essentially 1 to 70 percent of the ultimate tensile strength. • Example of 1 percent of Su is a high strength steel with a sharp notch subjected to a high mean tensile stress in a very corrosive atmosphere. • Example of 70 percent of Su is a medium strength steel in an inert atmosphere containing appreciable compressive residual stresses. Test Specimen • Test specimens are subjected to repeated stress while counting cycles to failure • Most common test machine is R. R. Moore high-speed rotating-beam machine • Subjects specimen to pure bending with no transverse shear • As specimen rotates, stress fluctuates between equal magnitudes of tension and compression, known as completely reversed stress cycling • Specimen is carefully machined and Fig. 6–9 polished Test Machine Demonstration Unmodified Endurance Limit, S’e • In metals, the unmodified Endurance limit, S’e is due to interstitial elements, such as carbon or nitrogen in iron which pin dislocations. • This prevents the slip mechanism that leads to the formation of microcracks. • Care must be taken when using the endurance limit since it can disappear due to 1. Periodic overloads (which unpin dislocations) 2. Corrosive environments (due to fatigue corrosion interaction) 3. High temperature (which mobilize dislocations) The Endurance Limit, Se: Steel Unmodified Endurance Limit, S’e: Nonferrous Alloys • Nonferrous metals often do not have an endurance limit. • Fatigue strength Sf is reported at a specific number of cycles Plot shows typical S-N diagram for aluminums Unmodified Endurance Limit, S’e: Polymers Relationship of Se and Su Steel Wrought & Cast Iron Aluminum Alloys Copper Alloys Estimates for Steel • Steels data clustered near the • For unnotched, highly polished, fatigue ratio Se/Su≈0.5 for the small bending specimen fatigue low- and medium-strength limits for steels are. steels. The data however, SSS0.5 for 1400 MPa (200ksi) actually falls between 0.35 and e u u SSeu700 MPa for 1400 MPa (200ksi) 0.6 for Su <1400MPa. For Su > 1400 MPa, Se does not increase significantly. • The UTS can be approximated using Brinell Hardness Su 3.45 HB for MPa units Su 0.5 HB for ksi units Unmodified Endurance Limit, S’e: Limits Table of Properties • Representative monotonic tensile properties and bending fatigue limits of selected engineering alloys obtained under the above conditions are given in Table A.1.
Recommended publications
  • Chapter 6 Structural Reliability
    MIL-HDBK-17-3E, Working Draft CHAPTER 6 STRUCTURAL RELIABILITY Page 6.1 INTRODUCTION ....................................................................................................................... 2 6.2 FACTORS AFFECTING STRUCTURAL RELIABILITY............................................................. 2 6.2.1 Static strength.................................................................................................................... 2 6.2.2 Environmental effects ........................................................................................................ 3 6.2.3 Fatigue............................................................................................................................... 3 6.2.4 Damage tolerance ............................................................................................................. 4 6.3 RELIABILITY ENGINEERING ................................................................................................... 4 6.4 RELIABILITY DESIGN CONSIDERATIONS ............................................................................. 5 6.5 RELIABILITY ASSESSMENT AND DESIGN............................................................................. 6 6.5.1 Background........................................................................................................................ 6 6.5.2 Deterministic vs. Probabilistic Design Approach ............................................................... 7 6.5.3 Probabilistic Design Methodology.....................................................................................
    [Show full text]
  • Working Load to Break Load: Safety Factors in Composite Yacht Structures
    Working Load to Break Load: Safety Factors in Composite Yacht Structures Dr. M. Hobbs* and Mr. L. McEwen* ABSTRACT The loads imposed on yacht structures fall broadly into two categories: the distributed forces imposed by the action of the wind and waves on the shell of the yacht, and the concentrated loads imposed by the rig and keel to their attachment points on the structure. This paper examines the nature of the latter set of loads and offers a methodology for the structural design based on those loadings. The loads imposed on a rig attachment point vary continuously while the yacht is sailing. Designers frequently quote "working load", "safe working load", "maximum load" or "break load" for a rigging attachment, but the relationship of this value to the varying load is not always clear. A set of nomenclature is presented to describe clearly the different load states from the maximum "steady-state" value, through the "peak, dynamic" value to the eventual break load of the fitting and of the composite structure. Having defined the loads, the structure must be designed to carry them with sufficient stiffness, strength and stability. Inherent in structural engineering is the need for safety factors to account for variations in load, material strength, geometry tolerances and other uncertainties. A rational approach to the inclusion of safety factors to account for these effects is presented. This approach allows the partial safety factors to be modified to suit the choice of material, the nature of the load and the structure and the method of analysis. Where more than one load acts on an area of the structure, combined load cases must be developed that model realistically the worst case scenario.
