A Wheel of Time: the Circadian Clock, Nuclear Receptors, and Physiology

Total Page:16

File Type:pdf, Size:1020Kb

A Wheel of Time: the Circadian Clock, Nuclear Receptors, and Physiology Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press PERSPECTIVE A wheel of time: the circadian clock, nuclear receptors, and physiology Xiaoyong Yang1 Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06519, USA It is a long-standing view that the circadian clock func- The rhythmic production and circulation of many tions to proactively align internal physiology with the hormones and metabolites within the endocrine system 24-h rotation of the earth. Recent studies, including one is instrumental in regulating regular physiological pro- by Schmutz and colleagues (pp. 345–357) in the February cesses such as reproduction, blood pressure, and metabo- 15, 2010, issue of Genes & Development, delineate strik- lism. Levels of circulating estrogen and progesterone ingly complex connections between molecular clocks and fluctuate with the menstrual cycle, which in turn affect nuclear receptor signaling pathways, implying the exis- circadian rhythms in women (Shechter and Boivin 2010). tence of a large-scale circadian regulatory network co- In parallel with a diurnal rhythm in circulating adrenocor- ordinating a diverse array of physiological processes to ticotropic hormone, secretion of glucocorticoids and aldo- maintain dynamic homeostasis. sterone from the adrenal gland rises before awakening (Weitzman 1976). Glucocorticoids boost energy produc- tion, and aldosterone increases blood pressure, together gearing up the body for the activity phase. Similarly, Light from the sun sustains life on earth. The 24-h plasma levels of thyroid-stimulating hormone and triiodo- rotation of the earth exposes a vast number of plants thyronine have a synchronous diurnal rhythm (Russell and animals to the light/dark cycle. Consequently, the et al. 2008). A broad range of metabolites—such as glucose, behavior and physiology of numerous living organisms free fatty acids, cholesterol, and bile acids—also exhibit exhibit circadian rhythms. The word ‘‘circadian’’ is de- diurnal fluctuation. A number of these hormones and rived from Latin circa diem, which means ‘‘about a day.’’ metabolites serve as ligands for nuclear receptors that Behavioral rhythms such as sleeping, food seeking, and direct a large array of transcriptional programs involved predator avoidance are thought to help animals survive. in lipid and carbohydrate metabolism (Chawla et al. 2001). Physiological rhythms such as body temperature, blood A survey of the diurnal expression profile of the mRNAs pressure, and metabolism also anticipate and adapt to encoding all 49 mouse nuclear receptors revealed that predictable changes in the environment to maintain the more than half of receptors follow rhythmic cycles in key overall well-being of animals (Young 2000). metabolic tissues (Yang et al. 2006). Together, these Circadian rhythms are controlled by evolutionarily observations suggest a complex interaction between the conserved internal clocks residing in most tissues of the circadian clock and nuclear receptor signaling (Yang et al. body. The central clock is located in the suprachiasmatic 2007; Teboul et al. 2008). Several recent studies lend nucleus (SCN) of the hypothalamus and is entrained further insight into an elaborate ‘‘wheel of time’’ composed directly by light (Hatings et al. 2008). This master of molecular clocks and nuclear receptors, which together pacemaker can synchronize circadian oscillators in pe- help shape an emerging perspective on ‘‘design principles’’ ripheral tissues, yet underlying neural and humoral and biological implications of the clock–receptor signaling mechanisms remain obscure. Besides light, other external network. cues such as feeding and ambient temperature are also powerful Zeitgebers (from German for time givers) for peripheral clocks (Damiola et al. 2000; Brown et al. 2002). Hub of time: nuclear receptors at the core How these time cues act in concert to entrain tissue- of molecular clocks specific oscillators and evoke diverse physiological re- Circadian clocks are self-sustained, robust, and tunable sponses is poorly understood. Nevertheless, these processes molecular oscillators. At the core of both the central and clearly involve the endocrine system. peripheral clocks are two interlocked