Extension of the Upper Yellow River Into the Tibet Plateau: Review and New Data
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Regional Climatology East Asian Seas: an Introduction
NOAA Atlas NESDIS 79 doi:10.7289/V5D21VM9 REGIONAL CLIMATOLOGY OF THE EAST ASIAN SEAS: AN INTRODUCTION National Centers for Environmental Information Silver Spring, Maryland December 2015 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Environmental Satellite, Data, and Information Service National Centers for Environmental Information Additional copies of this publication, as well as information about National Centers for Environmental Information (formerly the National Oceanographic Data Center) data holdings and services, are available upon request directly from the National Centers for Environmental Information. National Centers for Environmental Information User Services Team NOAA/NESDIS/NCEI SSMC III, 4th floor 1315 East-West Highway Silver Spring, MD 20910-3282 Telephone: (301) 713-3277 E-mail: [email protected] NCEI Oceans Home Page: http://www.ncei.noaa.gov/ This document should be cited as: Johnson, D.R., Boyer, T.P., 2015: Regional Climatology of the East Asian Seas: An Introduction. NOAA Atlas NESDIS 79, Silver Spring, MD, 37 pp. doi:10.7289/V5D21VM9. This document is available at http://data.nodc.noaa.gov/woa/REGCLIM/EAS/DOC/nesdis79-doi107289V5D21VM9.pdf. Editor: Dan Seidov, National Centers for Environmental Information Technical Editor: Alexey Mishonov, National Centers for Environmental Information NOAA Atlas NESDIS 79 doi:10.7289/V5D21VM9 REGIONAL CLIMATOLOGY OF THE EAST ASIAN SEAS: AN INTRODUCTION Daphne R. Johnson and Tim P. Boyer National Centers for Environmental Information Silver Spring, Maryland December 2015 U.S. DEPARTMENT OF COMMERCE Penny Pritzker, Secretary National Oceanic and Atmospheric Administration Kathryn Sullivan Under Secretary of Commerce for Oceans and Atmosphere and NOAA Administrator National Environmental Satellite, Data, and Information Service Stephen Volz, Assistant Administrator This page intentionally left blank Table of Contents ABSTRACT ...................................................................................................................................... -
China and the Law of the Sea: an Update
IV China and the Law of the Sea: An Update Guifang Xue* Introduction his article examines the practice of the People's Republic of China with re Tspect to the 1982 United Nations Convention on the Law of the Sea {1982 LOS Convention),l Two principal areas will be assessed: China's efforts to accom modate the challenges of the Convention to its ocean domain as a coastal State and its major maritime legislation to implement the Convention regime. The analysis begins with a brief introduction of China's maritime features and a review of its basic stance toward the Convention. This is followed by a discussion of the major challenges China encountered while establishing its ocean domain based on the Convention regime. China's efforts in implementing the 1982 LOS Convention through national legislation are examined to assess the consistency of that statu tory framework with Convention requirements. Finally, conclusions are drawn from China's law of the sea practice. It is shown that China, fo r its part, has been accelerating domestic procedures with a view to enabling it to comply with Con vention requi rements. However, China's maritime practice has not been wholly consistent with Convention provisions. At the same time, China's oceans policy adjustments indicate a move away from its previous position as solely a coastal .. Direaor and Professor, Institute for the Law of the $ea, Ocean University of China . The views expressed herein are solely those of the author and do not necessarily reflect those of the government of the People's Republic of China Part of this article is built on the author's previous work entitled China and International Fisheries Law and Policy, published by Martinus NijhoffPublishers in 2005. -
Bohai-Sea-Sustainable-Development
