The EF-Handome: Combining Comparative Genomic Study Using Famdbtool, a New Bioinformatics Tool, and the Network of Expertise of the European Calcium Society
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PARSANA-DISSERTATION-2020.Pdf
DECIPHERING TRANSCRIPTIONAL PATTERNS OF GENE REGULATION: A COMPUTATIONAL APPROACH by Princy Parsana A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland July, 2020 © 2020 Princy Parsana All rights reserved Abstract With rapid advancements in sequencing technology, we now have the ability to sequence the entire human genome, and to quantify expression of tens of thousands of genes from hundreds of individuals. This provides an extraordinary opportunity to learn phenotype relevant genomic patterns that can improve our understanding of molecular and cellular processes underlying a trait. The high dimensional nature of genomic data presents a range of computational and statistical challenges. This dissertation presents a compilation of projects that were driven by the motivation to efficiently capture gene regulatory patterns in the human transcriptome, while addressing statistical and computational challenges that accompany this data. We attempt to address two major difficulties in this domain: a) artifacts and noise in transcriptomic data, andb) limited statistical power. First, we present our work on investigating the effect of artifactual variation in gene expression data and its impact on trans-eQTL discovery. Here we performed an in-depth analysis of diverse pre-recorded covariates and latent confounders to understand their contribution to heterogeneity in gene expression measurements. Next, we discovered 673 trans-eQTLs across 16 human tissues using v6 data from the Genotype Tissue Expression (GTEx) project. Finally, we characterized two trait-associated trans-eQTLs; one in Skeletal Muscle and another in Thyroid. Second, we present a principal component based residualization method to correct gene expression measurements prior to reconstruction of co-expression networks. -
Annexin A2 Flop-Out Mediates the Non-Vesicular Release of Damps/Alarmins from C6 Glioma Cells Induced by Serum-Free Conditions
cells Article Annexin A2 Flop-Out Mediates the Non-Vesicular Release of DAMPs/Alarmins from C6 Glioma Cells Induced by Serum-Free Conditions Hayato Matsunaga 1,2,† , Sebok Kumar Halder 1,3,† and Hiroshi Ueda 1,4,* 1 Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan; [email protected] (H.M.); [email protected] (S.K.H.) 2 Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan 3 San Diego Biomedical Research Institute, San Diego, CA 92121, USA 4 Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan * Correspondence: [email protected]; Tel.: +81-75-753-4536 † These authors contributed equally to this work. Abstract: Prothymosin alpha (ProTα) and S100A13 are released from C6 glioma cells under serum- free conditions via membrane tethering mediated by Ca2+-dependent interactions between S100A13 and p40 synaptotagmin-1 (Syt-1), which is further associated with plasma membrane syntaxin-1 (Stx-1). The present study revealed that S100A13 interacted with annexin A2 (ANXA2) and this interaction was enhanced by Ca2+ and p40 Syt-1. Amlexanox (Amx) inhibited the association between S100A13 and ANXA2 in C6 glioma cells cultured under serum-free conditions in the in situ proximity ligation assay. In the absence of Amx, however, the serum-free stress results in a flop-out of ANXA2 Citation: Matsunaga, H.; Halder, through the membrane, without the extracellular release. The intracellular delivery of anti-ANXA2 S.K.; Ueda, H. Annexin A2 Flop-Out antibody blocked the serum-free stress-induced cellular loss of ProTα, S100A13, and Syt-1. -
RNA Expression Patterns in Serum Microvesicles from Patients With
Noerholm et al. BMC Cancer 2012, 12:22 http://www.biomedcentral.com/1471-2407/12/22 RESEARCHARTICLE Open Access RNA expression patterns in serum microvesicles from patients with glioblastoma multiforme and controls Mikkel Noerholm1,2*, Leonora Balaj1, Tobias Limperg1,3, Afshin Salehi1,4, Lin Dan Zhu1, Fred H Hochberg1, Xandra O Breakefield1, Bob S Carter1,4 and Johan Skog1,2 Abstract Background: RNA from exosomes and other microvesicles contain transcripts of tumour origin. In this study we sought to identify biomarkers of glioblastoma multiforme in microvesicle RNA from serum of affected patients. Methods: Microvesicle RNA from serum from patients with de-novo primary glioblastoma multiforme (N = 9) and normal controls (N = 7) were analyzed by microarray analysis. Samples were collected according to protocols approved by the Institutional Review Board. Differential expressions were validated by qRT-PCR in a separate set of samples (N = 10 in both groups). Results: Expression