Décidabilité Et Complexité

Total Page:16

File Type:pdf, Size:1020Kb

Décidabilité Et Complexité Chapitre 1 Informatique th´eorique: D´ecidabilit´eet Complexit´e 0 Olivier Bournez, Ecole´ polytechnique, [email protected], Gilles Dowek, Ecole´ polytechnique, [email protected], R´emi Gilleron, Lab- oratoire d'Informatique Fondamentale de Lille (LIFL), [email protected], Serge Grigorieff (Coordinateur), LIAFA, CNRS & Universit´e Paris Diderot, [email protected], Jean-Yves Marion (Coordinateur), Nancy-Universit´e, LORIA [email protected] Simon Perdrix, PPS, CNRS & Universit´eParis Diderot, [email protected]. Sophie Tison, Laboratoire d'Informatique Fondamen- tale de Lille (LIFL), [email protected] 1 2CHAPITRE 1. INFORMATIQUE THEORIQUE´ : DECIDABILIT´ E´ ET COMPLEXITE´ Sommaire 1 Informatique th´eorique: D´ecidabilit´eet Complexit´e 1 1.1 Introduction `al'informatique fondamentale . 4 1.2 Emergence de la notion de calculabilit´e. 6 1.2.1 Mod`elesde calcul discrets par sch´emasde programmes 6 1.2.2 Mod`elesde calcul discrets par machines s´equentielles . 7 1.2.3 Mod`elesde calcul discrets par machines `aregistres `a acc`esal´eatoire . 8 1.2.4 Grammaires de type 0 de Chomsky . 9 1.2.5 Mod`elede calcul discret `aparall´elismemassif : les automates cellulaires . 9 1.2.6 Un mod`ele `apart : le Lambda-calcul . 11 1.2.7 La th`esede Church et ses diff´erentes versions . 12 1.2.8 Axiomatisation de la th`esede Church par Gandy . 13 1.3 Th´eoriede la calculabilit´e . 14 1.3.1 Calculs qui ne s'arr^etent pas . 14 1.3.2 Trois th´eor`emes \positifs" en calculabilit´epartielle . 15 1.3.3 Deux th´eor`emes\n´egatifs"en calculabilit´epartielle . 17 1.4 Formalisation de la notion d'algorithme . 18 1.4.1 D´enotationnelversus op´erationnel . 18 1.4.2 Compl´etudeop´erationnelle . 18 1.4.3 L'axiomatisation de la notion d'algorithme par Gurevich 20 1.4.4 Compl´etudeop´erationnelleet r´ecurrence. 21 1.5 Calculabilit´esur les r´eels. 22 1.5.1 Analyse r´ecursive . 22 1.5.2 Mod`elede Blum, Shub et Smale . 23 1.5.3 \General Purpose Analog Computer" de Shannon . 23 1.5.4 Mod`elesde calcul `atemps continu . 24 1.5.5 Calculabilit´equantique . 24 1.5.6 Le probl`emede l’unification de ces mod`eles . 25 3 4 SOMMAIRE 1.5.7 Calculabilit´eau-del`ade la th`esede Church ? . 26 1.6 D´eductionet calcul : la nature algorithmique des preuves constructives . 27 1.6.1 Les preuves constructives comme langage de program- mation . 27 1.6.2 Les logiques et leurs syst`emesformels . 28 1.6.3 Les preuves constructives et leurs notations . 29 1.6.4 R´eductionde preuve constructive . 34 1.6.5 L'interpr´etationde Brouwer-Heyting-Kolmogorov . 35 1.6.6 Th´eories. 37 1.6.7 Autres extensions . 39 1.6.8 Elimination des coupures et r´esultatsde coh´erence . 40 1.7 D´ecidableversus ind´ecidable. 41 1.7.1 D´emonstrationautomatique : d´ecidabilit´eet th´eories logiques . 41 1.7.2 Quelques autres probl`emes . 44 1.7.3 D´ecideravec une bonne probabilit´ede r´eponse exacte 45 1.8 A l'int´erieurde la calculabilit´e: la th´eoriede la complexit´e . 46 1.8.1 Limites des ressources physiques . 46 1.8.2 Complexit´ede quelques probl`emes . 47 1.8.3 Complexit´ed'un probl`eme . 49 1.8.4 Classes de complexit´e . 51 1.8.5 Caract´erisationdes classes de complexit´e . 53 1.8.6 Complexit´eet repr´esentation des objets . 54 1.9 Complexit´ealgorithmique de l'information . 54 1.10 Une op´erationnalit´eefficace: les automates finis . 56 1.10.1 Les automates finis de mots . 56 1.10.2 Les extensions des automates de mots . 62 1.10.3 Automates finis pour les structures discr`etes. 65 1.10.4 Automates et applications . 67 1.1 Introduction `al'informatique fondamentale L'informatique fondamentale est un vaste sujet, comme en t´emoignent les 2 283 et 3 176 pages des \Handbooks" [vL90, AGM01]. Couvrir en quelques dizaines de pages, l'ensemble de l'informatique fondamentale nous a sembl´e une entreprise hors de notre port´ee.De ce fait, nous nous sommes concentr´es sur la notion de calcul, sujet qui refl`etele go^utet la passion des auteurs de 1.1. INTRODUCTION A` L'INFORMATIQUE FONDAMENTALE 5 ce chapitre. La notion de calcul est omnipr´esente et aussi ancienne que les math´ematiques: • Calculs sur les nombres entiers : algorithme d'Euclide calculant le plus grand commun diviseur de deux nombres entiers, crible d'Eratosth`ene donnant les nombres premiers, etc. • Calculs sur les nombres r´eels: m´ethode de Simpson de calcul num´erique d'une int´egrale,m´ethode de Newton