BOHAI SEA SUSTAINABLE DEVELOPMENT S TRATEGY BOHAI SEA SUSTAINABLE DEVELOPMENT STRATEGY STATE OCEANIC ADMINISTRATION 1 BOHAI SEA SUSTAINABLE DEVELOPMENT S TRATEGY BOHAI SEA SUSTAINABLE DEVELOPMENT STRATEGY STATE OCEANIC ADMINISTRATION 1 BOHAI SEA SUSTAINABLE DEVELOPMENT S TRATEGY 2 BOHAI SEA SUSTAINABLE DEVELOPMENT S TRATEGY TABLE OF CONTENTS List of Acronyms and Abbreviations . iv List of Tables . v List of Figures . v Preface . vi x Acknowledgements . vii xx Foreword . 1 1 Overview of Bohai Sea . 9 The Value of Bohai Sea . 15 15 Threats and Impacts . 25 25 Our Response . 33 33 Principles and Basis of the Strategy . .41 41 The Strategies . .47 47 Communicate . 49 49 Preserve . 53 53 Protect . 57 57 Sustain . 63 63 Develop . 66 66 Executing the Strategy . 75 75 References . 79 79 iii3 BOHAI SEA SUSTAINABLE DEVELOPMENT S TRATEGY LIST OF A CRONYMS AND A BBREVIATIONS BSAP – Blue Sea Action Plan BSCMP – Bohai Sea Comprehensive Management Program BSEMP – Bohai Sea Environmental Management Project BS-SDS – Bohai Sea – Sustainable Development Strategy CNOOC – China National Offshore Oil Corp. CPUE – catch per unit of effort GDP – Gross Domestic Product GIS – Geographic Information System GPS – Global Positioning System ICM – Integrated Coastal Management MOA – Ministry of Agriculture MOCT – Ministry of Communication and Transportation PEMSEA – GEF/UNDP/IMO Regional Programme on Partnerships in Environmental Management for the Seas of East Asia RS – Remote sensing SEPA – State Environmental Protection Administration SOA – State Oceanic Administration iv4 BOHAI SEA SUSTAINABLE DEVELOPMENT S TRATEGY LIST OF TABLES Table 1. Population Growth in the Bohai Sea Region (Millions) . 11 Table 2. Population Density of the Bohai Sea Region and Its Coastal Areas . -
Characteristics of the Bohai Sea Oil Spill and Its Impact on the Bohai Sea Ecosystem
Article SPECIAL TOPIC: Change of Biodiversity Patterns in Coastal Zone July 2013 Vol.58 No.19: 22762281 doi: 10.1007/s11434-012-5355-0 SPECIAL TOPICS: Characteristics of the Bohai Sea oil spill and its impact on the Bohai Sea ecosystem GUO Jie1,2,3*, LIU Xin1,2,3 & XIE Qiang4,5 1 Key Laboratory of Coastal Zone Environmental Processes, Chinese Academy of Sciences, Yantai 264003, China; 2 Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai 264003, China; 3 Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; 4 State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; 5 Sanya Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China Received April 26, 2012; accepted June 11, 2012; published online July 16, 2012 In this paper, ENVISAT ASAR data and the Estuary, Coastal and Ocean Model was used to analyze and compare characteristics of the Bohai Sea oil spill. The oil slicks have spread from the point of the oil spill to the east and north-western Bohai Sea. We make a comparison between the changes caused by the oil spill on the chlorophyll concentration and the sea surface temperature using MODIS data, which can be used to analyze the effect of the oil spill on the Bohai Sea ecosystem. We found that the Bohai Sea oil spill caused abnormal chlorophyll concentration distributions and red tide nearby area of oil spill. ENVISAT ASAR, MODIS, oil spill, chlorophyll, sea surface temperature Citation: Guo J, Liu X, Xie Q. -
Changing Climate and Implications for Water Use in the Hetao Basin, Yellow River, China
Hydrological processes and water security in a changing world Proc. IAHS, 383, 51–59, 2020 https://doi.org/10.5194/piahs-383-51-2020 Open Access © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Changing climate and implications for water use in the Hetao Basin, Yellow River, China Ian White1, Tingbao Xu1, Jicai Zeng2, Jian Yu3, Xin Ma3, Jinzhong Yang2, Zailin Huo4, and Hang Chen4 1Fenner School of Environment and Society, Australian National University, Canberra, ACT, 0200, Australia 2State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430068, China 3Water Resources Research Institute of Inner Mongolia, No. 11, Genghis Khan East Road, New Town, Hohhot, Inner Mongolia, 010020, China 4Centre for Agricultural Water Research in China, China Agricultural University, No. 17, East Rd, Haidian, Beijing, 100083, China Correspondence: Ian White ([email protected]) Published: 16 September 2020 Abstract. Balancing water allocations in river basins between upstream irrigated agriculture and downstream cities, industry and environments is a global challenge. The effects of changing allocations are exemplified in the arid Hetao Irrigation District on the Yellow River, one of China’s three largest irrigation districts. Amongst the many challenges there, the impact of changing climate on future irrigation water demand is an underlying concern. In this paper we analyse trends in local climate data from the late 1950s and consider the implications for irrigation in the Basin. Since 1958, daily minimum temperatures, Tmin in the Basin have increased at three times the rate of daily maximum temperatures, Tmax. Despite this, there has been no significant increases in annual precipitation, P or pan evaporation, Epan. -
