Experimental Ecology of Food Webs: Complex Systems in Temporary Ponds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Water Beetles
Ireland Red List No. 1 Water beetles Ireland Red List No. 1: Water beetles G.N. Foster1, B.H. Nelson2 & Á. O Connor3 1 3 Eglinton Terrace, Ayr KA7 1JJ 2 Department of Natural Sciences, National Museums Northern Ireland 3 National Parks & Wildlife Service, Department of Environment, Heritage & Local Government Citation: Foster, G. N., Nelson, B. H. & O Connor, Á. (2009) Ireland Red List No. 1 – Water beetles. National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin, Ireland. Cover images from top: Dryops similaris (© Roy Anderson); Gyrinus urinator, Hygrotus decoratus, Berosus signaticollis & Platambus maculatus (all © Jonty Denton) Ireland Red List Series Editors: N. Kingston & F. Marnell © National Parks and Wildlife Service 2009 ISSN 2009‐2016 Red list of Irish Water beetles 2009 ____________________________ CONTENTS ACKNOWLEDGEMENTS .................................................................................................................................... 1 EXECUTIVE SUMMARY...................................................................................................................................... 2 INTRODUCTION................................................................................................................................................ 3 NOMENCLATURE AND THE IRISH CHECKLIST................................................................................................ 3 COVERAGE ....................................................................................................................................................... -
Predators As Agents of Selection and Diversification
diversity Review Predators as Agents of Selection and Diversification Jerald B. Johnson * and Mark C. Belk Evolutionary Ecology Laboratories, Department of Biology, Brigham Young University, Provo, UT 84602, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-801-422-4502 Received: 6 October 2020; Accepted: 29 October 2020; Published: 31 October 2020 Abstract: Predation is ubiquitous in nature and can be an important component of both ecological and evolutionary interactions. One of the most striking features of predators is how often they cause evolutionary diversification in natural systems. Here, we review several ways that this can occur, exploring empirical evidence and suggesting promising areas for future work. We also introduce several papers recently accepted in Diversity that demonstrate just how important and varied predation can be as an agent of natural selection. We conclude that there is still much to be done in this field, especially in areas where multiple predator species prey upon common prey, in certain taxonomic groups where we still know very little, and in an overall effort to actually quantify mortality rates and the strength of natural selection in the wild. Keywords: adaptation; mortality rates; natural selection; predation; prey 1. Introduction In the history of life, a key evolutionary innovation was the ability of some organisms to acquire energy and nutrients by killing and consuming other organisms [1–3]. This phenomenon of predation has evolved independently, multiple times across all known major lineages of life, both extinct and extant [1,2,4]. Quite simply, predators are ubiquitous agents of natural selection. Not surprisingly, prey species have evolved a variety of traits to avoid predation, including traits to avoid detection [4–6], to escape from predators [4,7], to withstand harm from attack [4], to deter predators [4,8], and to confuse or deceive predators [4,8]. -
Effects of Human Disturbance on Terrestrial Apex Predators
diversity Review Effects of Human Disturbance on Terrestrial Apex Predators Andrés Ordiz 1,2,* , Malin Aronsson 1,3, Jens Persson 1 , Ole-Gunnar Støen 4, Jon E. Swenson 2 and Jonas Kindberg 4,5 1 Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, SE-730 91 Riddarhyttan, Sweden; [email protected] (M.A.); [email protected] (J.P.) 2 Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Postbox 5003, NO-1432 Ås, Norway; [email protected] 3 Department of Zoology, Stockholm University, SE-10691 Stockholm, Sweden 4 Norwegian Institute for Nature Research, NO-7485 Trondheim, Norway; [email protected] (O.