    [Show full text]
  • Top Performance When the Going Gets Tough
    Top performance when the going gets tough The Alfa Laval DuroShell plate-and-shell heat exchanger Sub-headline coming soon DuroShell – plate-and-shell made tougher Alfa Laval DuroShell is a specially engineered plate-and-shell heat exchanger ideal for demanding duties and corrosive media. Able to withstand fatigue even at high temperatures and pressures, it outperforms not only traditional heat exchangers, but also other plate-and-shells. As flexible as it is strong DuroShell creates new possibilities through its com- pactness, efficiency and exceptional resistance to fatigue. Able to work with liquids, gases and two- phase mixtures, it stands out among heat exchangers in its duty range. DuroShell handles pressures up to 100 barg (1450 psig) in compliance with PED and ASME, and temperatures as high as 450 °C (842 °F). Built for your application DuroShell is fully welded and gasket-free, with internal features that make it still more robust. Plates are avail- able in 316L stainless steel, while the pressure vessel itself can be built in 316L stainless steel or carbon steel. Three different sizes are possible, with heat transfer surfaces ranging 2–235 m2 (21.5–2530 ft 2) in area. DuroShell RollerCoaster Robust and efficient performance. DuroShell PowerPack Optimized flow distribution and fatigue resistance. Learn more at www.alfalaval.com/duroshell Plate-and-shell benefits made better • More uptime and longer life due to • Installation savings through even greater fatigue resistance more compact, lightweight design • Higher operating pressures thanks • Greater reliability as a result of to robust, patented construction closed, fully welded construction • Operational gains created by 15–20 % higher thermal efficiency How it works Revolutionary technology Optimized flow DuroShell is a plate-and-shell heat exchanger, but one DuroShell operates with one media on the plate side with a unique internal design.
    [Show full text]
  • Fatigue Overview Introduction to Fatigue Analysis
    Fatigue overview Introduction to fatigue analysis • Fatigue is the failure of a component after several repetitive load cycles. • As a one-time occurrence, the load is not dangerous in itself. Over time the alternating load is able to break the structure anyway. • It is estimated that between 50 and 90 % of product failures is caused by fatigue, and based on this fact, fatigue evaluation should be a part of all product development. What is fatigue? In materials science, fatigue is the progressive and localized structural damage that occurs when a material is subjected to cyclic loading (material is stressed repeatedly). Clients tous différents Routes de qualités variables Contraintes Fatigue Design in Automotive Industry Conception fiable PSA (Peugeot Citroën) Résistances 3s 3s Dispersion matériau Dispersion de production Fatigue • Fracture mechanics can be divided into three stages: 1. Crack nucleation 2. Crack-growth 3. Ultimate ductile failure Introduction to fatigue analysis • Fatigue is the failure of a component after several repetitive load cycles. • As a one-time occurrence, the load is not dangerous in itself. Over time the alternating load is able to break the structure anyway. • It is estimated that between 50 and 90 % of product failures is caused by fatigue, and based on this fact, fatigue evaluation should be a part of all product development. Historical background • In comparison to the classical stress analysis, fatigue theory is a relative new phenomenon. The need to understand fatigue arose after the industrial revolution introduced steel structures. Three areas were particularly involved in early failures: Railway trains, Mining equipment and Bridges. Historical background • 1837: Wilhelm Albert publishes the first article on fatigue.