Eco-Environment Status Evaluation and Change Analysis of Qinghai Based on National Geographic Conditions Census Data
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018 ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China Eco-environment Status Evaluation and Change Analysis of Qinghai Based on National Geographic Conditions Census Data Min Zheng1,2, Maoliang Zhu1,2, Yuan Wang1,2, Changjun Xu1,2, Honghai Yang1,2 1Provincial Geomatics Center of Qinghai, Xining, China; 2Geomatics Technology and Application key Laboratory of Qinghai Province, Xining, China; KEY WORDS: national geographic conditions census, remote sensing, eco-environment status, ecological index, ecological change analysis ABSTRACT: As the headstream of the Yellow River, the Yangtze River and the Lantsang River, located in the hinterland of Qinghai-Tibet Plateau, Qinghai province is hugely significant for ecosystem as well as for ecological security and sustainable development in China. With the accomplishment of the first national geographic condition census, the frequent monitoring has begun. The classification indicators of the census and monitoring data are highly correlated with Technical Criterion for Ecosystem Status Evaluation released by Ministry of Environmental Protection in 2015. Based on three years’ geographic conditions data (2014-2016), Landsat-8 images and thematic data (water resource, pollution emissions, meteorological data, soil erosion, etc.), a multi-years and high-precision eco-environment status evaluation and spatiotemporal change analysis of Qinghai province has been researched on the basis of Technical Criterion for Ecosystem Status Evaluation in this paper. Unlike the evaluation implemented by environmental protection department, the evaluation unit in this paper is town rather than county. The evaluation result shows that the eco-environment status in Qinghai is generally in a fine condition, and has significant regional differences. -
China: Xining Flood and Watershed Management Project
E2007 V4 Public Disclosure Authorized China: Xining Flood and Watershed Management Project Public Disclosure Authorized Environmental Assessment Summary Public Disclosure Authorized Environmental Science Research & Design Institute of Gansu Province October 1, 2008 Public Disclosure Authorized Content 1. Introduction .................................................................................................................................. 1 1.1 Project background............................................................................................................ 1 1.2 Basis of the EA.................................................................................................................. 3 1.3 Assessment methods and criteria ...................................................................................... 4 1.4 Contents of the report........................................................................................................ 5 2. Project Description....................................................................................................................... 6 2.1 Task................................................................................................................................... 6 2.2 Component and activities.................................................................................................. 6 2.3 Linked projects................................................................................................................ 14 2.4 Land requisition and resettlement -
The Later Han Empire (25-220CE) & Its Northwestern Frontier
