Extension of the Upper Yellow River Into the Tibet Plateau: Review and New Data

Total Page:16

File Type:pdf, Size:1020Kb

Extension of the Upper Yellow River Into the Tibet Plateau: Review and New Data quaternary Article Extension of the Upper Yellow River into the Tibet Plateau: Review and New Data Zhengchen Li 1, Xianyan Wang 1,* , Jef Vandenberghe 2 and Huayu Lu 1 1 School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; [email protected] (Z.L.); [email protected] (H.L.) 2 Department of Earth Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; [email protected] * Correspondence: [email protected] Abstract: The Wufo Basin at the margin of the northeastern Tibet Plateau connects the upstream reaches of the Yellow River with the lowland catchment downstream, and the fluvial terrace sequence in this basin provides crucial clues to understand the evolution history of the Yellow River drainage system in relation to the uplift and outgrowth of the Tibetan Plateau. Using field survey and analysis of Digital Elevation Model/Google Earth imagery, we found at least eight Yellow River terraces in this area. The overlying loess of the highest terrace was dated at 1.2 Ma based on paleomagnetic stratigraphy (two normal and two reversal polarities) and the loess-paleosol sequence (12 loess- paleosol cycles). This terrace shows the connections of drainage parts in and outside the Tibetan Plateau through its NE margin. In addition, we review the previously published data on the Yellow River terraces and ancient large lakes in the basins. Based on our new data and previous researches, we conclude that the modern Yellow River, with headwaters in the Tibet Plateau and debouching in the Bohai Sea, should date from at least 1.2 Ma. Ancient large lakes (such as the Hetao and Sanmen Lakes) developed as exorheic systems and flowed through the modern Yellow River at that time. Citation: Li, Z.; Wang, X.; Vandenberghe, J.; Lu, H. Extension of Keywords: terraces; loess-paleosol sequence; Yellow River; magneto-stratigraphy; Northeastern the Upper Yellow River into the Tibet Tibet Plateau Plateau: Review and New Data. Quaternary 2021, 4, 14. https:// doi.org/10.3390/quat4020014 1. Introduction Academic Editor: Pierre Antoine The evolution of the Yellow River system is influenced by tectonic movements, climatic change, and human activity [1,2]. Meanwhile, the uplift of the Tibet Plateau reinforces the Received: 8 February 2021 strength of the Asian Monsoon and plays an important role in global climate change [3]. Accepted: 20 April 2021 In turn, rapid erosion may lead to a crust isostatic rebound and cause tectonic activity [4]. Published: 25 April 2021 Moreover, the river network reorganization influenced by the tectonic activities, especially for larger river, may have affected biodiversity and even hominin migration [5,6]. As a Publisher’s Note: MDPI stays neutral significant geological event due to the collision between the Indian and Eurasian plates [7,8], with regard to jurisdictional claims in the uplift of the Tibet Plateau has an important influence on global climate, and results in published maps and institutional affil- the aridification of northwestern China [9] and the re-configurated drainage systems in iations. Asia. The Yellow River, the second-longest river in China, originates from the Tibet Plateau, flows through isolated basins including rift valleys and finally drains in the Bohai Sea (Figure1). Unraveling the evolutionary history of the Yellow River may help understand the uplift of the Tibet Plateau. Copyright: © 2021 by the authors. The origin and evolutionary history of the Yellow River have been debated for a Licensee MDPI, Basel, Switzerland. long time with different viewpoints. An hypothesis suggests the Yellow River might have This article is an open access article extended from downstream to upstream through headward erosion into the Tibet Plateau, distributed under the terms and cutting across a series of alternating basin-mountain structures while capturing a series of conditions of the Creative Commons endorheic drainage systems [10–12]. In such a scenario, some basins may have developed Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ a spillover to join the Yellow River drainage [10,11]. The final extension of the entire Yellow 4.0/). River, from the Bohai Sea up to its present source, would have been of relatively young age Quaternary 2021, 4, 14. https://doi.org/10.3390/quat4020014 https://www.mdpi.com/journal/quaternary Quaternary 2021, 4, x FOR PEER REVIEW 