transcriptional/ post-translational feedback loops (Ko and Takahashi [Keywords: Circadian oscillator; transcription; protein–protein in- 2006). In the negative feedback loop, BMAL1/CLOCK teraction] heterodimers activate the transcription of Period genes 1Correspondence. E-MAIL [email protected]; FAX (203) 785-7499. (Per1, Per2,andPer3)andCryptochrome genes (Cry1 and Article is online at http://www.genesdev.org/cgi/doi/10.1101/gad.1920710. Cry2) by recognizing E-box cis elements in their promoters. GENES & DEVELOPMENT 24:741–747 Ó 2010 by Cold Spring Harbor Laboratory Press ISSN 0890-9369/10; www.genesdev.org 741 Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Yang The PER/CRY complex in turn inhibits the transcription of adrenal transcriptome revealed that a number of genes their own genes by blocking BMAL1–CLOCK activity. The involved in steroid biosynthesis are expressed in a rhyth- second feedback loop involves the ROR (a, b,andg)and mic fashion (Oster et al. 2006). Disruption of the adrenal REV-ERB (a and b) proteins, members of a subfamily of clock by tissue-specific knockdown of BMAL1 abolishes nuclear receptors that recognize similar cis-regulatory circadian rhythms in steroidogenic gene expression and elements (ROREs) on target genes. RORs act as transcrip- glucocorticoid production (Son et al. 2008). Cry-null mice tional activators, and REV-ERBs are repressors. BMAL1/ showed a dramatic increase in aldosterone production CLOCK binds to E-box elements present in Ror and Rev- and resultant hypertension, which is due to the loss of erb genes and activate their transcription. RORs and REV- repression of Hsd3b6, a gene involved specifically in ERBs in turn drive rhythmic transcription of the Bmal1 steroidogenesis in the adrenal cortex (Doi et al. 2010). gene by alternately binding to ROREs in its promoter A range of ligands can be produced in local tissues. (Preitner et al. 2002; Liu et al. 2008). Heme is a porphyrin that functions as a prosthetic group Theoretically, a negative feedback loop with time delay for enzymes involved in oxygen and electron transport. is sufficient to generate an oscillator. Why does the Recently, two independent studies identified heme as an molecular clock adopt the ‘‘two-loop’’ design principle? endogenous ligand for REV-ERBa (Raghuram et al. 2007; Recent studies with synthetic oscillators in bacteria and Yin et al. 2007). Interestingly, the circadian clock and mammalian cells as well as computational modeling heme biosynthesis are reciprocally regulated (Kaasik and demonstrate that a second feedback loop would make an Lee 2004). Expression of ALAS1, the rate-limiting enzyme oscillator robust and tunable (Stricker et al. 2008; Tigges in heme biosynthesis, is under clock control, resulting in et al. 2009). In the clockwork, these features are likely to oscillation in the intracellular level of heme and its be accomplished by the ROR/REV-ERB/BMAL1 loop. association with REV-ERBa. Another example is that the circadian clock regulates cyclic expression of HMG- CoA reductase and cholesterol 7a-hydroxylase, the rate- The clock control of nuclear receptor pathways limiting enzymes in cholesterol and bile acid biosynthe- One of the major efforts in circadian biology is to define sis, respectively (Le Martelot et al. 2009). This is believed molecular pathways by which the core clockwork regu- to lead to cyclic production of oxysterols and bile acids, lates physiology and behavior. It has been demonstrated and activation of their corresponding receptors, LXR and that many nuclear receptors exhibit circadian-like pat- FXR. Therefore, cyclic production of ligands for nuclear terns of expression (Yang et al. 2006). Recent studies receptors provides a potential means of circadian regula- reveal a few of the nuclear receptor genes as being direct tion of metabolism. targets of the circadian clock. Peroxisome proliferator- activated receptor-a (PPARa) and PPARg regulate lipid The clock entrainment by nuclear receptors metabolism and energy homeostasis by coordinated ac- tions in a variety of tissues (Evans et al. 2004). Ppara Peripheral clocks appear to act as the integrators of transcription is induced by CLOCK and BMAL1 via an signals from the light-sensing central clock and other intronic E-box-rich region (Oishi et al. 2005; Canaple physiological cues. The nature of the signals that entrain et al. 2006). In contrast, PPARg expression is regulated by peripheral clocks in individual tissues remains obscure. two clock-controlled genes, albumin gene D-site-binding Serving as endocrine and metabolic sensors, a number of protein (Dbp) and E4 promoter A-binding protein 4 nuclear receptors have been implicated in clock entrain- (E4bp4). DBP is an activator, whereas E4BP4 is a repressor. ment (Yang et al. 2007; Kovac et al. 2009). Together, they induce oscillation of PPARg expression by Early studies showed that glucocorticoids are involved binding reciprocally to the D-boxes located in the first in the phase resetting of peripheral clocks in response to exon (Takahashi