University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2012 Dynamics of Disintegration: The Later Han Empire (25-220CE) & Its Northwestern Frontier Wai Kit Wicky Tse University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Asian History Commons, Asian Studies Commons, and the Military History Commons Recommended Citation Tse, Wai Kit Wicky, "Dynamics of Disintegration: The Later Han Empire (25-220CE) & Its Northwestern Frontier" (2012). Publicly Accessible Penn Dissertations. 589. https://repository.upenn.edu/edissertations/589 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/589 For more information, please contact [email protected]. Dynamics of Disintegration: The Later Han Empire (25-220CE) & Its Northwestern Frontier Abstract As a frontier region of the Qin-Han (221BCE-220CE) empire, the northwest was a new territory to the Chinese realm. Until the Later Han (25-220CE) times, some portions of the northwestern region had only been part of imperial soil for one hundred years. Its coalescence into the Chinese empire was a product of long-term expansion and conquest, which arguably defined the egionr 's military nature. Furthermore, in the harsh natural environment of the region, only tough people could survive, and unsurprisingly, the region fostered vigorous warriors. Mixed culture and multi-ethnicity featured prominently in this highly militarized frontier society, which contrasted sharply with the imperial center that promoted unified cultural values and stood in the way of a greater degree of transregional integration. As this project shows, it was the northwesterners who went through a process of political peripheralization during the Later Han times played a harbinger role of the disintegration of the empire and eventually led to the breakdown of the early imperial system in Chinese history. -
54026-001: Strengthening Capacity, Institutions, and Policies for Enabling High-Quality, Green Development in the Yellow River E
Technical Assistance Report Project Number: 54026-001 Knowledge and Support Technical Assistance Cluster (C-KSTA) October 2020 People’s Republic of China: Strengthening Capacity, Institutions, and Policies for Enabling High-Quality, Green Development in the Yellow River Ecological Corridor This document is being disclosed to the public in accordance with ADB’s Access to Information Policy. CURRENCY EQUIVALENTS (as of 30 September 2020) Currency unit – yuan (CNY) CNY1.00 = $0.1467 $1.00 = CNY6.8160 ABBREVIATIONS ADB – Asian Development Bank EARD – East Asia Department PRC – People’s Republic of China TA – technical assistance YREB – Yangtze River Economic Belt YREC – Yellow River Ecological Corridor NOTE In this report, "$" refers to United States dollars. Vice-President Ahmed M. Saeed, Operations 2 Director General James P. Lynch, East Asia Department (EARD) Director Qingfeng Zhang, Environment, Natural Resources, and Agriculture Division (EAER), EARD Team leaders Suzanne K. Robertson, Principal Natural Resources and Agriculture Specialist, EAER, EARD Silvia Cardascia, Young Professional, EAER, EARD Team members Xueliang Cai, Water Resources Specialist, EAER, EARD Mingyuan Fan, Principal Water Resources Specialist, EAER, EARD Dongmei Guo, Environment Specialist, EAER, EARD Rabindra Osti, Senior Water Resources Specialist, EAER, EARD Noreen Joy Ruanes, Senior Operations Assistant, EAER, EARD Au Shion Yee, Senior Water Resources Specialist, EAER, EARD In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area. CONTENTS Page KNOWLEDGE AND SUPPORT TECHNICAL ASSISTANCE AT A GLANCE I. -
Low Ph and Carbonate Saturation State of Aragonite in China Seas: Variations and Controls
Low pH and carbonate saturation state of aragonite in China Seas: variations and controls Juying Wang, Weidong Zhai, Nan Zhen, Jingli Mu, Xuemei Xu and other contributors National Marine Environmental Monitoring Center, SOA, CHINA June 17, 2013 OUTLINE • Background of OA • Coastal acidification and case studies in China; • Chinese activities at national scale; Ocean Acidification: Global Warming’s Twin The burning of fossil fuels result in increased CO 2 in the atmosphere being taken up by the ocean resulting in it becoming more acidic. Source: Laffoley et.al. 2010. Ocean Acidification: Questions Answered. Oceans are acidifying fast Changes in oceanic pH over the last 25 million years Source after Turley et al. in Avoiding Dangerous Climate Change (2006). pH Time (millions of years before present) Source: Laffoley et.al. 2010. Ocean Acidification: Questions Answered. Changes in surface