-G.S.); [email protected] (J.K.) 5 Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden * Correspondence: [email protected] Abstract: The effects of human disturbance spread over virtually all ecosystems and ecological communities on Earth. In this review, we focus on the effects of human disturbance on terrestrial apex predators. We summarize their ecological role in nature and how they respond to different sources of human disturbance. Apex predators control their prey and smaller predators numerically and via behavioral changes to avoid predation risk, which in turn can affect lower trophic levels. Crucially, reducing population numbers and triggering behavioral responses are also the effects that human disturbance causes to apex predators, which may in turn influence their ecological role. Some populations continue to be at the brink of extinction, but others are partially recovering former ranges, via natural recolonization and through reintroductions. -
Hundreds of Species of Aquatic Macroinvertebrates Live in Illinois In
Illinois A B aquatic sowbug Asellus sp. Photograph © Paul P.Tinerella AAqquuaattiicc mayfly A. adult Hexagenia sp.; B. nymph Isonychia sp. MMaaccrrooiinnvveerrtteebbrraatteess Photographs © Michael R. Jeffords northern clearwater crayfish Orconectes propinquus Photograph © Michael R. Jeffords ruby spot damselfly Hetaerina americana Photograph © Michael R. Jeffords aquatic snail Pleurocera acutum Photograph © Jochen Gerber,The Field Museum of Natural History predaceous diving beetle Dytiscus circumcinctus Photograph © Paul P.Tinerella monkeyface mussel Quadrula metanevra common skimmer dragonfly - nymph Libellula sp. Photograph © Kevin S. Cummings Photograph © Paul P.Tinerella water scavenger beetle Hydrochara sp. Photograph © Steve J.Taylor devil crayfish Cambarus diogenes A B Photograph © ChristopherTaylor dobsonfly Corydalus sp. A. larva; B. adult Photographs © Michael R. Jeffords common darner dragonfly - nymph Aeshna sp. Photograph © Paul P.Tinerella giant water bug Belostoma lutarium Photograph © Paul P.Tinerella aquatic worm Slavina appendiculata Photograph © Mark J. Wetzel water boatman Trichocorixa calva Photograph © Paul P.Tinerella aquatic mite Order Prostigmata Photograph © Michael R. Jeffords backswimmer Notonecta irrorata Photograph © Paul P.Tinerella leech - adult and young Class Hirudinea pygmy backswimmer Neoplea striola mosquito - larva Toxorhynchites sp. fishing spider Dolomedes sp. Photograph © William N. Roston Photograph © Paul P.Tinerella Photograph © Michael R. Jeffords Photograph © Paul P.Tinerella Species List Species are not shown in proportion to actual size. undreds of species of aquatic macroinvertebrates live in Illinois in a Kingdom Animalia Hvariety of habitats. Some of the habitats have flowing water while Phylum Annelida Class Clitellata Family Naididae aquatic worm Slavina appendiculata This poster was made possible by: others contain still water. In order to survive in water, these organisms Class Hirudinea leech must be able to breathe, find food, protect themselves, move and reproduce. -
Meramec River Watershed Demonstration Project
MERAMEC RIVER WATERSHED DEMONSTRATION PROJECT Funded by: U.S. Environmental Protection Agency prepared by: Todd J. Blanc Fisheries Biologist Missouri Department of Conservation Sullivan, Missouri and Mark Caldwell and Michelle Hawks Fisheries GIS Specialist and GIS Analyst Missouri Department of Conservation Columbia, Missouri November 1998 Contributors include: Andrew Austin, Ronald Burke, George Kromrey, Kevin Meneau, Michael Smith, John Stanovick, Richard Wehnes Reviewers and other contributors include: Sue Bruenderman, Kenda Flores, Marlyn Miller, Robert Pulliam, Lynn Schrader, William Turner, Kevin Richards, Matt Winston For additional information contact East Central Regional Fisheries Staff P.O. Box 248 Sullivan, MO 63080 EXECUTIVE SUMMARY Project Overview The overall purpose of the Meramec River Watershed Demonstration Project is to bring together relevant information about the Meramec River basin and evaluate the status of the stream, watershed, and wetland resource base. The project has three primary objectives, which have been met. The objectives are: 1) Prepare an inventory of the Meramec River basin to provide background information about past and present conditions. 2) Facilitate the reduction of riparian wetland losses through identification of priority areas for protection and management. 3) Identify potential partners and programs to assist citizens in selecting approaches to the management of the Meramec River system. These objectives are dealt with in the following sections titled Inventory, Geographic Information Systems (GIS) Analyses, and Action Plan. Inventory The Meramec River basin is located in east central Missouri in Crawford, Dent, Franklin, Iron, Jefferson, Phelps, Reynolds, St. Louis, Texas, and Washington counties. Found in the northeast corner of the Ozark Highlands, the Meramec River and its tributaries drain 2,149 square miles. -