2 of 18 Quaternary 2021, 4, 14 a spillover to join the Yellow River drainage [10,11]. The final extension of the entire2 ofYel- 18 low River, from the Bohai Sea up to its present source, would have been of relatively young age (mid-Pleistocene). In a second scenario, it is suggested that the current Yellow (mid-Pleistocene).River has already existed In a second since scenario,at least pre it- isQuaternary suggested and that even the currentpre-Neogene Yellow time, River while has alreadypaleo lakes existed developed since at in least the pre-Quaternary basins as coexisting and evendammed pre-Neogene lakes [13] time,. In the while third paleo scenario, lakes developedthe modern in Yellow the basins River as coexistingfinally formed dammed after lakes the [Hetao13]. In or the Sanmen third scenario, paleo lakes the modern finally Yellowwent extinct, River therefore finally formed implying after a thevery Hetao young or age Sanmen of the paleoYellow lakes River finally origin went (late extinct,Pleisto- thereforecene) [14] implying. a very young age of the Yellow River origin (late Pleistocene) [14]. To provideprovide moremore relevantrelevant data,data, wewe focusedfocused onon thethe fluvialfluvial terracesterraces inin thethe WufoWufo BasinBasin at the northeasternnortheastern boundary of the Tibet PlateauPlateau inin thisthis study.study. The Yellow RiverRiver cutscuts throughthrough thethe WufoWufo BasinBasin andand flowsflows intointo riftrift basinsbasins outsideoutside thethe TibetanTibetan Plateau,Plateau, suchsuch asas thethe Yinchuan, Hetao,Hetao, andand SanmenSanmen BasinsBasins (Figure(Figure1 1).). Thus,Thus, thethe WufoWufo Basin, Basin, which which connects connects thethe upperupper YellowYellow RiverRiver inin thethe TibetTibet PlateauPlateau withwith downstreamdownstream reachesreaches outsideoutside thethe TibetTibet Plateau, is a prominent place to investigate the evolution history of the Yellow RiverRiver intointo thethe TibetTibet PlateauPlateau (Figure(Figure1 1).). UntilUntil now,now, the the data data of of terraces terraces near near the the boundary boundary between between thethe Tibet Plateau Plateau and and the the Ordos Ordos block block ha haveve remained remained lack lack.. Thus, Thus, the correlation the correlation and con- and connectionnection history history of the of Yellow the Yellow River River drainage drainage reach reachinging inside inside and outside and outside of the of Tibet the Tibet Plat- Plateaueau is still is still debated. debated. These These fluvial fluvial terraces terraces are are discussed discussed in in the the framework framework of of all available terraceterrace information of the Yellow RiverRiver [[1515––1717]] includingincluding thethe depositionaldepositional historyhistory ofof thethe delta [[1818–20]],, andand wewe aimaim toto untangle thethe ageage ofof the connection betweenbetween thethe TibetTibet PlateauPlateau and the ocean through thethe YellowYellow River.River. FigureFigure 1.1. StudyStudy areaarea ofof thethe Wufo Wufo Basin Basin (red (red star) star) with with the the background background of of the the Yellow Yellow River River catchment. catchment (a). Topography(a) Topography of the of Yellowthe Yellow River River catchment catchment presented presented by Digital by Digital Elevation Elevation Model Model (DEM) (DEM data) (SRTMdata (SRTM V4 90 V4 m resolution),90 m resolution), and the and extension the exten- of loesssion of deposit loess deposit in north in China. north (China.b) Overview (b) Overview of the Yellow of the Yellow River drainage River drainage and major and basinsmajor alongbasins the along Yellow the Yellow River valley River withvalley the with background the background of morphologic of morphologic features features expressed expressed by DEM by dataDEM (SRTM data (SRTM V4 90 mV4 resolution 90 m resolution data). Reddata) lines. Red point lines point to the previous study areas with references marked in the grey boxes. Black lines mean the boundary of the Yellow to the previous study areas with references marked in the grey boxes. Black lines mean the boundary of the Yellow River River catchment. Dark blue polygons indicate the modern lakes and light blue polygons indicate basins that were once catchment. Dark blue polygons indicate the modern lakes and light blue polygons indicate basins that were once occupied occupied by paleo-lakes. REGB: Ruoergai Basin; TDB: Tongde Basin; GHB: Gonghe Basin; GDB: Guide Basin; LXB: Linxia byBasin; paleo-lakes. YCB: Yinchuan REGB: RuoergaiBasin; HTB: Basin; Hetao TDB: Basin; Tongde SMB: Basin; Sanmen GHB: GongheBasin; SMG: Basin; Sanmen GDB: Guide Gorge; Basin; LZ: Lanzhou LXB: Linxia City; Basin; YC: YCB:Yin- Yinchuanchuan City; Basin; LT and HTB: PX Hetao are LingTai Basin; and SMB: PuXian Sanmen loess Basin; site, SMG: respec Sanmentively. Gorge; LZ: Lanzhou City; YC: Yinchuan City; LT and PX are LingTai and PuXian loess site, respectively. Quaternary 2021, 4, x FOR PEER REVIEW 3 of 18 Quaternary 2021, 4, 14 3 of 18 2. Regional Setting 2. Regional Setting 2.1. Geographical Setting 2.1. Geographical Setting 2 The Yellow River,