Recommended publications
  • SHARP1 (BHLHE41) Mouse Monoclonal Antibody [Clone ID: OTI3H4] Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA806354 SHARP1 (BHLHE41) Mouse Monoclonal Antibody [Clone ID: OTI3H4] Product data: Product Type: Primary Antibodies Clone Name: OTI3H4 Applications: IHC, WB Recommended Dilution: WB 1:2000, IHC 1:150 Reactivity: Human Host: Mouse Isotype: IgG1 Clonality: Monoclonal Immunogen: Human recombinant protein fragment corresponding to amino acids 1-297 of human BHLHE41(NP_110389) produced in E.coli. Formulation: PBS (PH 7.3) containing 1% BSA, 50% glycerol and 0.02% sodium azide. Concentration: 1 mg/ml Purification: Purified from mouse ascites fluids or tissue culture supernatant by affinity chromatography (protein A/G) Conjugation: Unconjugated Storage: Store at -20°C as received. Stability: Stable for 12 months from date of receipt. Predicted Protein Size: 50.3 kDa Gene Name: basic helix-loop-helix family member e41 Database Link: NP_110389 Entrez Gene 79365 Human Q9C0J9 Background: This gene encodes a basic helix-loop-helix protein expressed in various tissues. The encoded protein can interact with ARNTL or compete for E-box binding sites in the promoter of PER1 and repress CLOCK/ARNTL's transactivation of PER1. This gene is believed to be involved in the control of circadian rhythm and cell differentiation. Defects in this gene are associated with the short sleep phenotype. [provided by RefSeq, Feb 2014] This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 SHARP1 (BHLHE41) Mouse Monoclonal Antibody [Clone ID: OTI3H4] – TA806354 Synonyms: BHLHB3; DEC2; hDEC2; SHARP1 Protein Families: Transcription Factors Protein Pathways: Circadian rhythm - mammal Product images: HEK293T cells were transfected with the pCMV6- ENTRY control (Left lane) or pCMV6-ENTRY BHLHE41 ([RC206882], Right lane) cDNA for 48 hrs and lysed.
    [Show full text]
  • Melatonin Synthesis and Clock Gene Regulation in the Pineal Organ Of
    General and Comparative Endocrinology 279 (2019) 27–34 Contents lists available at ScienceDirect General and Comparative Endocrinology journal homepage: www.elsevier.com/locate/ygcen Review article Melatonin synthesis and clock gene regulation in the pineal organ of teleost fish compared to mammals: Similarities and differences T ⁎ Saurav Saha, Kshetrimayum Manisana Singh, Braj Bansh Prasad Gupta Environmental Endocrinology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India ARTICLE INFO ABSTRACT Keywords: The pineal organ of all vertebrates synthesizes and secretes melatonin in a rhythmic manner due to the circadian Aanat gene rhythm in the activity of arylalkylamine N-acetyltransferase (AANAT) – the rate-limiting enzyme in melatonin Circadian rhythm synthesis pathway. Nighttime increase in AANAT activity and melatonin synthesis depends on increased ex- Clock genes pression of aanat gene (a clock-controlled gene) and/or post-translation modification of AANAT protein. In Melatonin synthesis mammalian and avian species, only one aanat gene is expressed. However, three aanat genes (aanat1a, aanat1b, Pineal organ and aanat2) are reported in fish species. While aanat1a and aanat1b genes are expressed in the fish retina, the Photoperiod fi Temperature nervous system and other peripheral tissues, aanat2 gene is expressed exclusively in the sh pineal organ. Clock genes form molecular components of the clockwork, which regulates clock-controlled genes like aanat gene. All core clock genes (i.e., clock, bmal1, per1, per2, per3, cry1 and cry2) and aanat2 gene (a clock-controlled gene) are expressed in the pineal organ of several fish species. There is a large body of information on regulation of clock genes, aanat gene and melatonin synthesis in the mammalian pineal gland.
