Phylogenetic Affiliations of Mesopelagic Acantharia And

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenetic Affiliations of Mesopelagic Acantharia And ARTICLE IN PRESS Protist, Vol. 161, 197–211, April 2010 http://www.elsevier.de/protis Published online date 30 December 2009 ORIGINAL PAPER Phylogenetic Affiliations of Mesopelagic Acantharia and Acantharian-like Environmental 18S rRNA Genes off the Southern California Coast Ilana C. Gilga,1,2, Linda A. Amaral-Zettlerb, Peter D. Countwaya, Stefanie Moorthic, Astrid Schnetzera, and David A. Carona aDepartment of Biological Sciences, University of Southern California, 3616 Trousdale Pkwy AHF 301, Los Angeles, CA 90089-0371, USA bThe Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA cCarl-von-Ossietzky Universitat¨ Oldenburg, ICBM-Terramare, Schleusenstr. 1, D-26382 Wilhelmshaven, Germany Submitted March 20, 2009; Accepted September 19, 2009 Monitoring Editor: David Moreira Incomplete knowledge of acantharian life cycles has hampered their study and limited our understanding of their role in the vertical flux of carbon and strontium. Molecular tools can help identify enigmatic life stages and offer insights into aspects of acantharian biology and evolution. We inferred the phylogenetic position of acantharian sequences from shallow water, as well as acantharian-like clone sequences from 500 and 880 m in the San Pedro Channel, California. The analyses included validated acantharian and polycystine sequences from public databases with environmental clone sequences related to acantharia and used Bayesian inference methods. Our analysis demonstrated strong support for two branches of unidentified organisms that are closely related to, but possibly distinct from the Acantharea. We also found evidence of acantharian sequences from mesopelagic environments branching within the chaunacanthid clade, although the morphology of these organisms is presently unknown. HRP-conjugated probes were developed to target Acantharea and phylotypes from Unidentified Clade 1 using Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) on samples collected at 500 m. Our CARD-FISH experiments targeting phylotypes from an unidentified clade offer preliminary glimpses into the morphology of these protists, while a morphology for the aphotic acantharian lineages remains unknown at this time. & 2009 Elsevier GmbH. All rights reserved. Key words: 18S rRNA phylogeny; Acantharea; CARD-FISH; deep-sea protist; novel protistan lineage; sarcodine. 1Corresponding author; fax +1 207 633 9661 e-mail [email protected] (I.C. Gilg). 2Current address: Bigelow Laboratory for Ocean Sciences, 180 McKown Point Rd., West Boothbay Harbor, ME 04575, USA. & 2009 Elsevier GmbH. All rights reserved. doi:10.1016/j.protis.2009.09.002 ARTICLE IN PRESS 198 I.C. Gilg et al. Introduction Acantharia are amoeboid, mixotrophic protists and common constituents of the microplankton community in euphotic oceanic ecosystems. They have traditionally been distinguished from other sarcodine protists such as the polycystine and phaeodarian radiolaria and foraminifera by the composition of their exquisite skeletons, which are comprised of SrSO4 in a Mullerian¨ arrange- ment of 20 (in rare cases, 10) spicules (Fig. 1). Most acantharia possess tens to hundreds of photosynthetic eukaryotic symbionts per cell (Michaels 1991; Michaels et al. 1995). Total primary production within the cytoplasmic network of these and other sarcodines has been measured at more than four orders of magnitude greater than that of an equivalent volume of surrounding water (Caron et al. 1995). High rates of primary productivity in these associations reflect the fact that the microenvironment of the sarcodine is highly enriched in algal biomass relative to the surrounding oligotrophic environment, and to the observation that symbionts are typically at or close to their maximal gross growth rates within these symbiotic associations (Stabell et al. 2002). Together, these factors suggest that symbiont photosynthesis can represent a significant portion of open ocean primary production when sarcodine abundances are high. Acantharia often numerically dominate other sarcodines in open ocean ecosystems (Caron and Swanberg 1990). During ‘‘bloom-like’’ conditions (Massera Bottazzi and Andreoli 1981, 1982; Zas’ko and Vedernikov 2003), acantharian abundances have been reported at integrated densities from 1.53 to 5.34 Â 105 mÀ2.Itis estimated that they comprise up to 41% of total integrated production during these events Figure 1.