NOTES on WATER BUGS from SOUTH EAST ASIA and AUSTRALIA (Heteroptera: Nepomorpha & Gerromorpha)
F. M. BUZZETTI, N. NIESER & J. DAMGAARD: Notes on water bugs ... 31 FILIPPO MARIA BUZZETTI, NICO NIESER & JAKOB DAMGAARD NOTES ON WATER BUGS FROM SOUTH EAST ASIA AND AUSTRALIA (Heteroptera: Nepomorpha & Gerromorpha) ABSTRACT - BUZZETTI F.M., NIESER N. & DAMGAARD J., 2006 - Notes on water bugs from South East Asia and Australia (Heteroptera: Nepomorpha & Gerromorpha). Atti Acc. Rov. Agiati, a. 256, 2006, ser. VIII, vol. VI, B: 31-45. Faunistical data on some Nepomorpha and Gerromorpha from South East Asia and Australia are given. Hydrometra greeni Kirk., Limnogonus (Limnogonoides) pecto- ralis Mayr and Halobates sp. are reported as new records for Myanmar. KEY WORDS - Faunistics. RIASSUNTO - BUZZETTI F.M., NIESER N. & DAMGAARD J., 2006 - Su alcuni Emitteri acquatici del Sud Est Asiatico e dellAustralia (Heteroptera: Nepomorpha & Gerro- morpha). Si riportano alcuni dati faunistici relativi a Nepomorfi e Gerromorfi dal Sud Est Asiatico e dallAustralia. Hydrometra greeni Kirk., Limnogonus (Limnogonoides) pecto- ralis Mayr e Halobates sp. sono per la prima volta citati per il Myanmar. PAROLE CHIAVE - Faunistica. INTRODUCTION In this publication the Nepomorpha and Gerromorpha from South East Asia and Australia presently in the F. M. B. private collection are reported. Some specimens transferred to the Nieser collection are indi- cated NCTN. Other data from the collection of the Zoological Muse- um of Copenhagen University are indicated as ZMUC. Some synony- my is abbraviated but can be found in the publications cited under the various species. When given, measurements are in mm. The collecting localities from Myanmar are shown in Map 1. 32 Atti Acc. Rov. Agiati, a. 256, 2006, ser. -
A Review of Planktivorous Fishes: Their Evolution, Feeding Behaviours, Selectivities, and Impacts
Hydrobiologia 146: 97-167 (1987) 97 0 Dr W. Junk Publishers, Dordrecht - Printed in the Netherlands A review of planktivorous fishes: Their evolution, feeding behaviours, selectivities, and impacts I Xavier Lazzaro ORSTOM (Institut Français de Recherche Scientifique pour le Développement eri Coopération), 213, rue Lu Fayette, 75480 Paris Cedex IO, France Present address: Laboratorio de Limrzologia, Centro de Recursos Hidricob e Ecologia Aplicada, Departamento de Hidraulica e Sarzeamento, Universidade de São Paulo, AV,DI: Carlos Botelho, 1465, São Carlos, Sï? 13560, Brazil t’ Mail address: CI? 337, São Carlos, SI? 13560, Brazil Keywords: planktivorous fish, feeding behaviours, feeding selectivities, electivity indices, fish-plankton interactions, predator-prey models Mots clés: poissons planctophages, comportements alimentaires, sélectivités alimentaires, indices d’électivité, interactions poissons-pltpcton, modèles prédateurs-proies I Résumé La vision classique des limnologistes fut de considérer les interactions cntre les composants des écosystè- mes lacustres comme un flux d’influence unidirectionnel des sels nutritifs vers le phytoplancton, le zoo- plancton, et finalement les poissons, par l’intermédiaire de processus de contrôle successivement physiqucs, chimiques, puis biologiques (StraSkraba, 1967). L‘effet exercé par les poissons plaiictophages sur les commu- nautés zoo- et phytoplanctoniques ne fut reconnu qu’à partir des travaux de HrbáEek et al. (1961), HrbAEek (1962), Brooks & Dodson (1965), et StraSkraba (1965). Ces auteurs montrèrent (1) que dans les étangs et lacs en présence de poissons planctophages prédateurs visuels. les conimuiiautés‘zooplanctoniques étaient com- posées d’espèces de plus petites tailles que celles présentes dans les milieux dépourvus de planctophages et, (2) que les communautés zooplanctoniques résultantes, composées d’espèces de petites tailles, influençaient les communautés phytoplanctoniques. -
Giant Water Bugs (Hemiptera: Heteroptera: Belostomatidae) of Israel