Recommended publications
  • Regional Climatology East Asian Seas: an Introduction
    NOAA Atlas NESDIS 79 doi:10.7289/V5D21VM9 REGIONAL CLIMATOLOGY OF THE EAST ASIAN SEAS: AN INTRODUCTION National Centers for Environmental Information Silver Spring, Maryland December 2015 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Environmental Satellite, Data, and Information Service National Centers for Environmental Information Additional copies of this publication, as well as information about National Centers for Environmental Information (formerly the National Oceanographic Data Center) data holdings and services, are available upon request directly from the National Centers for Environmental Information. National Centers for Environmental Information User Services Team NOAA/NESDIS/NCEI SSMC III, 4th floor 1315 East-West Highway Silver Spring, MD 20910-3282 Telephone: (301) 713-3277 E-mail: [email protected] NCEI Oceans Home Page: http://www.ncei.noaa.gov/ This document should be cited as: Johnson, D.R., Boyer, T.P., 2015: Regional Climatology of the East Asian Seas: An Introduction. NOAA Atlas NESDIS 79, Silver Spring, MD, 37 pp. doi:10.7289/V5D21VM9. This document is available at http://data.nodc.noaa.gov/woa/REGCLIM/EAS/DOC/nesdis79-doi107289V5D21VM9.pdf. Editor: Dan Seidov, National Centers for Environmental Information Technical Editor: Alexey Mishonov, National Centers for Environmental Information NOAA Atlas NESDIS 79 doi:10.7289/V5D21VM9 REGIONAL CLIMATOLOGY OF THE EAST ASIAN SEAS: AN INTRODUCTION Daphne R. Johnson and Tim P. Boyer National Centers for Environmental Information Silver Spring, Maryland December 2015 U.S. DEPARTMENT OF COMMERCE Penny Pritzker, Secretary National Oceanic and Atmospheric Administration Kathryn Sullivan Under Secretary of Commerce for Oceans and Atmosphere and NOAA Administrator National Environmental Satellite, Data, and Information Service Stephen Volz, Assistant Administrator This page intentionally left blank Table of Contents ABSTRACT ......................................................................................................................................
    [Show full text]
  • China and the Law of the Sea: an Update
    IV China and the Law of the Sea: An Update Guifang Xue* Introduction his article examines the practice of the People's Republic of China with re­ Tspect to the 1982 United Nations Convention on the Law of the Sea {1982 LOS Convention),l Two principal areas will be assessed: China's efforts to accom­ modate the challenges of the Convention to its ocean domain as a coastal State and its major maritime legislation to implement the Convention regime. The analysis begins with a brief introduction of China's maritime features and a review of its basic stance toward the Convention. This is followed by a discussion of the major challenges China encountered while establishing its ocean domain based on the Convention regime. China's efforts in implementing the 1982 LOS Convention through national legislation are examined to assess the consistency of that statu­ tory framework with Convention requirements. Finally, conclusions are drawn from China's law of the sea practice. It is shown that China, fo r its part, has been accelerating domestic procedures with a view to enabling it to comply with Con­ vention requi rements. However, China's maritime practice has not been wholly consistent with Convention provisions. At the same time, China's oceans policy adjustments indicate a move away from its previous position as solely a coastal .. Direaor and Professor, Institute for the Law of the $ea, Ocean University of China . The views expressed herein are solely those of the author and do not necessarily reflect those of the government of the People's Republic of China Part of this article is built on the author's previous work entitled China and International Fisheries Law and Policy, published by Martinus NijhoffPublishers in 2005.