d'approximation d'un z´erod'une fonction sur les r´eels,etc. • Calculs g´eom´etriques: aires et volumes divers, algorithme de For- tune donnant le diagramme de Vorono¨ı d'un ensemble de n points A1;:::;An du plan (ce diagramme d´ecompose le plan en n r´egions d’influence de formes polygonales : la i-`emer´egionest form´eedes points du plan plus proches de Ai que des autres points Aj, j 6= i), etc. • Tri d'une famille d'objets selon un certain ordre : tris par insertion, ´echange (tri bulle, quicksort), s´election(tri par tas), fusion, distribu- tion. Knuth [Knu73] y consacre 388 pages ! • Calculs sur les textes : recherche de motifs (algorithme de Knuth, Morris & Pratt), compression de texte (algorithme de Ziv & Lempell). • Calculs dans les graphes finis : plus court chemin entre deux sommets (algorithme de Dijkstra), couverture minimale (i.e. ensemble C de sommets tels que tout sommet soit dans C ou voisin direct d'un point de C). Ce n'est qu’`apartir de la premi`eremoiti´edu 20i`emesi`ecleque la notion de mod`elede calcul a ´et´ed´efinieet ´etudi´ee. Nous pr´esenterons de nom- breux mod`elesde calcul au cours de ce chapitre. La vari´et´ede ces mod`eles montre la difficult´e`aappr´ehender la nature et la diversit´edes calculs. Il y a les calculs m´ecaniqueset s´equentiels, les calculs quantiques, et tous les autres calculs qui s'appuient sur des hypoth`esesphysiques de mod´elisation de la nature. Un mod`elede calcul est une repr´esentation math´ematique de ce qui est calculable suivant certaines hypoth`eses sur le monde physique qui nous entoure. Ainsi face `aface, il y a des mod`elesde calcul et des r´ealisationsconcr`etes (les ordinateurs. ). Cette dualit´er´esideaussi dans le rapport entre syntaxe et s´emantique, entre l'objet manipul´eet son sens. Notre premi`ere´etape nous conduira `aexplorer diff´erents mod`elesqui calcu- lent les m^emes fonctions que les machines de Turing, conduisant `ala th`ese 6 SOMMAIRE de Church-Kleene-Turing. Ceci ´etant, chacun de ces mod`elespropose une vision particuli`erequi tisse une notion de calcul. Il y a les calculs s´equentiels et le d´eveloppement de la calculabilit´e.La th´eoriede la calculabilit´ed´efinit une repr´esentation abstraite et alg´ebriquede ce qui est calculable. Un de ses objectifs est ainsi de distinguer ce qui est calculable/d´ecidablede ce qui ne l'est pas, c'est `adire qui est ind´ecidable.Il y a aussi les calculs par automates cellulaires qui sont des machines massivement parall`eleset synchrones. Bien que conceptuellement diff´erents des mod`eless´equentiels, ils calculent pour- tant exactement les m^emesfonctions que les machines de Turing. La cal- culabilit´eest une formalisation math´ematiquede ce qui est calculable. Elle exprime un point de vue d´enotationel.C'est seulement dans les ann´ees1980 que la notion d'algorithme, consid´er´eecomme objet d'´etude,a r´eellement vu le jour. Cette dualit´ed´enotation/intention se refl`eteen logique avec l'´emergencede la th´eoriede la d´emonstration,o`ules d´emonstrationssont des algorithmes au travers de l'isomorphisme de Curry-Howard. 1.2 Emergence de la notion de calculabilit´e Il y a plusieurs ouvrages qui sont un bon point de d´epartsur la calculabilit´e pour le lecteur curieux. Les livres de Rogers [Rog67] et Odiffredi [Odi89] sont des classiques qui traitent de la calculabilit´epour le lecteur qui a un penchant pour les math´ematiques.Le livre de Jones [Jon97] a une approche plus orient´eeth´eoriede la programmation et traite de la complexit´e.Le livre de Savage [Sav98] se concentre sur les aspects machines et algorithmiques. Enfin, m^emesi le livre de Papadimitriou [Pap94] se consacre essentiellement `ala complexit´e,il offre une bonne introduction `ala calculabilit´e. 1.2.1 Mod`elesde calcul discrets par sch´emasde programmes R´ecursivit´eprimitive. Les premi`erestentatives de formalisation math´ematique de la notion de calculabilit´ese sont faites en consid´erant divers proc´ed´esde constructions de fonctions `apartir d'autres fonctions. En termes actuels de programmation, ces constructions correspondent `ades instructions bien connues. C'est ainsi que la premi`ereapproche math´ematiquea ´et´ecelle des fonctions appel´eesaujourd'hui \r´ecursives primitives". Sur les entiers, il s'agit des fonctions que l'on peut obtenir `apartir de fonctions tr`essimples (fonction constante de valeur 0, fonction successeur, fonctions projections k N ! N) par composition et d´efinitionpar r´ecurrence. En termes de pro- grammation imp´erative, ce sont les fonctions programmables avec la seule boucle FOR (donc sans boucle WHILE). Cependant, on s'est assez vite aper¸cu 1.2. EMERGENCE DE LA NOTION DE CALCULABILITE´ 7 (Ackermann, 1928) que cette famille ´etaittrop petite.