    [Show full text]
  • Role of the Nuclear Receptor Rev-Erb Alpha in Circadian Food Anticipation and Metabolism Julien Delezie
    Role of the nuclear receptor Rev-erb alpha in circadian food anticipation and metabolism Julien Delezie To cite this version: Julien Delezie. Role of the nuclear receptor Rev-erb alpha in circadian food anticipation and metabolism. Neurobiology. Université de Strasbourg, 2012. English. NNT : 2012STRAJ018. tel- 00801656 HAL Id: tel-00801656 https://tel.archives-ouvertes.fr/tel-00801656 Submitted on 10 Apr 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DE STRASBOURG ÉCOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTE CNRS UPR 3212 · Institut des Neurosciences Cellulaires et Intégratives THÈSE présentée par : Julien DELEZIE soutenue le : 29 juin 2012 pour obtenir le grade de : Docteur de l’université de Strasbourg Discipline/ Spécialité : Neurosciences Rôle du récepteur nucléaire Rev-erbα dans les mécanismes d’anticipation des repas et le métabolisme THÈSE dirigée par : M CHALLET Etienne Directeur de recherche, université de Strasbourg RAPPORTEURS : M PFRIEGER Frank Directeur de recherche, université de Strasbourg M KALSBEEK Andries
    [Show full text]
  • Correlation Between Circadian Gene Variants and Serum Levels of Sex Steroids and Insulin-Like Growth Factor-I
    3268 Correlation between Circadian Gene Variants and Serum Levels of Sex Steroids and Insulin-like Growth Factor-I Lisa W. Chu,1,2 Yong Zhu,3 Kai Yu,1 Tongzhang Zheng,3 Anand P. Chokkalingam,4 Frank Z. Stanczyk,5 Yu-Tang Gao,6 and Ann W. Hsing1 1Division of Cancer Epidemiology and Genetics and 2Cancer Prevention Fellowship Program, Office of Preventive Oncology, National Cancer Institute, NIH, Bethesda, Maryland; 3Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut; 4Division of Epidemiology, School of Public Health, University of California at Berkeley, Berkeley, California; 5Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California; and 6Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China Abstract A variety of biological processes, including steroid the GG genotype. In addition, the PER1 variant was hormone secretion, have circadian rhythms, which are associated with higher serum levels of sex hormone- P influenced by nine known circadian genes. Previously, binding globulin levels ( trend = 0.03), decreasing we reported that certain variants in circadian genes 5A-androstane-3A,17B-diol glucuronide levels P P were associated with risk for prostate cancer. To pro- ( trend = 0.02), and decreasing IGFBP3 levels ( trend = vide some biological insight into these findings, we 0.05). Furthermore, the CSNK1E variant C allele was examined the relationship of five variants of circadian associated with higher
    [Show full text]
  • Effects of Circadian Clock Genes and Health-Related
    RESEARCH ARTICLE Effects of circadian clock genes and health- related behavior on metabolic syndrome in a Taiwanese population: Evidence from association and interaction analysis Eugene Lin1,2,3*, Po-Hsiu Kuo4, Yu-Li Liu5, Albert C. Yang6,7, Chung-Feng Kao8, Shih- Jen Tsai6,7* 1 Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, 2 Vita Genomics, Inc., Taipei, Taiwan, 3 TickleFish Systems Corporation, Seattle, Western Australia, United States of America, a1111111111 4 Department of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan a1111111111 University, Taipei, Taiwan, 5 Center for Neuropsychiatric Research, National Health Research Institutes, a1111111111 Miaoli County, Taiwan, 6 Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan, 7 Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan, 8 Department of Agronomy, College a1111111111 of Agriculture & Natural Resources, National Chung Hsing University, Taichung, Taiwan a1111111111 * [email protected] (EL); [email protected] (SJT) Abstract OPEN ACCESS Citation: Lin E, Kuo P-H, Liu Y-L, Yang AC, Kao C- Increased risk of developing metabolic syndrome (MetS) has been associated with the cir- F, Tsai S-J (2017) Effects of circadian clock genes cadian clock genes. In this study, we assessed whether 29 circadian clock-related genes and health-related behavior on metabolic (including ADCYAP1, ARNTL, ARNTL2, BHLHE40, CLOCK, CRY1, CRY2, CSNK1D, syndrome in a Taiwanese population: Evidence from association and interaction analysis. PLoS CSNK1E, GSK3B, HCRTR2, KLF10, NFIL3, NPAS2, NR1D1, NR1D2, PER1, PER2, ONE 12(3): e0173861. https://doi.org/10.1371/ PER3, REV1, RORA, RORB, RORC, SENP3, SERPINE1, TIMELESS, TIPIN, VIP, and journal.pone.0173861 VIPR2) are associated with MetS and its individual components independently and/or Editor: Etienne Challet, CNRS, University of through complex interactions in a Taiwanese population.