    [Show full text]
  • Bohai-Sea-Sustainable-Development
    BOHAI SEA SUSTAINABLE DEVELOPMENT S TRATEGY BOHAI SEA SUSTAINABLE DEVELOPMENT STRATEGY STATE OCEANIC ADMINISTRATION 1 BOHAI SEA SUSTAINABLE DEVELOPMENT S TRATEGY BOHAI SEA SUSTAINABLE DEVELOPMENT STRATEGY STATE OCEANIC ADMINISTRATION 1 BOHAI SEA SUSTAINABLE DEVELOPMENT S TRATEGY 2 BOHAI SEA SUSTAINABLE DEVELOPMENT S TRATEGY TABLE OF CONTENTS List of Acronyms and Abbreviations . iv List of Tables . v List of Figures . v Preface . vi x Acknowledgements . vii xx Foreword . 1 1 Overview of Bohai Sea . 9 The Value of Bohai Sea . 15 15 Threats and Impacts . 25 25 Our Response . 33 33 Principles and Basis of the Strategy . .41 41 The Strategies . .47 47 Communicate . 49 49 Preserve . 53 53 Protect . 57 57 Sustain . 63 63 Develop . 66 66 Executing the Strategy . 75 75 References . 79 79 iii3 BOHAI SEA SUSTAINABLE DEVELOPMENT S TRATEGY LIST OF A CRONYMS AND A BBREVIATIONS BSAP – Blue Sea Action Plan BSCMP – Bohai Sea Comprehensive Management Program BSEMP – Bohai Sea Environmental Management Project BS-SDS – Bohai Sea – Sustainable Development Strategy CNOOC – China National Offshore Oil Corp. CPUE – catch per unit of effort GDP – Gross Domestic Product GIS – Geographic Information System GPS – Global Positioning System ICM – Integrated Coastal Management MOA – Ministry of Agriculture MOCT – Ministry of Communication and Transportation PEMSEA – GEF/UNDP/IMO Regional Programme on Partnerships in Environmental Management for the Seas of East Asia RS – Remote sensing SEPA – State Environmental Protection Administration SOA – State Oceanic Administration iv4 BOHAI SEA SUSTAINABLE DEVELOPMENT S TRATEGY LIST OF TABLES Table 1. Population Growth in the Bohai Sea Region (Millions) . 11 Table 2. Population Density of the Bohai Sea Region and Its Coastal Areas .
    [Show full text]
  • Characteristics of the Bohai Sea Oil Spill and Its Impact on the Bohai Sea Ecosystem
    Article SPECIAL TOPIC: Change of Biodiversity Patterns in Coastal Zone July 2013 Vol.58 No.19: 22762281 doi: 10.1007/s11434-012-5355-0 SPECIAL TOPICS: Characteristics of the Bohai Sea oil spill and its impact on the Bohai Sea ecosystem GUO Jie1,2,3*, LIU Xin1,2,3 & XIE Qiang4,5 1 Key Laboratory of Coastal Zone Environmental Processes, Chinese Academy of Sciences, Yantai 264003, China; 2 Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai 264003, China; 3 Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; 4 State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; 5 Sanya Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China Received April 26, 2012; accepted June 11, 2012; published online July 16, 2012 In this paper, ENVISAT ASAR data and the Estuary, Coastal and Ocean Model was used to analyze and compare characteristics of the Bohai Sea oil spill. The oil slicks have spread from the point of the oil spill to the east and north-western Bohai Sea. We make a comparison between the changes caused by the oil spill on the chlorophyll concentration and the sea surface temperature using MODIS data, which can be used to analyze the effect of the oil spill on the Bohai Sea ecosystem. We found that the Bohai Sea oil spill caused abnormal chlorophyll concentration distributions and red tide nearby area of oil spill. ENVISAT ASAR, MODIS, oil spill, chlorophyll, sea surface temperature Citation: Guo J, Liu X, Xie Q.