Recommended publications
  • Acm Names Fellows for Innovations in Computing
    CONTACT: Virginia Gold 212-626-0505 [email protected] ACM NAMES FELLOWS FOR INNOVATIONS IN COMPUTING 2014 Fellows Made Computing Contributions to Enterprise, Entertainment, and Education NEW YORK, January 8, 2015—ACM has recognized 47 of its members for their contributions to computing that are driving innovations across multiple domains and disciplines. The 2014 ACM Fellows, who hail from some of the world’s leading universities, corporations, and research labs, have achieved advances in computing research and development that are driving innovation and sustaining economic development around the world. ACM President Alexander L. Wolf acknowledged the advances made by this year’s ACM Fellows. “Our world has been immeasurably improved by the impact of their innovations. We recognize their contributions to the dynamic computing technologies that are making a difference to the study of computer science, the community of computing professionals, and the countless consumers and citizens who are benefiting from their creativity and commitment.” The 2014 ACM Fellows have been cited for contributions to key computing fields including database mining and design; artificial intelligence and machine learning; cryptography and verification; Internet security and privacy; computer vision and medical imaging; electronic design automation; and human-computer interaction. ACM will formally recognize the 2014 Fellows at its annual Awards Banquet in June in San Francisco. Additional information about the ACM 2014 Fellows, the awards event, as well as previous
    [Show full text]
  • Journal of Applied Logic
    JOURNAL OF APPLIED LOGIC AUTHOR INFORMATION PACK TABLE OF CONTENTS XXX . • Description p.1 • Impact Factor p.1 • Abstracting and Indexing p.1 • Editorial Board p.1 • Guide for Authors p.5 ISSN: 1570-8683 DESCRIPTION . This journal welcomes papers in the areas of logic which can be applied in other disciplines as well as application papers in those disciplines, the unifying theme being logics arising from modelling the human agent. For a list of areas covered see the Editorial Board. The editors keep close contact with the various application areas, with The International Federation of Compuational Logic and with the book series Studies in Logic and Practical Reasoning. Benefits to authors We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services. Please see our Guide for Authors for information on article submission. This journal has an Open Archive. All published items, including research articles, have unrestricted access and will remain permanently free to read and download 48 months after publication. All papers in the Archive are subject to Elsevier's user license. If you require any further information or help, please visit our Support Center IMPACT FACTOR . 2016: 0.838 © Clarivate Analytics Journal Citation Reports 2017 ABSTRACTING AND INDEXING . Zentralblatt MATH Scopus EDITORIAL BOARD . Executive Editors Dov M. Gabbay, King's College London, London, UK Sarit Kraus, Bar-llan University,
    [Show full text]
  • Table of Contents
    Table of Contents Vision Statement 5 Strengthening the Intellectual Community 7 Academic Review 17 Recognition of Excellence 20 New Faculty 26 Student Prizes and Scholarships 28 News from the Faculties and Schools 29 Institute for Advanced Studies 47 Saltiel Pre‐Academic Center 49 Truman Institute for the Advancement of Peace 50 The Authority for Research Students 51 The Library Authority 54 In Appreciation 56 2009 Report by the Rector Back ACADEMIC DEVELOPMENTS VISION STATEMENT The academic year 2008/2009, which is now drawing to its end, has been a tumultuous one. The continuous budgetary cuts almost prevented the opening of the academic year, and we end the year under the shadow of the current global economic crisis. Notwithstanding these difficulties, the Hebrew University continues to thrive: as the present report shows, we have maintained our position of excellence. However the name of our game is not maintenance, but rather constant change and improvement, and despite the need to cut back and save, we have embarked on several new, innovative initiatives. As I reflect on my first year as Rector of the Hebrew University, the difficulties fade in comparison to the feeling of opportunity. We are fortunate to have the ongoing support of our friends, both in Israel and abroad, which is a constant reminder to us of the significance of the Hebrew University beyond its walls. Prof. Menachem Magidor is stepping down after twelve years as President of the University: it has been an enormous privilege to work with him during this year, and benefit from his experience, wisdom and vision.