    [Show full text]
  • BMAL1 and Modulates Tissue-Specific Circadian Networks
    Nuclear receptor HNF4A transrepresses CLOCK: BMAL1 and modulates tissue-specific circadian networks Meng Qua, Tomas Duffyb, Tsuyoshi Hirotac, and Steve A. Kaya,1 aKeck School of Medicine, University of Southern California, Los Angeles, CA 90089; bDepartment of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037; and cInstitute of Transformative Bio-Molecules, Nagoya University, 464-8602 Nagoya, Japan Contributed by Steve A. Kay, November 6, 2018 (sent for review September 24, 2018; reviewed by Carla B. Green and John B. Hogenesch) Either expression level or transcriptional activity of various nuclear NRs canonically function as ligand-activated transcription receptors (NRs) have been demonstrated to be under circadian factors that regulate the expression of their target genes to control. With a few exceptions, little is known about the roles of affect physiological pathways (19). The importance of NRs in NRs as direct regulators of the circadian circuitry. Here we show maintaining optimal physiological homeostasis is illustrated in that the nuclear receptor HNF4A strongly transrepresses the their identification as potential targets for therapeutic drug transcriptional activity of the CLOCK:BMAL1 heterodimer. We development to combat a diverse array of diseases, including define a central role for HNF4A in maintaining cell-autonomous reproductive disorders, inflammation, cancer, diabetes, car- circadian oscillations in a tissue-specific manner in liver and colon diovascular disease, and obesity (20). Various NRs have been cells. Not only transcript level but also genome-wide chromosome implicated as targets of the circadian clock, which may con- binding of HNF4A is rhythmically regulated in the mouse liver. tribute to the circadian regulation of nutrient and energy me- ChIP-seq analyses revealed cooccupancy of HNF4A and CLOCK: tabolism.
    [Show full text]
  • Dissociation of Per1 and Bmal1 Circadian Rhythms in The
    Dissociation of Per1 and Bmal1 circadian rhythms in PNAS PLUS the suprachiasmatic nucleus in parallel with behavioral outputs Daisuke Onoa,1,2, Sato Honmab,1,3, Yoshihiro Nakajimac, Shigeru Kurodad, Ryosuke Enokia,b,e, and Ken-ichi Honmab aPhotonic Bioimaging Section, Research Center for Cooperative Projects, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan; bDepartment of Chronomedicine, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan; cHealth Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395, Japan; dResearch Institute for Electronic Science, Hokkaido University, Sapporo, 001-0020, Japan; and ePrecursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan Edited by Joseph S. Takahashi, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, and approved March 28, 2017 (received for review August 11, 2016) The temporal order of physiology and behavior in mammals is The expression of Per genes in the SCN is activated by a timed primarily regulated by the circadian pacemaker located in the exposure to light, which phase shifts the circadian pacemaker (8, hypothalamic suprachiasmatic nucleus (SCN). Taking advantage of 9). The phase-dependent phase shifts of clock gene expression bioluminescence reporters, we monitored the circadian rhythms of are regarded as a key mechanism by which the circadian pace- the expression of clock genes Per1 and Bmal1 in the SCN of freely maker is entrained to a LD cycle. Light signals from the retina moving mice and found that the rate of phase shifts induced by a stimulate the expression of Per genes, perturbing the core loop single light pulse was different in the two rhythms.