ISRAEL JOURNAL OF ENTOMOLOGY, Vol. 48 (1), pp. 119–141 (30 December 2018) A review of the giant water bugs (Hemiptera: Heteroptera: Nepomorpha: Belostomatidae) of Israel TANYA NOVOSELSKY 1, PING -P ING CHEN 2 & NI C O NIESER 2 1The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv University, Tel Aviv 69978, Israel. E-mail: [email protected] 2Naturalis Biodiversity Centre, P.O. Box 9517, 2300 RA Leiden, The Netherlands. E-mail: [email protected], [email protected] ABSTRACT An updated and annotated check-list of Israeli giant water bugs (Belostomatidae) is provided. The recorded species belong in the subfamilies Belostomatinae and Lethocerinae. The following six species occur in the country: Appasus urinator urinator, Limnogeton fieberi, Lethocerus patruelis, Lethocerus cordofanus (new record), Hydrocyrius colombiae colombiae (new record) and Belostoma bifo ve olatum (new record). Belostoma bifoveolatum was previously known only from South America, so it is recorded in the Old World for the first time. An illustrated identification key is compiled for the Israeli Belostomatidae species. A list of exotic Belostomatidae material accumulated in the collection of the Steinhardt Museum of Natural History is provided. KEYWORDS: Hemiptera, Heteroptera, Nepomorpha, Belostomatidae, aquatic in sects, giant water bugs, identification key, male genitalia, Middle East, ta xonomy. INTRODUCTION The Belostomatidae is a family of aquatic heteropterans of almost world-wide distribution, although its greatest diversity is observed in the tropics (Merritt & Cummins 1996; Schuh & Slater 1995). The family includes the largest—up to 120 mm long—representatives of Heteroptera, which are known as the giant water bugs or electric-light bugs, because they are attracted to light sources at night (Ri- beiro et al. -
Can More K-Selected Species Be Better Invaders?
Diversity and Distributions, (Diversity Distrib.) (2007) 13, 535–543 Blackwell Publishing Ltd BIODIVERSITY Can more K-selected species be better RESEARCH invaders? A case study of fruit flies in La Réunion Pierre-François Duyck1*, Patrice David2 and Serge Quilici1 1UMR 53 Ӷ Peuplements Végétaux et ABSTRACT Bio-agresseurs en Milieu Tropical ӷ CIRAD Invasive species are often said to be r-selected. However, invaders must sometimes Pôle de Protection des Plantes (3P), 7 chemin de l’IRAT, 97410 St Pierre, La Réunion, France, compete with related resident species. In this case invaders should present combina- 2UMR 5175, CNRS Centre d’Ecologie tions of life-history traits that give them higher competitive ability than residents, Fonctionnelle et Evolutive (CEFE), 1919 route de even at the expense of lower colonization ability. We test this prediction by compar- Mende, 34293 Montpellier Cedex, France ing life-history traits among four fruit fly species, one endemic and three successive invaders, in La Réunion Island. Recent invaders tend to produce fewer, but larger, juveniles, delay the onset but increase the duration of reproduction, survive longer, and senesce more slowly than earlier ones. These traits are associated with higher ranks in a competitive hierarchy established in a previous study. However, the endemic species, now nearly extinct in the island, is inferior to the other three with respect to both competition and colonization traits, violating the trade-off assumption. Our results overall suggest that the key traits for invasion in this system were those that *Correspondence: Pierre-François Duyck, favoured competition rather than colonization. CIRAD 3P, 7, chemin de l’IRAT, 97410, Keywords St Pierre, La Réunion Island, France. -
Herbivore Physiological Response to Predation Risk and Implications for Ecosystem Nutrient Dynamics
Herbivore physiological response to predation risk and implications for ecosystem nutrient dynamics Dror Hawlena and Oswald J. Schmitz1 School of Forestry and Environmental Studies, Yale University, New Haven, CT 06511 Communicated by Thomas W. Schoener, University of California, Davis, CA, June 29, 2010 (received for review January 4, 2010) The process of nutrient transfer throughan ecosystem is an important lower the quantity of energy that can be allocated to production determinant of production, food-chain length, and species diversity. (20–23). Consequently, stress-induced constraints on herbivore The general view is that the rate and efficiency of nutrient transfer up production should lower the demand for N-rich proteins (24). the food chain is constrained by herbivore-specific capacity to secure Herbivores also have low capacity to store excess nutrients (24), N-rich compounds for survival and production. Using feeding trials and hence should seek plants with high digestible carbohydrate with artificial food, we show, however, that physiological stress- content to minimize the costs of ingesting and excreting excess N. response of grasshopper herbivores to spider predation risk alters the Such stress-induced shift in nutrient demand may be especially nature of the nutrient constraint. Grasshoppers facing predation risk