    [Show full text]
  • Knowledge Representation in Bicategories of Relations
    Knowledge Representation in Bicategories of Relations Evan Patterson Department of Statistics, Stanford University Abstract We introduce the relational ontology log, or relational olog, a knowledge representation system based on the category of sets and relations. It is inspired by Spivak and Kent’s olog, a recent categorical framework for knowledge representation. Relational ologs interpolate between ologs and description logic, the dominant formalism for knowledge representation today. In this paper, we investigate relational ologs both for their own sake and to gain insight into the relationship between the algebraic and logical approaches to knowledge representation. On a practical level, we show by example that relational ologs have a friendly and intuitive—yet fully precise—graphical syntax, derived from the string diagrams of monoidal categories. We explain several other useful features of relational ologs not possessed by most description logics, such as a type system and a rich, flexible notion of instance data. In a more theoretical vein, we draw on categorical logic to show how relational ologs can be translated to and from logical theories in a fragment of first-order logic. Although we make extensive use of categorical language, this paper is designed to be self-contained and has considerable expository content. The only prerequisites are knowledge of first-order logic and the rudiments of category theory. 1. Introduction arXiv:1706.00526v2 [cs.AI] 1 Nov 2017 The representation of human knowledge in computable form is among the oldest and most fundamental problems of artificial intelligence. Several recent trends are stimulating continued research in the field of knowledge representation (KR).
    [Show full text]
  • Contextuality, Cohomology and Paradox
    The Sheaf Team Rui Soares Barbosa, Kohei Kishida, Ray Lal and Shane Mansfield Samson Abramsky Joint work with Rui Soares Barbosa, KoheiContextuality, Kishida, Ray LalCohomology and Shane and Mansfield Paradox (Department of Computer Science, University of Oxford)2 / 37 Contextuality. Key to the \magic" of quantum computation. Experimentally verified, highly non-classical feature of physical reality. And pervasive in logic, computation, and beyond. In a nutshell: data which is locally consistent, but globally inconsistent. We find a direct connection between the structure of quantum contextuality and classic semantic paradoxes such as \Liar cycles". Conversely, contextuality offers a novel perspective on these paradoxes. Cohomology. Sheaf theory provides the natural mathematical setting for our analysis, since it is directly concerned with the passage from local to global. In this setting, it is furthermore natural to use sheaf cohomology to characterise contextuality. Cohomology is one of the major tools of modern mathematics, which has until now largely been conspicuous by its absence, in logic, theoretical computer science, and quantum information. Our results show that cohomological obstructions to the extension of local sections to global ones witness a large class of contextuality arguments. Contextual Semantics Samson Abramsky Joint work with Rui Soares Barbosa, KoheiContextuality, Kishida, Ray LalCohomology and Shane and Mansfield Paradox (Department of Computer Science, University of Oxford)3 / 37 In a nutshell: data which is locally consistent, but globally inconsistent. We find a direct connection between the structure of quantum contextuality and classic semantic paradoxes such as \Liar cycles". Conversely, contextuality offers a novel perspective on these paradoxes. Cohomology. Sheaf theory provides the natural mathematical setting for our analysis, since it is directly concerned with the passage from local to global.