profiles of microvesicle RNA correctly separated individuals in two groups by unsupervised clustering. The most significant differences pertained to down-regulated genes (121 genes > 2-fold down) in the glioblastoma multiforme patient microvesicle RNA, validated by qRT-PCR on several genes. Overall, yields of microvesicle RNA from patients was higher than from normal controls, but the additional RNA was primarily of size < 500 nt. Gene ontology of the down-regulated genes indicated these are coding for ribosomal proteins and genes related to ribosome production. Conclusions: Serum microvesicle RNA from patients with glioblastoma multiforme has significantly down- regulated levels of RNAs coding for ribosome production, compared to normal healthy controls, but a large overabundance of RNA of unknown origin with size < 500 nt. -
Effect of Human S100A13 Gene Silencing on FGF-1 Transportation in Human Endothelial Cells Renxian Cao,1* Bin Yan,2 Huiling Yang,2 Xuyu Zu,2 Gebo Wen,1* Jing Zhong2
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector J Formos Med Assoc 2010;109(9):632–640 Contents lists available at ScienceDirect Volume 109 Number 9 September 2010 ISSN 0929 6646 Journal of the Journal of the Formosan Medical Association Formosan Medical Association Knockdown of miR-21 as a novel approach for leukemia therapy Fluoroquinolone prophylaxis—an Asian perspective Downregulation of S100A13 blocks FGF-1 release Application of head-up tilt table testing in children Formosan Medical Association Journal homepage: http://www.jfma-online.com Taipei, Taiwan Original Article Effect of Human S100A13 Gene Silencing on FGF-1 Transportation in Human Endothelial Cells Renxian Cao,1* Bin Yan,2 Huiling Yang,2 Xuyu Zu,2 Gebo Wen,1* Jing Zhong2 Background/Purpose: The S100 protein is part of a Ca2+ binding protein superfamily that contains an EF- hand domain, which is involved in the onset and progression of many human diseases, especially the pro- liferation and metastasis of tumors. S100A13, a new member of the S100 protein family, is a requisite component of the fibroblast growth factor-1 (FGF-1) protein release complex, and is involved in human tumorigenesis by interacting with FGF-1 and interleukin-1. In this study, experiments were designed to determine the direct role of S100A13 in FGF-1 protein release and transportation. Methods: We successfully constructed the lentiviral vectors containing shRNA targeting the human S100A13 gene. Human umbilical vein endothelial cells (HUVECs) were transfected with lentiviral RNAi vectors for S100A13. Then immunofluorescence staining, real-time quantitative polymerase chain reac- tion and Western blotting were used to detect the inhibition efficiency of the vectors and to monitor the release and transportation of FGF-1 protein. -
Ectopic Expression of Peripheral-Tissue Antigens in the Thymic Epithelium: Probabilistic, Monoallelic, Misinitiated
Ectopic expression of peripheral-tissue antigens in the thymic epithelium: Probabilistic, monoallelic, misinitiated Jennifer Villasen˜ or, Whitney Besse, Christophe Benoist, and Diane Mathis* Section on Immunology and Immunogenetics, Joslin Diabetes Center, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA 02215 Contributed by Diane Mathis, August 14, 2008 (sent for review July 18, 2008) Thymic medullary epithelial cells (MECs) express a broad repertoire operate by opening large, contiguous regions to the influence of of peripheral-tissue antigens (PTAs), many of which depend on the other positive and negative regulators. transcriptional regulatory factor Aire. Although Aire is known to The precise role of PTAs in the maturation and function of be critically important for shaping a self-tolerant T cell repertoire, MECs remains controversial. Currently, two models vie for its role in MEC maturation and function remains poorly under- acceptance. The ‘‘terminal differentiation’’ model proposes a stood. Using a highly sensitive and reproducible single-cell PCR hierarchy of PTA transcript expression based on the state of assay, we demonstrate that individual Aire-expressing MECs tran- MEC differentiation: as these cells mature from an scribe a subset of PTA genes in a probabilistic fashion, with no signs AireϪCD80loMHC-IIlo (MEClo) stage to the end-stage of preferential coexpression of genes characteristic of particular AireϩCD80hiMHC-IIhi (MEChi), they would transcribe more extrathymic epithelial cell lineages. In addition, Aire-dependent and more PTA genes, each MEChi expressing a large and diverse PTA genes in MECs are transcribed monoallelically or biallelically in subset of the full repertoire, in a more or less random fashion (3). -
Fine Mapping Studies of Quantitative Trait Loci for Baseline Platelet Count in Mice and Humans