    [Show full text]
  • Corrosion Fatigue of Austenitic Stainless Steels for Nuclear Power Engineering
    metals Article Corrosion Fatigue of Austenitic Stainless Steels for Nuclear Power Engineering Irena Vlˇcková 1,*, Petr Jonšta 2, ZdenˇekJonšta 2, Petra Vá ˇnová 2 and Tat’ána Kulová 2 1 RMTSC, Material & Metallurgical Research Ltd., Remote Site Ostrava, VÚHŽ a.s., Dobrá 739 51, Czech Republic 2 Department of Materials Engineering, VŠB-Technical University of Ostrava, Ostrava 708 33, Czech Republic; [email protected] (P.J.); [email protected] (Z.J.); [email protected] (P.V.); [email protected] (T.K.) * Correspondence: [email protected]; Tel.: +420-558601257 Academic Editor: Hugo F. Lopez Received: 21 September 2016; Accepted: 8 December 2016; Published: 16 December 2016 Abstract: Significant structural steels for nuclear power engineering are chromium-nickel austenitic stainless steels. The presented paper evaluates the kinetics of the fatigue crack growth of AISI 304L and AISI 316L stainless steels in air and in corrosive environments of 3.5% aqueous NaCl solution after the application of solution annealing, stabilizing annealing, and sensitization annealing. Comparisons were made between the fatigue crack growth rate after each heat treatment regime, and a comparison between the fatigue crack growth rate in both types of steels was made. For individual heat treatment regimes, the possibility of the development of intergranular corrosion was also considered. Evaluations resulted in very favourable corrosion fatigue characteristics of the 316L steel. After application of solution and stabilizing annealing at a comparable DK level, the fatigue crack growth rate was about one half compared to 304L steel. After sensitization annealing of 316L steel, compared to stabilizing annealing, the increase of crack growth rate during corrosion fatigue was slightly higher.
    [Show full text]
  • Design for Cyclic Loading, Soderberg, Goodman and Modified Goodman's Equation
    Design for Cyclic Loading 1. Completely reversing cyclic stress and endurance strength A purely reversing or cyclic stress means when the stress alternates between equal positive and Pure cyclic stress negative peak stresses sinusoidally during each 300 cycle of operation, as shown. In this diagram the stress varies with time between +250 MPa 200 to -250MPa. This kind of cyclic stress is 100 developed in many rotating machine parts that 0 are carrying a constant bending load. -100 When a part is subjected cyclic stress, Stress (MPa) also known as range or reversing stress (Sr), it -200 has been observed that the failure of the part -300 occurs after a number of stress reversals (N) time even it the magnitude of Sr is below the material’s yield strength. Generally, higher the value of Sr, lesser N is needed for failure. No. of Cyclic stress stress (Sr) reversals for failure (N) psi 1000 81000 2000 75465 4000 70307 8000 65501 16000 61024 32000 56853 64000 52967 96000 50818 144000 48757 216000 46779 324000 44881 486000 43060 729000 41313 1000000 40000 For a typical material, the table and the graph above (S-N curve) show the relationship between the magnitudes Sr and the number of stress reversals (N) before failure of the part. For example, if the part were subjected to Sr= 81,000 psi, then it would fail after N=1000 stress reversals. If the same part is subjected to Sr = 61,024 psi, then it can survive up to N=16,000 reversals, and so on. Sengupta MET 301: Design for Cyclic Loading 1 of 7 It has been observed that for most of engineering materials, the rate of reduction of Sr becomes negligible near the vicinity of N = 106 and the slope of the S-N curve becomes more or less horizontal.
    [Show full text]
  • 8 Safety Factors and Exposure Limits
    8 Safety Factors and Exposure Limits Sven Ove Hansson 8.1 Numerical Decision Tools Numerical decision tools are abundantly employed in safety engineering. Two of the most commonly used tools are safety factors and exposure limits. A safety factor is the ratio of the maximal burden on a system not believed to cause damage to the highest allowed burden. An exposure limit is the highest allowed level of some potentially damaging exposure. 8.2 Safety Factors Humans have made use of safety reserves since prehistoric times. Builders and tool-makers have added extra strength to their constructions to be on the safe side. Nevertheless, the explicit use of safety factors in calculations seems to be of much later origin, probably the latter half of the nineteenth century. In the 1860s, the German railroad engineer A. Wohler recommended a factor of 2 for tension. In the early 1880s, the term “factor of safety” was in use, hence Rankine’s A Manual of Civil Engineering defined it as the ratio of the breaking load to the working load, and recommended different factors of safety for different materials (Randall, 1976). In structural engineering, the use of safety factors is now well established, and design criteria employing safety factors can be found in many engineering norms and standards. Most commonly, a safety factor is defined as the ratio of a measure of the maximum load not inducing failure to a corresponding measure of the load that is actually applied. In order to cover all the major integrity-threatening mechanisms that can occur, several safety factors may be needed.
