Storm-time equatorial magnetospheric ion temperature derived from TWINS ENA flux R. M. Katus1,2,3, A. M. Keesee2, E. Scime2, M. W. and Liemohn3 1. Department of Mathematics, Eastern Michigan University, Ypsilanti, MI, USA 2. Department of Physics and Astronomy, West Virginia University, Morgantown, WVU, USA 3. Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, USA Submitted to: Journal of Geophysical Research Corresponding author email:
[email protected] AGU index terms: 2788 Magnetic storms and substorms (4305, 7954) 4305 Space weather (2101, 2788, 7900) 4318 Statistical analysis (1984, 1986) 7954 Magnetic storms (2788) 2467 Plasma temperature and density Keywords: Magnetosphere, Geomagnetic Storms, Ion Temperature, Plasma Sheet, Space Weather Key points: • We derive and statistically examine storm-time equatorial magnetospheric ion temperatures from TWINS ENA flux This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/2016JA023824 This article is protected by copyright. All rights reserved. • The TWINS ion temperature data is validated using Geotail and LANL ion temperature data • For moderate to intense storms the widest (in MLT) peak in nightside ion temperature is found to exist near 12 RE This article is protected by copyright. All rights reserved. Abstract The plasma sheet plays an integral role in the transport of energy from the magnetotail to the ring current. We present a comprehensive study of the of equatorial magnetospheric ion temperatures derived from Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) Energetic Neutral Atom (ENA) measurements during moderate to intense (Dstpeak < -60 nT) storm times between 2009 and 2015.