(A) An example of Acanthometra sp. 1 in (Michaels 1988). These values represent signifi- its vegetative state. (B) The same organism, after cant amounts of carbon fixation in the oligotrophic releasing swarmers. The swarmers are visible as euphotic oceans and demonstrate the potential small dots around the skeleton. Note that the central for acantharia to exert a substantial influence on skeletal junction, an important feature for taxonomic marine carbon budgets. Furthermore, acantharian identification, is only visible after swarmers have blooms may contribute significantly to export flux been released. Scale bars=50 mm. (particularly Sr flux) from surface waters given their large cell size and dense skeletons (Michaels and Silver 1993; Michaels et al. 1995). swarmer cells produce individual crystals of Acantharia are thought to exert the most SrSO4 (Anderson 1983). Strontium was consid- significant biological influence on strontium bud- ered a conservative element in marine environ- gets in the ocean due to their unique celestite ments until slight variations in the Sr/Cl ratios of skeletons (Bernstein et al. 1987). Acantharia are the upper 400 m were detected (Brass and the only protists known to make their skeletons Turekian 1974). Studies that followed implicated entirely from SrSO4, although some radiolarian the crystallization and dissolution of acantharian ARTICLE IN PRESS Discovery of Acantharian-like Protists 199 celestite as the cause of this strontium flux et al. 2002; Lopez-Garcia et al. 2001; Lovejoy et al. (Bernstein et al. 1987; Bernstein and Byrne 2004; 2006; Not et al. 2007). Acantharian-like clones De Deckker 2004). Seawater is highly under- from deep-sea and mesopelagic environmental saturated with respect to strontium, so acantharia clone libraries have been observed in the Atlantic must continuously expend energy to create the (Countway et al. 2007) and in the San Pedro unique cellular structures that constitute their Channel off the coast of California (Countway skeletons. Sinking acantharian celestite from both et al. submitted; Schnetzer et al. in preparation) skeletons and cysts is thought to dissolve by respectively. Countway et al. (2007) reported 900 m, where stabilization of the Sr/Cl ratios has significant percentages (up to 17%) of the total been observed (Bernstein et al. 1987). The protistan phylotypes from 2500 m in the Sargasso selective removal of Sr from surface waters, where Sea belonging to acantharia or acantharian-like vegetative acantharia are most abundant, also organisms. Acantharian-like sequences have also accounts for the variability of Sr/Ca ratios in the been reported in clone libraries from the Sargasso euphotic zone (De Deckker 2004) and helps Sea (Moon-van der Staay et al. 2001; Not et al. interpret anomalies in historical sea-surface data 2007) from 2000 m at the Antarctic polar front sets constructed from Sr/Ca ratios from corals. (Lopez-Garcia et al. 2001), sediment collected Acantharia have also been implicated in other from the mid-Atlantic ridge (Lopez-Garcia et al. elemental cycling, most notably barium, which 2003), sediment in the southern Guaymas vent can comprise up to 0.4% of the skeleton. These field (Edgcomb et al. 2002), aphotic Arctic waters concentrations are ten times greater than that of (Lovejoy et al. 2006), the anoxic Caricao basin seawater (Bernstein et al. 1999) and may be the (Stoeck et al. 2003), and from an anoxic hypersa- source of mysteriously abundant strontium-rich line basin (Alexander et al. 2009). This is striking barite particles in the deep ocean (Bernstein and because, to our knowledge, acantharia have not Byrne 2004). been observed at such depths based on micro- Despite their important biogeochemical influ- scopical analyses. Heavily skeletonized forms ences in the ocean, relatively little is known about such as reproductive cysts have been observed acantharian biology or ecology. Study of their as deep as 900 m (Bernstein et al. 1987) but biology has been hindered by the fact that they, dissolution of the skeleton is presumed to occur like most large planktonic sarcodine protists, below this depth and the fate of the cells is cannot be maintained in culture through succes- unknown. The abundance of acantharian-like sive generations or even maintained very long sequences at depths greater than 900 m suggests after capture. Although acantharia have not been that there may be uncharacterized mesopelagic or cultured in the laboratory, formation and release of deep-sea life cycle stages that are presently ‘swarmer’ cells from freshly-collected organisms unrecognizable by morphology alone. has been observed. This process involves the Molecular diversity studies that have identified reorganization of the multinucleated vegetative possible acantharia often have not presented cytoplasm or cyst into tens of thousands of complete sequences of these phylotypes and flagellated, mononuclear cells (Caron and Swan- some have not performed the phylogenetic berg 1990). It has been hypothesized that certain analyses necessary for conclusive identifica-