    [Show full text]
  • Retinoic Acid-Related Orphan Receptor Rorβ, Circadian Rhythm Abnormalities and Tumorigenesis (Review)
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 35: 1493-1500, 2015 Retinoic acid-related orphan receptor RORβ, circadian rhythm abnormalities and tumorigenesis (Review) SHUJIONG FENG1, SONG XU1, ZHENZHEN WEN1 and YONGLIANG ZHU1,2 1Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University, School of Medicine; 2Cancer Institute and Education Ministry Key Laboratory of Cancer Prevention and Intervention, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China Received August 8, 2014; Accepted March 12, 2015 DOI: 10.3892/ijmm.2015.2155 Abstract. Nuclear receptors are a superfamily of transcription and have important physiological functions in cell develop- factors including the steroid hormone receptors, non-steroid ment and differentiation, circadian rhythm, metabolism and hormone receptors and the orphan nuclear receptor family. immune regulation. NRs consist of three components: the Retinoic acid-related orphan receptor (ROR)β, as a member of steroid hormone receptors, non-steroid hormone receptors the orphan nuclear receptor family, plays an important regula- and the orphan nuclear receptor family. Steroid and non- tory role in the maintenance of a variety of physiological and steroid hormone receptors have specific ligands, including pathological processes. RORβ has been determined to act as steroid hormones, thyroid hormones, retinoic acids and fatty an osteogenic repressor in regulating bone formation, and is acids. Ligands for orphan NRs have not yet been determined. involved in regulating circadian rhythm. The findings of recent Retinoic acid-related orphan receptors (RORs), also known studies concerning the association between tumorigenesis as nuclear receptor subfamily 1 group F members (NR1F), and circadian rhythm have shown that an aberrant circadian are specified by gene sequences, which are homologous to rhythm may promote tumorigenesis and tumor progression.
    [Show full text]
  • Molecular Oscillation of Per1 and Per2 Genes in the Rodent Brain: an in Situ Hybridization and Molecular Biological Study
    Kobe J. Med. Sci., Vol. 51, No. 6, pp. 85-93, 2005 Molecular Oscillation of Per1 and Per2 Genes in the Rodent Brain: An In Situ Hybridization and Molecular Biological Study DAISUKE MATSUI, SEIICHI TAKEKIDA, and HITOSHI OKAMURA Division of Molecular Brain Science, Department of Brain Science/Neuroscience, Kobe University Graduate School of Medicine Received 20 December 2005 /Accepted 26 December 2005 Key Words: in situ hybridization, cerebral cortex, clock genes, circadian rhythms, E-box, rat The circadian rhythm is originally generated by a transcription-translation based oscillatory loop where Per1 and Per2 genes locate in its central. In the rat brain, rhythmic expressions of Per1 and Per2 were observed not only in neurons of the hypothalamic suprachiasmatic nucleus (SCN) but also in those of non-SCN regions including the cerebral cortex. The E-box enhancer elements possible to regulate transcription of Per1 and Per2 genes were highly conserved in rats and mice. When E-box-activating transcription factors, CLOCK and BMAL1, were coexpressed, each of both proteins showed two molecular forms. The presence of these higher molecular weight forms seems to be correlated with the E-box mediated transcription activation. This mechanism might not be involved in the PER2 mediated suppression of E-box, since adding PER2 did not change the content of the higher molecular forms of CLOCK and BMAL1. Circadian core oscillator is thought to be composed of an autoregulatory transcription- (post) translation-based feedback loop involving a set of clock genes (3, 4, 10, 16). In this loop, Per1 and Per2 genes are located in the center of this loop, and the transcriptional oscillation of these genes reflects rhythms at cells, tissues, and system levels (10, 16).