oceanic pCO2 (in matm) and pH from time series stations Source: IPCC, 2007 Ocean Acidification Impacts Stein, 2009 Decrease in pH 0.1 over the last two centuries 30% increase in acidity; decrease in carbonate ion of about 16% These changes in pH and carbonate chemistry may have serious impacts on open ocean and coastal marine ecosystems. Hall-Spencer, Nature, June 18, 2008 What we know about the ocean chemistry of …saturation state 2− − CO2 + CO3 + H2O ⇔ 2HCO3 Stein, 2009; Feely 2009 Saturation State []2+ []2− Ω Ca CO 3 phase = Aragonite * Ksp ,phase 2+ + 2−→ Ca CO3 CaCO3(s) Ω >1= precipitation Ω = = calcium carbonate calcium 1 equilibrium calcium carbonate calcium Ω < = carbonate 1 dissolution Calcite marine calcifying organisms may require much higher Ω for optimal growth Saturation State []2+ []2− Ω Ca CO 3 phase = * Ksp ,phase Natural processes that could accelerate the ocean acidification of coastal waters Local Oceanography: coastal upwelling Metabolism Processes Regional Environ. -
Geochemical Characteristics of Rare Earth
Geochemical characteristics of rare earth elements in sediments of the North China Plain: implication for sedimentation process Haiyan Liu, Huaming Guo, Olivier Pourret, Maohan Liu To cite this version: Haiyan Liu, Huaming Guo, Olivier Pourret, Maohan Liu. Geochemical characteristics of rare earth elements in sediments of the North China Plain: implication for sedimentation process. 2020. hal- 03285967 HAL Id: hal-03285967 https://hal.archives-ouvertes.fr/hal-03285967 Preprint submitted on 13 Jul 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Geochemical characteristics of rare earth elements in sediments of 2 the North China Plain: implication for sedimentation process 3 4 Haiyan Liu 1,*, Huaming Guo 2 , Olivier Pourret3, Maohan, Liu1 5 6 1 School of Water Resources and Environmental Engineering, East China University 7 of Technology, Nanchang 330013, P. R. China 8 2 School of Water Resources and Environment, China University of Geosciences 9 (Beijing), Beijing 100083, P.R. China 10 3 UniLaSalle, AGHYLE, Beauvais, France 11 12 * Corresponding author: Haiyan Liu 13 No. 418 Guanglan Road, Jingkai District, Nanchang 330013, P. R. China 14 E-mail address: [email protected] 15 Tel.: +86-1881-3181-419 16 Fax: +86-0791-8389-8197 17 H. -
Foraminiferal Faunal Trends and Assemblages of the Bohai Sea, Huanghai Sea and East China Sea
BULLETIN OF MARINE SCIENCE. 47(1:): 192-212. 1990 FORAMINIFERAL FAUNAL TRENDS AND ASSEMBLAGES OF THE BOHAI SEA, HUANGHAI SEA AND EAST CHINA SEA Shouyi Zheng ABSTRACT Qualitative and quantitative studies of Recent foraminifera of the Bohai, Huanghai, and East China Seas gave distributional data on: faunal composition; dominant indicator species (including species occurring in high to low numbers); species diversity; faunal dominance; absolute abundance; percentage composition of agglutinated, porcelaneous and hyaline tests; planktonic/benthonic (P/B) foraminiferal ratio; and others. Correlation offaunal trends with known environmental parameters such as salinity, temperature, prevailing current and water mass systems, substrate, CaCO, content of sediment, and more allowed establishment of foraminiferal assemblages useful for ecological and paleoecological interpretations. Based on marked changes in frequency composition among dominant benthic species, six benthonic assemblages were recognized in the Bohai Sea, three in the northern Huanghai Sea, five in the southern Huanghai Sea, and nine in the East China Sea. In addition, four planktonic assemblages characterized the East China Sea and southern Huanghai Sea. The small size, great abundance and wide distribution of their preservable tests in Recent and fossil sediments, together with their usefulness as environmental indicators, has resulted in more comprehensive study of foraminifera than most other marine protozoa. Their sensitivity to environmental changes is reflected in various specific and non-specific distributional trends. The cumulative occurrence of their preservable tests on the sea floor mirrors not only small-scale temporal and spatial features, but also long-term average environmental and taphonomic processes. PHYSIOGRAPHY AND HYDROGRAPHY OF THE AREA STUDIED The three seas under study for their foraminiferal trends cover a range of 15 degrees of latitude (Fig.