Recommended publications
  • Molecular Phylogenetic Position of Hexacontium Pachydermum Jørgensen (Radiolaria)
    Marine Micropaleontology 73 (2009) 129–134 Contents lists available at ScienceDirect Marine Micropaleontology journal homepage: www.elsevier.com/locate/marmicro Molecular phylogenetic position of Hexacontium pachydermum Jørgensen (Radiolaria) Tomoko Yuasa a,⁎, Jane K. Dolven b, Kjell R. Bjørklund b, Shigeki Mayama c, Osamu Takahashi a a Department of Astronomy and Earth Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan b Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, 0318 Oslo, Norway c Department of Biology, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan article info abstract Article history: The taxonomic affiliation of Hexacontium pachydermum Jørgensen, specifically whether it belongs to the Received 9 April 2009 order Spumellarida or the order Entactinarida, is a subject of ongoing debate. In this study, we sequenced the Received in revised form 3 August 2009 18S rRNA gene of H. pachydermum and of three spherical spumellarians of Cladococcus viminalis Haeckel, Accepted 7 August 2009 Arachnosphaera myriacantha Haeckel, and Astrosphaera hexagonalis Haeckel. Our molecular phylogenetic analysis revealed that the spumellarian species of C. viminalis, A. myriacantha, and A. hexagonalis form a Keywords: monophyletic group. Moreover, this clade occupies a sister position to the clade comprising the spongodiscid Radiolaria fi Entactinarida spumellarians, coccodiscid spumellarians, and H. pachydermum. This nding is contrary to the results of Spumellarida morphological studies based on internal spicular morphology, placing H. pachydermum in the order Nassellarida Entactinarida, which had been considered to have a common ancestor shared with the nassellarians. 18S rRNA gene © 2009 Elsevier B.V. All rights reserved. Molecular phylogeny. 1. Introduction the order Entactinarida has an inner spicular system homologenous with that of the order Nassellarida.
    [Show full text]
  • Download This Publication (PDF File)
    PUBLIC LIBRARY of SCIENCE | plosgenetics.org | ISSN 1553-7390 | Volume 2 | Issue 12 | DECEMBER 2006 GENETICS PUBLIC LIBRARY of SCIENCE www.plosgenetics.org Volume 2 | Issue 12 | DECEMBER 2006 Interview Review Knight in Common Armor: 1949 Unraveling the Genetics 1956 An Interview with Sir John Sulston e225 of Human Obesity e188 Jane Gitschier David M. Mutch, Karine Clément Research Articles Natural Variants of AtHKT1 1964 The Complete Genome 2039 Enhance Na+ Accumulation e210 Sequence and Comparative e206 in Two Wild Populations of Genome Analysis of the High Arabidopsis Pathogenicity Yersinia Ana Rus, Ivan Baxter, enterocolitica Strain 8081 Balasubramaniam Muthukumar, Nicholas R. Thomson, Sarah Jeff Gustin, Brett Lahner, Elena Howard, Brendan W. Wren, Yakubova, David E. Salt Matthew T. G. Holden, Lisa Crossman, Gregory L. Challis, About the Cover Drosophila SPF45: A Bifunctional 1974 Carol Churcher, Karen The jigsaw image of representatives Protein with Roles in Both e178 Mungall, Karen Brooks, Tracey of various lines of eukaryote evolution Splicing and DNA Repair Chillingworth, Theresa Feltwell, refl ects the current lack of consensus as Ahmad Sami Chaouki, Helen K. Zahra Abdellah, Heidi Hauser, to how the major branches of eukaryotes Salz Kay Jagels, Mark Maddison, fi t together. The illustrations from upper Sharon Moule, Mandy Sanders, left to bottom right are as follows: a single Mammalian Small Nucleolar 1984 Sally Whitehead, Michael A. scale from the surface of Umbellosphaera; RNAs Are Mobile Genetic e205 Quail, Gordon Dougan, Julian Amoeba, the large amoeboid organism Elements Parkhill, Michael B. Prentice used as an introduction to protists for Michel J. Weber many school children; Euglena, the iconic Low Levels of Genetic 2052 fl agellate that is often used to challenge Soft Sweeps III: The Signature 1998 Divergence across e215 ideas of plants (Euglena has chloroplasts) of Positive Selection from e186 Geographically and and animals (Euglena moves); Stentor, Recurrent Mutation Linguistically Diverse one of the larger ciliates; Cacatua, the Pleuni S.