    [Show full text]
  • Computability Computability Computability Turing, Gödel, Church, and Beyond Turing, Gödel, Church, and Beyond Edited by B
    computer science/philosophy Computability Computability Computability turing, Gödel, Church, and beyond turing, Gödel, Church, and beyond edited by b. Jack Copeland, Carl J. posy, and oron Shagrir edited by b. Jack Copeland, Carl J. posy, and oron Shagrir Copeland, b. Jack Copeland is professor of philosophy at the ContributorS in the 1930s a series of seminal works published by university of Canterbury, new Zealand, and Director Scott aaronson, Dorit aharonov, b. Jack Copeland, martin Davis, Solomon Feferman, Saul alan turing, Kurt Gödel, alonzo Church, and others of the turing archive for the History of Computing. Kripke, Carl J. posy, Hilary putnam, oron Shagrir, Stewart Shapiro, Wilfried Sieg, robert established the theoretical basis for computability. p Carl J. posy is professor of philosophy and member irving Soare, umesh V. Vazirani editors and Shagrir, osy, this work, advancing precise characterizations of ef- of the Centers for the Study of rationality and for lan- fective, algorithmic computability, was the culmina- guage, logic, and Cognition at the Hebrew university tion of intensive investigations into the foundations of Jerusalem. oron Shagrir is professor of philoso- of mathematics. in the decades since, the theory of phy and Former Chair of the Cognitive Science De- computability has moved to the center of discussions partment at the Hebrew university of Jerusalem. He in philosophy, computer science, and cognitive sci- is currently the vice rector of the Hebrew university. ence. in this volume, distinguished computer scien- tists, mathematicians, logicians, and philosophers consider the conceptual foundations of comput- ability in light of our modern understanding. Some chapters focus on the pioneering work by turing, Gödel, and Church, including the Church- turing thesis and Gödel’s response to Church’s and turing’s proposals.
    [Show full text]
  • Current Issue of FACS FACTS
    Issue 2021-2 July 2021 FACS A C T S The Newsletter of the Formal Aspects of Computing Science (FACS) Specialist Group ISSN 0950-1231 FACS FACTS Issue 2021-2 July 2021 About FACS FACTS FACS FACTS (ISSN: 0950-1231) is the newsletter of the BCS Specialist Group on Formal Aspects of Computing Science (FACS). FACS FACTS is distributed in electronic form to all FACS members. Submissions to FACS FACTS are always welcome. Please visit the newsletter area of the BCS FACS website for further details at: https://www.bcs.org/membership/member-communities/facs-formal-aspects- of-computing-science-group/newsletters/ Back issues of FACS FACTS are available for download from: https://www.bcs.org/membership/member-communities/facs-formal-aspects- of-computing-science-group/newsletters/back-issues-of-facs-facts/ The FACS FACTS Team Newsletter Editors Tim Denvir [email protected] Brian Monahan [email protected] Editorial Team: Jonathan Bowen, John Cooke, Tim Denvir, Brian Monahan, Margaret West. Contributors to this issue: Jonathan Bowen, Andrew Johnstone, Keith Lines, Brian Monahan, John Tucker, Glynn Winskel BCS-FACS websites BCS: http://www.bcs-facs.org LinkedIn: https://www.linkedin.com/groups/2427579/ Facebook: http://www.facebook.com/pages/BCS-FACS/120243984688255 Wikipedia: http://en.wikipedia.org/wiki/BCS-FACS If you have any questions about BCS-FACS, please send these to Jonathan Bowen at [email protected]. 2 FACS FACTS Issue 2021-2 July 2021 Editorial Dear readers, Welcome to the 2021-2 issue of the FACS FACTS Newsletter. A theme for this issue is suggested by the thought that it is just over 50 years since the birth of Domain Theory1.
