https://doi.org/10.5194/gmd-2021-100 Preprint. Discussion started: 16 June 2021 c Author(s) 2021. CC BY 4.0 License. NEMO-Bohai 1.0: a high-resolution ocean and sea ice modelling system for the Bohai Sea, China Yu Yan1,2,3, Wei Gu2, Andrea M. U. Gierisch4, Yingjun Xu2, Petteri Uotila3 1School of Ocean Sciences, China University of Geosciences, Beijing 100083, China 5 2Academy of Disaster Reduction and Emergency Management, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China 3Institute for Atmospheric and Earth System Research (INAR), Faculty of Science, University of Helsinki, 00014 Helsinki, Finland 4Danish Meteorological Institute, DK-2100 Copenhagen, Denmark 10 Correspondence to: Yu Yan (
[email protected]) and Petteri Uotila (
[email protected]) Abstract. Severe ice condition in the Bohai Sea could cause serious harm to maritime traffic, offshore oil exploitation, aquaculture, and other economic activities in the surrounding regions. In addition to providing sea ice forecasts for disaster prevention and risk mitigation, sea ice numerical models could help explain the sea ice variability within the context of climate change in marine ecosystems, such as 15 that of spotted seals, which are the only ice-dependent sea animal that breeds in Chinese waters. Here, we developed NEMO-Bohai, an ocean-ice coupled model based on the Nucleus for European Modelling of the Ocean (NEMO) model version 4.0 and Sea Ice modelling Integrated Initiative (SI3) (NEMO4.0- SI3) for the Bohai Sea. This study will present the scientific design and technical choices of the parameterizations for the NEMO-Bohai model.