    [Show full text]
  • Very High Cycle Fatigue of Engineering Materials
    Faculty of Technology and Science Materials Engineering Vitaliy Kazymyrovych Very high cycle fatigue of engineering materials (A literature review) Karlstad University Studies 2009:22 Vitaliy Kazymyrovych Very high cycle fatigue of engineering materials (A literature review) Karlstad University Studies 2009:22 Vitaliy Kazymyrovych. Very high cycle fatigue of engineering materials - A literature review Research Report Karlstad University Studies 2009:22 ISSN 1403-8099 ISBN 978-91-7063-246-4 © The Author Distribution: Faculty of Technology and Science Materials Engineering SE-651 88 Karlstad +46 54 700 10 00 www.kau.se Printed at: Universitetstryckeriet, Karlstad 2009 Very high cycle fatigue of engineering materials (A literature review) V.Kazymyrovych* Department of Materials Engineering, Karlstad University SE-651 88, Sweden * Email address: [email protected] Abstract This paper examines the development and present status of the Very High Cycle Fatigue (VHCF) phenomenon in engineering materials. The concept of ultrasonic fatigue testing is described in light of its historical appearance covering the main principles and equipment variations. The VHCF behaviour of the most important materials used for very long life applications is presented, with particular attention paid to steels. In section 3 the VHCF properties of titanium-, nickel-, aluminium- and magnesium alloys are described. Furthermore, the typical fatigue behaviour and mechanisms of pure metals are presented. Section 4 examines the VHCF properties of various types of steels e.g. low carbon steel, spring steel, stainless steel, bearing steel as well as tool steel. In addition to this, the main material defects that initiate VHCF failure are examined in this study. Furthermore, the different stages characteristic for fatigue crack development in VHCF are described in section 5 in terms of relative importance and sequence.
    [Show full text]
  • Creep-Fatigue Failure Diagnosis
    Review Creep-Fatigue Failure Diagnosis Stuart Holdsworth Received: 22 October 2015 ; Accepted: 6 November 2015 ; Published: 16 November 2015 Academic Editor: Robert Lancaster EMPA: Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129, Dübendorf CH-8600, Switzerland; [email protected]; Tel.: +41-58-765-47-32 Abstract: Failure diagnosis invariably involves consideration of both associated material condition and the results of a mechanical analysis of prior operating history. This Review focuses on these aspects with particular reference to creep-fatigue failure diagnosis. Creep-fatigue cracking can be due to a spectrum of loading conditions ranging from pure cyclic to mainly steady loading with infrequent off-load transients. These require a range of mechanical analysis approaches, a number of which are reviewed. The microstructural information revealing material condition can vary with alloy class. In practice, the detail of the consequent cracking mechanism(s) can be camouflaged by oxidation at high temperatures, although the presence of oxide on fracture surfaces can be used to date events leading to failure. Routine laboratory specimen post-test examination is strongly recommended to characterise the detail of deformation and damage accumulation under known and well-controlled loading conditions to improve the effectiveness and efficiency of failure diagnosis. Keywords: failure diagnosis; creep-fatigue; material condition; mechanical analysis 1. Introduction The diagnosis of failures invariably involves consideration of both the associated material condition and the results of a mechanical analysis of prior operating history. Material condition refers not only to a knowledge of the chemical composition and mechanical properties relative to those originally specified for the failed component, but also the appearance and extent of microstructural and physical damage responsible for failure.