    [Show full text]
  • Formalizing Common Sense Reasoning for Scalable Inconsistency-Robust Information Integration Using Direct Logictm Reasoning and the Actor Model
    Formalizing common sense reasoning for scalable inconsistency-robust information integration using Direct LogicTM Reasoning and the Actor Model Carl Hewitt. http://carlhewitt.info This paper is dedicated to Alonzo Church, Stanisław Jaśkowski, John McCarthy and Ludwig Wittgenstein. ABSTRACT People use common sense in their interactions with large software systems. This common sense needs to be formalized so that it can be used by computer systems. Unfortunately, previous formalizations have been inadequate. For example, because contemporary large software systems are pervasively inconsistent, it is not safe to reason about them using classical logic. Our goal is to develop a standard foundation for reasoning in large-scale Internet applications (including sense making for natural language) by addressing the following issues: inconsistency robustness, classical contrapositive inference bug, and direct argumentation. Inconsistency Robust Direct Logic is a minimal fix to Classical Logic without the rule of Classical Proof by Contradiction [i.e., (Ψ├ (¬))├¬Ψ], the addition of which transforms Inconsistency Robust Direct Logic into Classical Logic. Inconsistency Robust Direct Logic makes the following contributions over previous work: Direct Inference Direct Argumentation (argumentation directly expressed) Inconsistency-robust Natural Deduction that doesn’t require artifices such as indices (labels) on propositions or restrictions on reiteration Intuitive inferences hold including the following: . Propositional equivalences (except absorption) including Double Negation and De Morgan . -Elimination (Disjunctive Syllogism), i.e., ¬Φ, (ΦΨ)├T Ψ . Reasoning by disjunctive cases, i.e., (), (├T ), (├T Ω)├T Ω . Contrapositive for implication i.e., Ψ⇒ if and only if ¬⇒¬Ψ . Soundness, i.e., ├T ((├T) ⇒ ) . Inconsistency Robust Proof by Contradiction, i.e., ├T (Ψ⇒ (¬))⇒¬Ψ 1 A fundamental goal of Inconsistency Robust Direct Logic is to effectively reason about large amounts of pervasively inconsistent information using computer information systems.
    [Show full text]
  • An Observation About Truth
    An Observation about Truth (with Implications for Meaning and Language) Thesis submitted for the degree of “Doctor of Philosophy” By David Kashtan Submitted to the Senate of the Hebrew University of Jerusalem November 2017 i This work was carried out under the supervision of: Prof. Carl Posy ii Racheli Kasztan-Czerwonogórze i Avigail Kasztan-Czerwonogórze i ich matce iii Acknowledgements I am the proximal cause of this dissertation. It has many distal causes, of which I will give only a partial list. During the several years in which this work was in preparation I was lucky to be supported by several sources. For almost the whole duration of my doctoral studies I was a funded doctoral fellow at the Language, Logic and Cognition Center. The membership in the LLCC has been of tremendous significance to my scientific education and to the final shape and content of this dissertation. I thank especially Danny Fox, from whom I learnt how linguistics is done (though, due to my stubbornness, not how to do it) and all the other members of this important place, past and present, and in particular Lital Myers who makes it all come together. In the years 2011-2013 I was a funded participant in an inter-university research and study program about Kantian philosophy. The program was organized by Ido Geiger and Yakir Levin from Ben-Gurion University, and by Eli Friedlander, Ofra Rechter and Yaron Senderowicz from Tel-Aviv University. The atmosphere in the program was one of intimacy and devotion to philosophy; I predict we will soon witness blossoms, the seeds of which were planted there.
    [Show full text]
  • Physics from Computer Science
    Physics from Computer Science Samson Abramsky and Bob Coecke Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK. samson abramsky · [email protected] Where sciences interact. We are, respectively, a computer scientist interested in the logic and seman- tics of computation, and a physicist interested in the foundations of quantum mechanics. Currently we are pursuing what we consider to be a very fruitful collaboration as members of the same Computer Science department. How has this come about? It flows naturally from the fact that we are working in a field of computer science where physical theory starts to play a key role, that is, natural computation, with, of course, quantum computation as a special case. At this workshop there will be many advocates of this program present, and we are honoured to be part of that community. But there is more. Our joint research is both research on semantics for distributed computing with non-von Neumann architectures, and on the axiomatic foundations of physical theories. This dual character of our work comes without any compromise, and proves to be very fruitful. Computational architectures as toy models for physics. Computer science has something more to offer to the other sciences than the computer. Indeed, on the topic of mathematical and logical un- derstanding of fundamental transdisciplinary scientific concepts such as interaction, concurrency and causality, synchrony and asynchrony, compositional modelling and reasoning, open systems, qualitative versus quantitative reasoning, operational methodologies, continuous versus discrete, hybrid systems etc. computer science is far ahead of many other sciences, due to the challenges arising from the amaz- ing rapidity of the technology change and development it is constantly being confronted with.