    [Show full text]
  • Changing Climate and Implications for Water Use in the Hetao Basin, Yellow River, China
    Hydrological processes and water security in a changing world Proc. IAHS, 383, 51–59, 2020 https://doi.org/10.5194/piahs-383-51-2020 Open Access © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Changing climate and implications for water use in the Hetao Basin, Yellow River, China Ian White1, Tingbao Xu1, Jicai Zeng2, Jian Yu3, Xin Ma3, Jinzhong Yang2, Zailin Huo4, and Hang Chen4 1Fenner School of Environment and Society, Australian National University, Canberra, ACT, 0200, Australia 2State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430068, China 3Water Resources Research Institute of Inner Mongolia, No. 11, Genghis Khan East Road, New Town, Hohhot, Inner Mongolia, 010020, China 4Centre for Agricultural Water Research in China, China Agricultural University, No. 17, East Rd, Haidian, Beijing, 100083, China Correspondence: Ian White ([email protected]) Published: 16 September 2020 Abstract. Balancing water allocations in river basins between upstream irrigated agriculture and downstream cities, industry and environments is a global challenge. The effects of changing allocations are exemplified in the arid Hetao Irrigation District on the Yellow River, one of China’s three largest irrigation districts. Amongst the many challenges there, the impact of changing climate on future irrigation water demand is an underlying concern. In this paper we analyse trends in local climate data from the late 1950s and consider the implications for irrigation in the Basin. Since 1958, daily minimum temperatures, Tmin in the Basin have increased at three times the rate of daily maximum temperatures, Tmax. Despite this, there has been no significant increases in annual precipitation, P or pan evaporation, Epan.
    [Show full text]
  • Eco-Environment Status Evaluation and Change Analysis of Qinghai Based on National Geographic Conditions Census Data
    The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018 ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China Eco-environment Status Evaluation and Change Analysis of Qinghai Based on National Geographic Conditions Census Data Min Zheng1,2, Maoliang Zhu1,2, Yuan Wang1,2, Changjun Xu1,2, Honghai Yang1,2 1Provincial Geomatics Center of Qinghai, Xining, China; 2Geomatics Technology and Application key Laboratory of Qinghai Province, Xining, China; KEY WORDS: national geographic conditions census, remote sensing, eco-environment status, ecological index, ecological change analysis ABSTRACT: As the headstream of the Yellow River, the Yangtze River and the Lantsang River, located in the hinterland of Qinghai-Tibet Plateau, Qinghai province is hugely significant for ecosystem as well as for ecological security and sustainable development in China. With the accomplishment of the first national geographic condition census, the frequent monitoring has begun. The classification indicators of the census and monitoring data are highly correlated with Technical Criterion for Ecosystem Status Evaluation released by Ministry of Environmental Protection in 2015. Based on three years’ geographic conditions data (2014-2016), Landsat-8 images and thematic data (water resource, pollution emissions, meteorological data, soil erosion, etc.), a multi-years and high-precision eco-environment status evaluation and spatiotemporal change analysis of Qinghai province has been researched on the basis of Technical Criterion for Ecosystem Status Evaluation in this paper. Unlike the evaluation implemented by environmental protection department, the evaluation unit in this paper is town rather than county. The evaluation result shows that the eco-environment status in Qinghai is generally in a fine condition, and has significant regional differences.
    [Show full text]
  • China: Xining Flood and Watershed Management Project
    E2007 V4 Public Disclosure Authorized China: Xining Flood and Watershed Management Project Public Disclosure Authorized Environmental Assessment Summary Public Disclosure Authorized Environmental Science Research & Design Institute of Gansu Province October 1, 2008 Public Disclosure Authorized Content 1. Introduction .................................................................................................................................. 1 1.1 Project background............................................................................................................ 1 1.2 Basis of the EA.................................................................................................................. 3 1.3 Assessment methods and criteria ...................................................................................... 4 1.4 Contents of the report........................................................................................................ 5 2. Project Description....................................................................................................................... 6 2.1 Task................................................................................................................................... 6 2.2 Component and activities.................................................................................................. 6 2.3 Linked projects................................................................................................................ 14 2.4 Land requisition and resettlement
    [Show full text]
  • The Later Han Empire (25-220CE) & Its Northwestern Frontier
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2012 Dynamics of Disintegration: The Later Han Empire (25-220CE) & Its Northwestern Frontier Wai Kit Wicky Tse University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Asian History Commons, Asian Studies Commons, and the Military History Commons Recommended Citation Tse, Wai Kit Wicky, "Dynamics of Disintegration: The Later Han Empire (25-220CE) & Its Northwestern Frontier" (2012). Publicly Accessible Penn Dissertations. 589. https://repository.upenn.edu/edissertations/589 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/589 For more information, please contact [email protected]. Dynamics of Disintegration: The Later Han Empire (25-220CE) & Its Northwestern Frontier Abstract As a frontier region of the Qin-Han (221BCE-220CE) empire, the northwest was a new territory to the Chinese realm. Until the Later Han (25-220CE) times, some portions of the northwestern region had only been part of imperial soil for one hundred years. Its coalescence into the Chinese empire was a product of long-term expansion and conquest, which arguably defined the egionr 's military nature. Furthermore, in the harsh natural environment of the region, only tough people could survive, and unsurprisingly, the region fostered vigorous warriors. Mixed culture and multi-ethnicity featured prominently in this highly militarized frontier society, which contrasted sharply with the imperial center that promoted unified cultural values and stood in the way of a greater degree of transregional integration. As this project shows, it was the northwesterners who went through a process of political peripheralization during the Later Han times played a harbinger role of the disintegration of the empire and eventually led to the breakdown of the early imperial system in Chinese history.