Fine mapping studies of quantitative trait loci for baseline platelet count in mice and humans A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy Melody C Caramins December 2010 University of New South Wales ORIGINALITY STATEMENT ‘I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.’ Signed …………………………………………….............. Date …………………………………………….............. This thesis is dedicated to my father. Dad, thanks for the genes – and the environment! ACKNOWLEDGEMENTS “Nothing can come out of nothing, any more than a thing can go back to nothing.” - Marcus Aurelius Antoninus A PhD thesis is never the work of one person in isolation from the world at large. I would like to thank the following people, without whom this work would not have existed. Thank you firstly, to all my teachers, of which there have been many. Undoubtedly, the greatest debt is owed to my supervisor, Dr Michael Buckley. -
S41467-020-18249-3.Pdf
ARTICLE https://doi.org/10.1038/s41467-020-18249-3 OPEN Pharmacologically reversible zonation-dependent endothelial cell transcriptomic changes with neurodegenerative disease associations in the aged brain Lei Zhao1,2,17, Zhongqi Li 1,2,17, Joaquim S. L. Vong2,3,17, Xinyi Chen1,2, Hei-Ming Lai1,2,4,5,6, Leo Y. C. Yan1,2, Junzhe Huang1,2, Samuel K. H. Sy1,2,7, Xiaoyu Tian 8, Yu Huang 8, Ho Yin Edwin Chan5,9, Hon-Cheong So6,8, ✉ ✉ Wai-Lung Ng 10, Yamei Tang11, Wei-Jye Lin12,13, Vincent C. T. Mok1,5,6,14,15 &HoKo 1,2,4,5,6,8,14,16 1234567890():,; The molecular signatures of cells in the brain have been revealed in unprecedented detail, yet the ageing-associated genome-wide expression changes that may contribute to neurovas- cular dysfunction in neurodegenerative diseases remain elusive. Here, we report zonation- dependent transcriptomic changes in aged mouse brain endothelial cells (ECs), which pro- minently implicate altered immune/cytokine signaling in ECs of all vascular segments, and functional changes impacting the blood–brain barrier (BBB) and glucose/energy metabolism especially in capillary ECs (capECs). An overrepresentation of Alzheimer disease (AD) GWAS genes is evident among the human orthologs of the differentially expressed genes of aged capECs, while comparative analysis revealed a subset of concordantly downregulated, functionally important genes in human AD brains. Treatment with exenatide, a glucagon-like peptide-1 receptor agonist, strongly reverses aged mouse brain EC transcriptomic changes and BBB leakage, with associated attenuation of microglial priming. We thus revealed tran- scriptomic alterations underlying brain EC ageing that are complex yet pharmacologically reversible. -
BMC Genomics Biomed Central
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector BMC Genomics BioMed Central Research article Open Access Dual activation of pathways regulated by steroid receptors and peptide growth factors in primary prostate cancer revealed by Factor Analysis of microarray data Juan Jose Lozano1,2,5, Marta Soler3, Raquel Bermudo3, David Abia1, Pedro L Fernandez4, Timothy M Thomson*3 and Angel R Ortiz*1,2 Address: 1Bioinformatics Unit, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain, 2Department of Physiology and Biophysics, Mount Sinai School of Medicine, One Gustave Levy Pl., New York, NY 10029, USA, 3Instituto de Biología Molecular, Consejo Superior de Investigaciones Científicas, c. Jordi Girona 18–26, 08034 Barcelona, Spain, 4Departament de Anatomía Patològica, Hospital Clínic, and Institut de Investigacions Biomèdiques August Pi i Sunyer, c. Villarroel 170, 08036 Barcelona, Spain and 5Center for Genome Regulation, Barcelona (Spain) Email: Juan Jose Lozano - [email protected]; Marta Soler - [email protected]; Raquel Bermudo - [email protected]; David Abia - [email protected]; Pedro L Fernandez - [email protected]; Timothy M Thomson* - [email protected]; Angel R Ortiz* - [email protected] * Corresponding authors Published: 17 August 2005 Received: 17 January 2005 Accepted: 17 August 2005 BMC Genomics 2005, 6:109 doi:10.1186/1471-2164-6-109 This article is available from: http://www.biomedcentral.com/1471-2164/6/109 © 2005 Lozano et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. -
Epidermal Wnt Signalling Regulates Transcriptome Heterogeneity and Proliferative Fate in Neighbouring Cells