    [Show full text]
  • A Fully Abstract Game Semantics for Countable Nondeterminism
    A Fully Abstract Game Semantics for Countable Nondeterminism W. John Gowers1 Computer Science Department, University of Bath Claverton Down Road, Bath. BA2 7QY, United Kingdom [email protected] https://orcid.org/0000-0002-4513-9618 James D. Laird Department of Computer Science, University of Bath Claverton Down Road, Bath. BA2 7QY, United Kingdom [email protected] Abstract The concept of fairness for a concurrent program means that the program must be able to exhibit an unbounded amount of nondeterminism without diverging. Game semantics models of nondeterminism show that this is hard to implement; for example, Harmer and McCusker’s model only admits infinite nondeterminism if there is also the possibility of divergence. We solve a long standing problem by giving a fully abstract game semantics for a simple stateful language with a countably infinite nondeterminism primitive. We see that doing so requires us to keep track of infinitary information about strategies, as well as their finite behaviours. The unbounded nondeterminism gives rise to further problems, which can be formalized as a lack of continuity in the language. In order to prove adequacy for our model (which usually requires continuity), we develop a new technique in which we simulate the nondeterminism using a deterministic stateful construction, and then use combinatorial techniques to transfer the result to the nondeterministic language. Lastly, we prove full abstraction for the model; because of the lack of continuity, we cannot deduce this from definability of compact elements in the usual way, and we have to use a stronger universality result instead.
    [Show full text]
  • A Bibliography of Publications on Hashing Algorithms
    A Bibliography of Publications on Hashing Algorithms Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 24 August 2021 Version 2.344 Title word cross-reference [BRM+09, BS91b, BS91a, CM01, Gir87, Ven86, WS93, War14, Coh97, Coh98, LHC05, QG89, QG90]. O(1) [FKS84]. O(log log n) #2 [Cer85]. [MN90]. O(log W ) [LS07b]. O(N) [HG77, MN90]. pn [Ack74]. π [FFGL10]. q 1 [PPS21]. 10 [GLM+10]. 11 [SY11]. 2 [OWZ14]. SL2 [MT16]. Z=p [Mue04]. + [EAA 16, GG92, HD72]. 2n [QG89, QG90]. + 3 [CBA94, Fly92, GG92, GK94, LMJC07, -approximate [SWQ 14]. -ary LDY+16, SYW+20, WSSO12]. 5=8 [Sch11]. [CC91, CLC92, Gui78, RRS07]. -Bit $62m [Nic17]. 64 [LK16]. ∗ [LNS93]. + [QG89, QG90, LK16, LK11]. -Body MT [WS93, War14]. -codes [Bie95]. -dimension [Omi88, Omi89a]. [HRB13]. 2 [AK98, QJ97]. A [Lyo83]. A∗ [MD97]. A2 [LHC05]. -dimensional [Yuv75]. + + -Functions [OOB12]. -gram [Bie95]. α [ABC 16]. b [LK11]. B [TB91]. + c [SWQ+14]. d [FPS17, PRM16]. f [LG78]. [Coh98, Ven86]. -Grams [Coh97, BRM 09]. 2 -Hash [BS91b, BS91a]. -Independence GL2(Fpn )[TNS20].H [DRS12]. H2A [CBB05]. K [Yuv75, APV07, CL85, CC91, [PT16, PT10a]. -mer [HC14, PNPC20]. CLC92, DKRT15, Die96, EFMRK+20, -min-wise [FPS17]. -Nearest [CL85]. + -partitions [DKRT15]. -Pipeline [PRM16]. FPS17, Gui78, HC14, LLG 17, PT10a, + PT16, PNPC20, RRS07, SS90b]. L [OOB12]. -probe [SS90b]. -Round [GLM 10, SY11].
    [Show full text]