    [Show full text]
  • Safe Design of Shipping Packages Against Brittle Fracture
    IAEA-TECDOC-717 Guidelines lor safe design of shipping packages against brittle fracture August 1993 FOREWORD ininte n th 1992h . meetin e Standinth f go g Advisory e GrouSafth en pTransporo f o t Radioactive Materials recommende publicatioe dth f thino s TECDO efforn a Cn promoto i t t e the widest debat criterie brittle th th r n eeo a fo fracture safe desig f transporno t packagese Th . published I AHA advice on the influence of brittle fracture on material integrity is contained in Appendix IX of the Advisory Material for the IAEA Regulations for the Safe Transport of Radioactive Material (1985 Edition, as amended 1990). Safety Series No. 37. This guidance is limited in scope, dealing only with ferritic steels in general terms. It is becoming more common for designers to specify materials other than austenitic stainless steel for packaging components date ferritin Th ao . c steels canno assumee b t applo dt otheo yt r metals, hence the need for further guidance on the development of relationships describing material properties at low temperatures. methode Th s describe thin di s TECDOC wil consideree b l Revisioe th y db n Paner fo l inclusio e 1996th n ni Editio IAEe th f Ano Regulation Safe th er Transporsfo f Radioactivo t e Materiasupportine th d an l g documents f accepteI .Revisioe th y db n Panel, this advice will candidata e b upgradinr efo Safeta o gt y Practice interie th n I m. period, this TECDOC offers provisional advice on brittle fracture evaluation.
    [Show full text]
  • Creep, Fatigue and Creep-Fatigue Interactions in Modified 9% Cr - 1% Mo (P91) Steels" (2013)
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2013 Creep, Fatigue and Creep-Fatigue Interactions in Modified 9% rC - 1% Mo (P91) Steels Valliappa Kalyanasundaram University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Mechanics of Materials Commons, Structural Engineering Commons, and the Structural Materials Commons Recommended Citation Kalyanasundaram, Valliappa, "Creep, Fatigue and Creep-Fatigue Interactions in Modified 9% Cr - 1% Mo (P91) Steels" (2013). Theses and Dissertations. 692. http://scholarworks.uark.edu/etd/692 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. CREEP, FATIGUE AND CREEP-FATIGUE INTERACTIONS IN MODIFIED 9% Cr – 1% Mo (P91) STEELS CREEP, FATIGUE AND CREEP-FATIGUE INTERACTIONS IN MODIFIED 9% Cr – 1% Mo (P91) STEELS A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mechanical Engineering By Valliappa Kalyanasundaram Madurai Kamaraj University Bachelor of Engineering in Mechanical Engineering, 2004 University of Arkansas Master of Science in Mechanical Engineering, 2008 May 2013 University of Arkansas ABSTRACT Grade P91 steel, from the class of advanced high-chrome ferritic steels, is one of the preferred materials for many elevated temperature structural components. Creep-fatigue (C-F) interactions, along with oxidation, can accelerate the kinetics of damage accumulation and consequently reduce such components’ life. Hence, reliable C-F test data is required for meticulous consideration of C-F interactions and oxidation, which in turn is vital for sound design practices.
    [Show full text]
  • Specification for the Design, Testing, and Utilization of Industrial Steel Storage Racks - 1997 Edition Published by Rack Manufacturers Institute
    Missouri University of Science and Technology Scholars' Mine Wei-Wen Yu Center for Cold-Formed Steel Rack Manufacturers Institute Structures 01 Nov 1999 Specification for the Design, esting,T and Utilization of Industrial Steel Storage Racks Rack Manufacturers Institute Follow this and additional works at: https://scholarsmine.mst.edu/ccfss-rmi Part of the Structural Engineering Commons Recommended Citation Rack Manufacturers Institute, "Specification for the Design, esting,T and Utilization of Industrial Steel Storage Racks" (1999). Rack Manufacturers Institute. 1. https://scholarsmine.mst.edu/ccfss-rmi/1 This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Rack Manufacturers Institute by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. Specification for the Design, Testing, and Utilization of Industrial Steel Storage Racks - 1997 Edition Published By Rack Manufacturers Institute Specification for the Design, Testing and Utilization of Industrial Steel Storage Racks The Alliance of Material Handling Equipment, Systems, and Service Providers © 1997 Rack Manufacturers Institute PREFACE RACK MANUFACTURERS INSTITUTE The Rack Manufacturers Institute (RMI) is an independent incorporated trade association affiliated with the Material Handling Industry. The membership of RMI is made up of companies which produce the preponderance of industrial storage racks. MATERIAL HANDLING INDUSTRY Material Handling Industry (Industry) provides RMI with certain services and, in connection with this Specification, arranges for its production and distribution. Neither Material Handling Industry, its officers, directors, nor employees have any other participation in the development and preparation of the information contained in the Specification.
    [Show full text]