    [Show full text]
  • Broadly Sampled Multigene Analyses Yield a Well-Resolved Eukaryotic Tree of Life
    Smith ScholarWorks Biological Sciences: Faculty Publications Biological Sciences 10-1-2010 Broadly Sampled Multigene Analyses Yield a Well-Resolved Eukaryotic Tree of Life Laura Wegener Parfrey University of Massachusetts Amherst Jessica Grant Smith College Yonas I. Tekle Smith College Erica Lasek-Nesselquist Marine Biological Laboratory Hilary G. Morrison Marine Biological Laboratory See next page for additional authors Follow this and additional works at: https://scholarworks.smith.edu/bio_facpubs Part of the Biology Commons Recommended Citation Parfrey, Laura Wegener; Grant, Jessica; Tekle, Yonas I.; Lasek-Nesselquist, Erica; Morrison, Hilary G.; Sogin, Mitchell L.; Patterson, David J.; and Katz, Laura A., "Broadly Sampled Multigene Analyses Yield a Well-Resolved Eukaryotic Tree of Life" (2010). Biological Sciences: Faculty Publications, Smith College, Northampton, MA. https://scholarworks.smith.edu/bio_facpubs/126 This Article has been accepted for inclusion in Biological Sciences: Faculty Publications by an authorized administrator of Smith ScholarWorks. For more information, please contact [email protected] Authors Laura Wegener Parfrey, Jessica Grant, Yonas I. Tekle, Erica Lasek-Nesselquist, Hilary G. Morrison, Mitchell L. Sogin, David J. Patterson, and Laura A. Katz This article is available at Smith ScholarWorks: https://scholarworks.smith.edu/bio_facpubs/126 Syst. Biol. 59(5):518–533, 2010 c The Author(s) 2010. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: [email protected] DOI:10.1093/sysbio/syq037 Advance Access publication on July 23, 2010 Broadly Sampled Multigene Analyses Yield a Well-Resolved Eukaryotic Tree of Life LAURA WEGENER PARFREY1,JESSICA GRANT2,YONAS I. TEKLE2,6,ERICA LASEK-NESSELQUIST3,4, 3 3 5 1,2, HILARY G.
    [Show full text]
  • First Application of PDMPO to Examine Silicification in Polycystine Radiolaria
    Plankton Benthos Res 4(3): 89–94, 2009 Plankton & Benthos Research © The Plankton Society of Japan First application of PDMPO to examine silicification in polycystine Radiolaria KAORU OGANE1,*, AKIHIRO TUJI2, NORITOSHI SUZUKI1, TOSHIYUKI KURIHARA3 & ATSUSHI MATSUOKA4 1 Institute of Geology and Paleontology, Graduate School of Science, Tohoku University, Sendai, 980–8578, Japan 2 Department of Botany, National Museum of Nature and Science, Tsukuba, 305–0005, Japan 3 Graduate School of Science and Technology, Niigata University, Niigata 950–2181, Japan 4 Department of Geology, Faculty of Science, Niigata University, Niigata 950–2181, Japan Received 4 February 2009; Accepted 10 April 2009 Abstract: 2-(4-pyridyl)-5-[(4-(2-dimethylaminoethylaminocarbamoyl)methoxy)-phenyl] oxazole (PDMPO) is a fluo- rescent compound that accumulates in acidic cell compartments. PDMPO is accumulated with silica under acidic con- ditions, and the newly developed silica skeletons show green fluorescent light. This study is the first to use PDMPO in polycystine radiolarians, which are unicellular planktonic protists. We tested Acanthodesmia sp., Rhizosphaera trigo- nacantha, and Spirocyrtis scalaris for emission of green fluorescence. Entire skeletons of Acanthodesmia sp. and Sr. scalaris emitted green fluorescent light, whereas only the outermost shell and radial spines of Rz. trigonacantha showed fluorescence. Two additional species, Spongaster tetras tetras and Rhopalastrum elegans did not show fluorescence. Green fluorescence of the entire skeleton is more like the “skeletal thickening growth” defined by silica deposition throughout the surface of the existing skeleton. The brightness of the fluorescence varied with each cell. This difference in fluorescence may reflect the rate of growth in these cells. Green fluorescence in PDMPO-treated polycystines sug- gests the presence of similar metabolic systems with controlled pH.