bioRxiv preprint doi: https://doi.org/10.1101/152637; this version posted June 20, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Title: Epidermal Wnt signalling regulates transcriptome heterogeneity and proliferative fate in neighbouring cells Arsham Ghahramani1,2 , Giacomo Donati2,3 , Nicholas M. Luscombe1,4,5,† and Fiona M. Watt2,† 1The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom 2King’s College London, Centre for Stem Cells and Regenerative Medicine, 28th 8 Floor, Tower Wing, Guy’s Hospital, Great Maze Pond, London SE1 9RT, United Kingdom 3Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy 4UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom 5Okinawa Institute of Science & Technology Graduate University, Okinawa 904-0495, Japan † Correspondence to: [email protected] and [email protected] Abstract: Canonical Wnt/beta-catenin signalling regulates self-renewal and lineage selection within the mouse epidermis. Although the transcriptional response of keratinocytes that receive a Wnt signal is well characterised, little is known about the mechanism by which keratinocytes in proximity to the Wnt- receiving cell are co-opted to undergo a change in cell fate. To address this, we performed single-cell mRNA-Seq on mouse keratinocytes co-cultured with and without the presence of beta-catenin activated neighbouring cells. We identified seven distinct cell states in cultures that had not been exposed to the beta-catenin stimulus and show that the stimulus redistributes wild type subpopulation proportions. -
Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement. -
Jiang Et Al., 2015. Molecular [Profiling of Activated Olfactory Neurons
ART ic LE s Molecular profiling of activated olfactory neurons identifies odorant receptors for odors in vivo Yue Jiang1–3, Naihua Natalie Gong1, Xiaoyang Serene Hu1, Mengjue Jessica Ni1, Radhika Pasi1 & Hiroaki Matsunami1,4 The mammalian olfactory system uses a large family of odorant receptors (ORs) to detect and discriminate amongst a myriad of volatile odor molecules. Understanding odor coding requires comprehensive mapping between ORs and corresponding odors. We developed a means of high-throughput in vivo identification of OR repertoires responding to odorants using phosphorylated ribosome immunoprecipitation of mRNA from olfactory epithelium of odor-stimulated mice followed by RNA-Seq. This approach screened the endogenously expressed ORs against an odor in one set of experiments using awake and freely behaving mice. In combination with validations in a heterologous system, we identified sets of ORs for two odorants, acetophenone and 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), encompassing 69 OR-odorant pairs. We also identified shared amino acid residues specific to the acetophenone or TMT receptors and developed models to predict receptor activation by acetophenone. Our results provide a method for understanding the combinatorial coding of odors in vivo. In mammals, olfactory sensation starts with the detection of odor lig- early gene expression, such as c-Fos and Egr-1, which is widely used ands predominantly by ORs, a large family of seven transmembrane G to mark active neurons15,18,19. However, unlike immediate early gene protein–coupled receptors (GPCRs)1,2. ORs are individually expressed expression, phosphorylated S6 has the advantage of being physically in olfactory sensory neurons (OSNs) located in the olfactory epithe- associated with mRNA species expressed in the activated neurons. -
Probing the S100 Protein Family Through Genomic and Functional Analysis$
Genomics 84 (2004) 10–22 www.elsevier.com/locate/ygeno Probing the S100 protein family through genomic and functional analysis$ Timothy Ravasi,a,b,* Kenneth Hsu,c Jesse Goyette,c Kate Schroder,a Zheng Yang,c Farid Rahimi,c Les P. Miranda,b,1 Paul F. Alewood,b David A. Hume,a,b and Carolyn Geczyc a SRC for Functional and Applied Genomics, CRC for Chronic Inflammatory Diseases, University of Queensland, Brisbane 4072, QLD, Australia b Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, QLD, Australia c Cytokine Research Unit, School of Medical Sciences, University of New South Wales, Sydney 2052, NSW, Australia Received 25 November 2003; accepted 2 February 2004 Available online 10 May 2004 Abstract The EF-hand superfamily of calcium binding proteins includes the S100, calcium binding protein, and troponin subfamilies. This study represents a genome, structure, and expression analysis of the S100 protein family, in mouse, human, and rat. We confirm the high level of conservation between mammalian sequences but show that four members, including S100A12, are present only in the human genome. We describe three new members of the S100 family in the three species and their locations within the S100 genomic clusters and propose a revised nomenclature and phylogenetic relationship between members of the EF-hand superfamily. Two of the three new genes were induced in bone-marrow-derived macrophages activated with bacterial lipopolysaccharide, suggesting a role in inflammation. Normal human and murine tissue distribution profiles indicate that some members of the family are expressed in a specific manner, whereas others are more ubiquitous.