    [Show full text]
  • 54026-001: Strengthening Capacity, Institutions, and Policies for Enabling High-Quality, Green Development in the Yellow River E
    Technical Assistance Report Project Number: 54026-001 Knowledge and Support Technical Assistance Cluster (C-KSTA) October 2020 People’s Republic of China: Strengthening Capacity, Institutions, and Policies for Enabling High-Quality, Green Development in the Yellow River Ecological Corridor This document is being disclosed to the public in accordance with ADB’s Access to Information Policy. CURRENCY EQUIVALENTS (as of 30 September 2020) Currency unit – yuan (CNY) CNY1.00 = $0.1467 $1.00 = CNY6.8160 ABBREVIATIONS ADB – Asian Development Bank EARD – East Asia Department PRC – People’s Republic of China TA – technical assistance YREB – Yangtze River Economic Belt YREC – Yellow River Ecological Corridor NOTE In this report, "$" refers to United States dollars. Vice-President Ahmed M. Saeed, Operations 2 Director General James P. Lynch, East Asia Department (EARD) Director Qingfeng Zhang, Environment, Natural Resources, and Agriculture Division (EAER), EARD Team leaders Suzanne K. Robertson, Principal Natural Resources and Agriculture Specialist, EAER, EARD Silvia Cardascia, Young Professional, EAER, EARD Team members Xueliang Cai, Water Resources Specialist, EAER, EARD Mingyuan Fan, Principal Water Resources Specialist, EAER, EARD Dongmei Guo, Environment Specialist, EAER, EARD Rabindra Osti, Senior Water Resources Specialist, EAER, EARD Noreen Joy Ruanes, Senior Operations Assistant, EAER, EARD Au Shion Yee, Senior Water Resources Specialist, EAER, EARD In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area. CONTENTS Page KNOWLEDGE AND SUPPORT TECHNICAL ASSISTANCE AT A GLANCE I.
    [Show full text]
  • Low Ph and Carbonate Saturation State of Aragonite in China Seas: Variations and Controls
    Low pH and carbonate saturation state of aragonite in China Seas: variations and controls Juying Wang, Weidong Zhai, Nan Zhen, Jingli Mu, Xuemei Xu and other contributors National Marine Environmental Monitoring Center, SOA, CHINA June 17, 2013 OUTLINE • Background of OA • Coastal acidification and case studies in China; • Chinese activities at national scale; Ocean Acidification: Global Warming’s Twin The burning of fossil fuels result in increased CO 2 in the atmosphere being taken up by the ocean resulting in it becoming more acidic. Source: Laffoley et.al. 2010. Ocean Acidification: Questions Answered. Oceans are acidifying fast Changes in oceanic pH over the last 25 million years Source after Turley et al. in Avoiding Dangerous Climate Change (2006). pH Time (millions of years before present) Source: Laffoley et.al. 2010. Ocean Acidification: Questions Answered. Changes in surface oceanic pCO2 (in matm) and pH from time series stations Source: IPCC, 2007 Ocean Acidification Impacts Stein, 2009 Decrease in pH 0.1 over the last two centuries 30% increase in acidity; decrease in carbonate ion of about 16% These changes in pH and carbonate chemistry may have serious impacts on open ocean and coastal marine ecosystems. Hall-Spencer, Nature, June 18, 2008 What we know about the ocean chemistry of …saturation state 2− − CO2 + CO3 + H2O ⇔ 2HCO3 Stein, 2009; Feely 2009 Saturation State []2+ []2− Ω Ca CO 3 phase = Aragonite * Ksp ,phase 2+ + 2−→ Ca CO3 CaCO3(s) Ω >1= precipitation Ω = = calcium carbonate calcium 1 equilibrium calcium carbonate calcium Ω < = carbonate 1 dissolution Calcite marine calcifying organisms may require much higher Ω for optimal growth Saturation State []2+ []2− Ω Ca CO 3 phase = * Ksp ,phase Natural processes that could accelerate the ocean acidification of coastal waters Local Oceanography: coastal upwelling Metabolism Processes Regional Environ.