    [Show full text]
  • Rhizaria, Cercozoa)
    Protist, Vol. 166, 363–373, July 2015 http://www.elsevier.de/protis Published online date 28 May 2015 ORIGINAL PAPER Molecular Phylogeny of the Widely Distributed Marine Protists, Phaeodaria (Rhizaria, Cercozoa) a,1 a a b Yasuhide Nakamura , Ichiro Imai , Atsushi Yamaguchi , Akihiro Tuji , c d Fabrice Not , and Noritoshi Suzuki a Plankton Laboratory, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041–8611, Japan b Department of Botany, National Museum of Nature and Science, Tsukuba 305–0005, Japan c CNRS, UMR 7144 & Université Pierre et Marie Curie, Station Biologique de Roscoff, Equipe EPPO - Evolution du Plancton et PaléoOcéans, Place Georges Teissier, 29682 Roscoff, France d Institute of Geology and Paleontology, Graduate School of Science, Tohoku University, Sendai 980–8578, Japan Submitted January 1, 2015; Accepted May 19, 2015 Monitoring Editor: David Moreira Phaeodarians are a group of widely distributed marine cercozoans. These plankton organisms can exhibit a large biomass in the environment and are supposed to play an important role in marine ecosystems and in material cycles in the ocean. Accurate knowledge of phaeodarian classification is thus necessary to better understand marine biology, however, phylogenetic information on Phaeodaria is limited. The present study analyzed 18S rDNA sequences encompassing all existing phaeodarian orders, to clarify their phylogenetic relationships and improve their taxonomic classification. The mono- phyly of Phaeodaria was confirmed and strongly supported by phylogenetic analysis with a larger data set than in previous studies. The phaeodarian clade contained 11 subclades which generally did not correspond to the families and orders of the current classification system. Two families (Challengeri- idae and Aulosphaeridae) and two orders (Phaeogromida and Phaeocalpida) are possibly polyphyletic or paraphyletic, and consequently the classification needs to be revised at both the family and order levels by integrative taxonomy approaches.
    [Show full text]
  • New Horizons the Microbial Universe of the Global Ocean
    New Horizons The Microbial Universe of the Global Ocean BIGELOW LABORATORY FOR OCEAN SCIENCES 2012-13 ANNUAL REPORT BIGELOW LABORATORY FOR OCEAN SCIENCES • ANNUAL REPORT 2012–13 1 “Without global ocean color satellite data, humanity loses its capacity to take Earth’s pulse and to explore its unseen world. The fragility of the living Earth and its oceans has been noted by astronaut Sally Ride, who speaks of the changes in land, oceans, and atmosphere systems as witnessed from space, and the challenge that a changing climate presents to our beloved Earth. It is our duty to provide a long-term surveillance system for the Earth, not only to understand and monitor the Earth’s changing climate, but to enable the next generations of students to make new discoveries in our ocean gardens, as well as explore similar features on other planets.” —Dr. Charles S. Yentsch Bigelow Laboratory Founder 1927–2012 2 NEW HORIZONS: THE MICROBIAL UNIVERSE OF THE GLOBAL OCEAN Welcoming the Future A Message from the Chairman of the Board igelow Laboratory has just finished an exceptional and transformative period, a time that has witnessed the accomplishment of an array of Bprojects that will take the organization to new levels of achievement. The most obvious of these has been the completion of the $32 million Bigelow Ocean Science and Education Campus in East Boothbay. Shortly following the dedication of the new facilities in December, all of Bigelow Laboratory’s management, scientists, and staff were on board and operational on the new site, enabling a higher level of scientific and operational efficiency and effectiveness than ever before.