important in terrestrial systems in which digestible carbohydrate had higher metabolic rates than control grasshoppers. Elevated represents a small fraction of total plant carbohydrate-C, and may metabolism accordingly increased requirements for dietary digestible be limiting even under risk-free conditions (25). Moreover, stress carbohydrate-C to fuel-heightened energy demands. Moreover, di- responses include break down of body proteins to produce glucose gestible carbohydrate-C comprises a small fraction of total plant (i.e., gluconeogenesis) (14), which requires excretion of N-rich tissue-C content, so nutrient transfer between plants and herbivores waste compounds (ammonia or primary amines) (26). -
Factors Affecting the Predator-Prey Relationship Between Predaceous Diving Beetle Larvae
Eastern Illinois University The Keep Masters Theses Student Theses & Publications 1986 Factors Affecting the Predator-Prey Relationship Between Predaceous Diving Beetle Larvae (Dytiscus fasciventris) and Two Anuran Tadpole Species (Bufo americanus and Hyla crucifer) Todd S. Campbell Eastern Illinois University This research is a product of the graduate program in Zoology at Eastern Illinois University. Find out more about the program. Recommended Citation Campbell, Todd S., "Factors Affecting the Predator-Prey Relationship Between Predaceous Diving Beetle Larvae (Dytiscus fasciventris) and Two Anuran Tadpole Species (Bufo americanus and Hyla crucifer)" (1986). Masters Theses. 2728. https://thekeep.eiu.edu/theses/2728 This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact [email protected]. THESIS REPRODUCTION CERTIFICATE TO: Graduate Degree Candidates who have written formal theses. SUBJECT: Permission to reproduce theses. The University Library is rece1vmg a number of requests from other institutions asking permission to reproduce dissertations for inclusion in their library holdings. Although no copyright laws are involved, we feel that professional courtesy demands that permission be obtained from the author before we allow theses to be copied. Please sign one of the following statements: Booth Library of Eastern Illinois University has my permission to lend my thesis to a reputable college or university for the purpose of copying it for inclusion in that instituHon' s library or research holdings. Date Author I respectfully request Booth Library of Eastern Illinois University not allow my thesis be reproduced because ��-�� Date Author m Factors Affecting The Predator-Prey Relationship Between Predaceous Diving Beetle Larvae (Dytiscus fasciventris) And Two Anuran Tadpole Species (Bufo americanus and Hyl a crucifer) . -
Algae and Invertebrates of a Great Basin Desert Hot Lake: a Description of the Borax Lake Ecosystem of Southeastern Oregon
Conference Proceedings. Spring-fed Wetlands: Important Scientific and Cultural Resources of the Intermountain Region, 2002. http://www.wetlands.dri.edu Algae and Invertebrates of a Great Basin Desert Hot Lake: A description of the Borax Lake ecosystem of southeastern Oregon Joseph Furnish Pacific Southwest Region 5, U.S. Department of Agriculture, Forest Service, Vallejo, CA [email protected] James McIver Pacific Northwest Research Station, U.S. Department of Agriculture, Forest Service, LaGrande, OR Mark Teiser Department of Oceanography, Oregon State University, Corvallis, OR Abstract Introduction As part of the recovery plan for the Borax Lake is a geothermally heated endangered chub Gila boraxobius (Cyprinidae), alkaline lake in southeastern Oregon. It a description of algal and invertebrate represents one of the only permanent water populations was undertaken at Borax Lake in sources in the Alvord Desert, which receives 1991 and 1992. Borax Lake, the only known less than 20 cm of rain annually (Green 1978; habitat for G. boraxobius, is a warm, alkaline Cobb et al. 1981). Borax Lake is the only known water body approximately 10 hectares in size habitat for Gila boraxobius, the Borax Lake with an average surface water temperature of chub, a cyprinid fish recognized as a new 30°C. Periphyton algae were surveyed by species in 1980. The chub was listed as scraping substrates and incubating microscope endangered under the Endangered Species Act slides in the water column. Invertebrates were in 1982 because it was believed that geothermal- collected using dip nets, pitfall traps and Ekman energy test-well drilling activities near Borax dredges. The aufwuchs community was Lake might jeopardize its habitat by altering the composed of 23 species and was dominated by flow or temperature of water in the lake.