    [Show full text]
  • Geochemical Characteristics of Rare Earth
    Geochemical characteristics of rare earth elements in sediments of the North China Plain: implication for sedimentation process Haiyan Liu, Huaming Guo, Olivier Pourret, Maohan Liu To cite this version: Haiyan Liu, Huaming Guo, Olivier Pourret, Maohan Liu. Geochemical characteristics of rare earth elements in sediments of the North China Plain: implication for sedimentation process. 2020. hal- 03285967 HAL Id: hal-03285967 https://hal.archives-ouvertes.fr/hal-03285967 Preprint submitted on 13 Jul 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Geochemical characteristics of rare earth elements in sediments of 2 the North China Plain: implication for sedimentation process 3 4 Haiyan Liu 1,*, Huaming Guo 2 , Olivier Pourret3, Maohan, Liu1 5 6 1 School of Water Resources and Environmental Engineering, East China University 7 of Technology, Nanchang 330013, P. R. China 8 2 School of Water Resources and Environment, China University of Geosciences 9 (Beijing), Beijing 100083, P.R. China 10 3 UniLaSalle, AGHYLE, Beauvais, France 11 12 * Corresponding author: Haiyan Liu 13 No. 418 Guanglan Road, Jingkai District, Nanchang 330013, P. R. China 14 E-mail address: [email protected] 15 Tel.: +86-1881-3181-419 16 Fax: +86-0791-8389-8197 17 H.
    [Show full text]
  • Foraminiferal Faunal Trends and Assemblages of the Bohai Sea, Huanghai Sea and East China Sea
    BULLETIN OF MARINE SCIENCE. 47(1:): 192-212. 1990 FORAMINIFERAL FAUNAL TRENDS AND ASSEMBLAGES OF THE BOHAI SEA, HUANGHAI SEA AND EAST CHINA SEA Shouyi Zheng ABSTRACT Qualitative and quantitative studies of Recent foraminifera of the Bohai, Huanghai, and East China Seas gave distributional data on: faunal composition; dominant indicator species (including species occurring in high to low numbers); species diversity; faunal dominance; absolute abundance; percentage composition of agglutinated, porcelaneous and hyaline tests; planktonic/benthonic (P/B) foraminiferal ratio; and others. Correlation offaunal trends with known environmental parameters such as salinity, temperature, prevailing current and water mass systems, substrate, CaCO, content of sediment, and more allowed establishment of foraminiferal assemblages useful for ecological and paleoecological interpretations. Based on marked changes in frequency composition among dominant benthic species, six benthonic assemblages were recognized in the Bohai Sea, three in the northern Huanghai Sea, five in the southern Huanghai Sea, and nine in the East China Sea. In addition, four planktonic assemblages characterized the East China Sea and southern Huanghai Sea. The small size, great abundance and wide distribution of their preservable tests in Recent and fossil sediments, together with their usefulness as environmental indicators, has resulted in more comprehensive study of foraminifera than most other marine protozoa. Their sensitivity to environmental changes is reflected in various specific and non-specific distributional trends. The cumulative occurrence of their preservable tests on the sea floor mirrors not only small-scale temporal and spatial features, but also long-term average environmental and taphonomic processes. PHYSIOGRAPHY AND HYDROGRAPHY OF THE AREA STUDIED The three seas under study for their foraminiferal trends cover a range of 15 degrees of latitude (Fig.
    [Show full text]