    [Show full text]
  • Massisteria Marina Larsen & Patterson 1990
    l MARINE ECOLOGY PROGRESS SERIES Vol. 62: 11-19, 1990 1 Published April 5 l Mar. Ecol. Prog. Ser. l Massisteria marina Larsen & Patterson 1990, a widespread and abundant bacterivorous protist associated with marine detritus David J. patterson', Tom ~enchel~ ' Department of Zoology. University of Bristol. Bristol BS8 IUG. United Kingdom Marine Biological Laboratory, Strandpromenaden, DK-3000 Helsinger, Denmark ABSTRACT: An account is given of Massisteria marina Larsen & Patterson 1990, a small phagotrophic protist associated with sediment particles and with suspended detrital material in littoral and oceanic marine waters. It has been found at sites around the world. The organism has an irregular star-shaped body from which radiate thin pseudopodia with extrusomes. There are 2 inactive flagella. The organism is normally sedentary but, under adverse conditions, the arms are resorbed, the flagella become active, and the organism becomes a motile non-feeding flagellate. The ecological niche occupied by this organism and its phylogenetic affinities are discussed. INTRODUCTION (Patterson & Fenchel 1985, Fenchel & Patterson 1986, 1988, V~rs1988, Larsen & Patterson 1990). Here we Much of the carbon fixed in marine ecosystems is report on a protist, Massisteria marina ', that is specifi- degraded by microbial communities and it is held that cally associated with planktonic and benthic detritus protists, especially flagellates under 10 pm in size, and appears to be widespread and common. exercise one of the principal controlling influences over bacterial growth rates and numbers (Fenchel 1982, Azam et al. 1983, Ducklow 1983, Proctor & Fuhrman MATERIALS AND METHODS 1990). Detrital aggregates, whether benthic or in the water column, may support diverse and active microbial Cultures were established by dilution series from communities that include flagellates (Wiebe & Pomeroy water samples taken in the Limfjord (Denmark), and 1972, Caron et al.
    [Show full text]
  • Protistology Review of Diversity and Taxonomy of Cercomonads
    Protistology 3 (4), 201217 (2004) Protistology Review of diversity and taxonomy of cercomonads Alexander P. Myl’nikov 1 and Serguei A. Karpov 2 1 Institute for the Biology of Inland Waters, Borok, Yaroslavl district, Russia 2 Biological Faculty, Herzen Pedagogical State University, St. Petersburg, Russia Summary Cercomonads are very common heterotrophic flagellates in water and soil. Phylogenetically they are a key group of a protistan phylum Cercozoa. Morphological and taxonomical analysis of cercomonads reveals that the order Cercomonadida (Vickerman) Mylnikov, 1986 includes two families: Cercomonadidae Kent, 1880 (=Cercobodonidae Hollande, 1942) and Heteromitidae Kent, 1880 em. Mylnikov, 2000 (=Bodomorphidae Hollande, 1952), which differ in several characters: body shape, temporary/habitual pseudopodia, presence/absence of plasmodia stage and microtubular cone, type of extrusomes. The family Cercomonadidae includes Cercomonas Dujardin, 1841 and Helkesimastix Woodcock et Lapage, 1914. All species of Cercobodo are transferred to the genus Cercomonas. The family Heteromitidae includes Heteromita Dujardin, 1841 emend. Mylnikov et Karpov, Protaspis Skuja, 1939, Allantion Sandon, 1924, Sainouron Sandon, 1924, Cholamonas Flavin et al., 2000 and Katabia Karpov et al., 2003. The names Bodomorpha and Sciviamonas are regarded as junior synonyms of Heteromita. The genus Proleptomonas Woodcock, 1916 according to its morphology is not a cercomonad, and is not included in the order. The genus Massisteria Larsen and Patterson, 1988 is excluded from
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,410,241 B1 Sykes Et Al
    US006410241B1 (12) United States Patent (10) Patent No.: US 6,410,241 B1 Sykes et al. (45) Date of Patent: Jun. 25, 2002 (54) METHODS OF SCREENING OPEN READING Nisson et al., “Rapid and efficient cloning of Alu-PCR FRAMES TO DETERMINE WHETHER THEY products using uracil DNA glycosylase,” PCR Methods ENCODE POLYPEPTIDES WITH AN Appl., 1:120-123, 1991. ABILITY TO GENERATE AN IMMUNE Rashtchian et al., “Uracil DNA glycosylase-mediated clon RESPONSE ing of polymerase chain reaction-amplified DNA. Applica tion to genomic and cDNA cloning,” Anal. Biochem, (75) Inventors: Kathryn F. Sykes; Stephen Albert 206:91-97, 1992. Johnston, both of Dallas, TX (US) Switzer et al., “Rapid Screening of open reading frames by (73) Assignee: Board of Regents, The University of protein Synthesis with an in Vitro transcription and transla Texas System, Austin, TX (US) tion assay,” Biotechniques, 18:244-248, 1995. ASlanidis and Jong, "Ligation-independent cloning of PCR (*) Notice: Subject to any disclaimer, the term of this products (LIC-PCR).” Nucl. Acids Res., 18:6069–6074, patent is extended or adjusted under 35 1990. U.S.C. 154(b) by 0 days. ASlanidis et al., “Minimal length requirement of the Sin gle-stranded tails for ligation-independent cloning (LIC) of (21) Appl. No.: 09/535,366 pcr products.” PCR Methods and Applications, 4:172-177, (22) Filed: Mar. 24, 2000 1994. Bolen et al., “Isolation and Sequence analysis of a gene from Related U.S. Application Data the linear DNA plasmid pPacl-2 of pichia acaciae that (60) Provisional application No. 60/125,864, filed on Mar.
    [Show full text]
  • September 2002
    RADI LARIA VOLUME 20 SEPTEMBER 2002 NEWSLETTER OF THE INTERNATIONAL ASSOCIATION OF RADIOLARIAN PALEONTOLOGISTS ISSN: 0297.5270 INTERRAD International Association of Radiolarian Paleontologists A Research Group of the International Paleontological Association Officers of the Association President Past President PETER BAUMBARTNER JOYCE R. BLUEFORD Lausanne, Switzerland California, USA [email protected] [email protected] Secretary Treasurer JONATHAN AITCHISON ELSPETH URQUHART Department of Earth Sciences JOIDES Office University of Hong Kong Department of Geology and Geophysics Pokfulam Road, University of Miami - RSMAS Hong Kong SAR, 4600 Rickenbacker Causeway CHINA Miami FL 33149 Florida Tel: (852) 2859 8047 Fax: (852) 2517 6912 U.S.A. e-mail: [email protected] Tel: 1-305-361-4668 Fax: 1-305-361-4632 Email: [email protected] Working Group Chairmen Paleozoic Cenozoic PATRICIA, WHALEN, U.S.A. ANNIKA SANFILIPPO California, U.S.A. [email protected] [email protected] Mesozoic Recent RIE S. HORI Matsuyama, JAPAN DEMETRIO BOLTOVSKOY Buenos Aires, ARGENTINA [email protected] [email protected] INTERRAD is an international non-profit organization for researchers interested in all aspects of radiolarian taxonomy, palaeobiology, morphology, biostratigraphy, biology, ecology and paleoecology. INTERRAD is a Research Group of the International Paleontological Association (IPA). Since 1978 members of INTERRAD meet every three years to present papers and exchange ideas and materials INTERRAD MEMBERSHIP: The international Association of Radiolarian Paleontologists is open to any one interested on receipt of subscription. The actual fee US $ 15 per year. Membership queries and subscription send to Treasurer. Changes of address can be sent to the Secretary.
    [Show full text]
  • Protist Phylogeny and the High-Level Classification of Protozoa
    Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane).
    [Show full text]
  • Radiozoa (Acantharia, Phaeodaria and Radiolaria) and Heliozoa
    MICC16 26/09/2005 12:21 PM Page 188 CHAPTER 16 Radiozoa (Acantharia, Phaeodaria and Radiolaria) and Heliozoa Cavalier-Smith (1987) created the phylum Radiozoa to Radiating outwards from the central capsule are the include the marine zooplankton Acantharia, Phaeodaria pseudopodia, either as thread-like filopodia or as and Radiolaria, united by the presence of a central axopodia, which have a central rod of fibres for rigid- capsule. Only the Radiolaria including the siliceous ity. The ectoplasm typically contains a zone of frothy, Polycystina (which includes the orders Spumellaria gelatinous bubbles, collectively termed the calymma and Nassellaria) and the mixed silica–organic matter and a swarm of yellow symbiotic algae called zooxan- Phaeodaria are preserved in the fossil record. The thellae. The calymma in some spumellarian Radiolaria Acantharia have a skeleton of strontium sulphate can be so extensive as to obscure the skeleton. (i.e. celestine SrSO4). The radiolarians range from the A mineralized skeleton is usually present within the Cambrian and have a virtually global, geographical cell and comprises, in the simplest forms, either radial distribution and a depth range from the photic zone or tangential elements, or both. The radial elements down to the abyssal plains. Radiolarians are most useful consist of loose spicules, external spines or internal for biostratigraphy of Mesozoic and Cenozoic deep sea bars. They may be hollow or solid and serve mainly to sediments and as palaeo-oceanographical indicators. support the axopodia. The tangential elements, where Heliozoa are free-floating protists with roughly present, generally form a porous lattice shell of very spherical shells and thread-like pseudopodia that variable morphology, such as spheres, spindles and extend radially over a delicate silica endoskeleton.
    [Show full text]