    [Show full text]
  • The Role of Circadian Timing System on Drug Metabolism and Detoxification
    The role of circadian timing system on drug metabolism and detoxification Abstract Introduction: It has been known for a long time that the efficiency and toxicity of drugs change during a 24-hour period. However, the molecular mechanisms involved in these regulations have started to emerge only recently. Areas covered: This review aims to highlight recent discoveries showing the direct role of the molecular circadian clock on xenobiotic metabolism at the transcriptional and post- transcriptional level in the liver and intestine, but also the different ways of elimination of these metabolized drugs via biliary and urine excretion. Most of the related literature focuses on transcriptional regulation by the circadian clock of xenobiotic metabolism in the liver, however the role of this timing system on metabolized drugs excretion and the importance of the kidney on this phenomenon are generally neglected. The goal of this review is to describe the molecular mechanisms involved in rhythmic drug metabolism and excretion. Expert opinion: Chronopharmacology analyses the metabolism of drugs in mammals according to the time of day. The circadian timing system plays a key role in these changes of toxicity of drugs by influencing their metabolisms in the liver and intestine in addition to their excretion via bile flow and urine. Article Highlights ● It has been known for a long time that drug efficiency and toxicity depend on the time of administration, however the mechanisms involved have only started to emerge recently. ● There is clear evidence that the molecular circadian clock is involved in this process. ● The molecular clock acts either directly or through the rhythmic expression of clock- controlled transcription factors that regulate the expression of detoxification enzymes or indirect pathways.
    [Show full text]
  • Analysis of Gene Expression in Wild Type and Notch1 Mutant Retinal Cells by Single Cell Profiling Karolina Mizeracka1, Jeffrey M
    Research Article Developmental Dynamics DOI 10.1002/dvdy.24006 Analysis of gene expression in wild type and Notch1 mutant retinal cells by single cell profiling Karolina Mizeracka1, Jeffrey M. Trimarchi1,2, Michael B. Stadler3, Constance L. Cepko1,4 1 Department of Genetics, Department of Ophthalmology, Harvard Medical School, Boston, MA 02115 2 Current Address: Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50014 3 Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland 4 Howard Hughes Medical Institute, Department of Genetics, Department of Ophthalmology, Harvard Medical School, Boston, MA 02115 Correspondence: Constance Cepko 77 Avenue Louis Pasteur, Boston, MA 02115 Phone: (617) 432-7618 Fax: (617) 432-7595 Running title: Single cell profiling of Notch1 mutant retinal cells Key words: retina, progenitor, microarray, cell fate Summary: • Profiling of individual Notch1 deficient and wild type postnatal retinal cells on microarrays reveals changes in gene expression obscured by whole tissue analysis • Notch1 deficient cells downregulate progenitor and cell cycle markers with a concomitant upregulation in early rod photoreceptor markers • Based on classification, single Notch1 deficient and wild type cells represent Developmental Dynamics transition from progenitor to postmitotic cell • Individual wild type retinal cells express cell type markers of both photoreceptors and interneurons Grant sponsor and number: National Institutes of Health Grant R01EY09676 Accepted Articles are accepted, unedited articles for future issues, temporarily published online in advance of the final edited version. © 2013 Wiley Periodicals, Inc. Received: Mar 04, 2013; Revised: May 02, 2013; Accepted: May 13, 2013 Developmental Dynamics Page 2 of 66 Abstract Background: The vertebrate retina comprises sensory neurons, the photoreceptors, as well as many other types of neurons and one type of glial cell.
    [Show full text]
  • CRY1 and NPAS2 Are Associated with Unipolar Major Depression and CLOCK and VIP with Bipolar Disorder
    Neuropsychopharmacology (2010) 35, 1279–1289 & 2010 Nature Publishing Group All rights reserved 0893-133X/10 $32.00 www.neuropsychopharmacology.org Differential Association of Circadian Genes with Mood Disorders: CRY1 and NPAS2 are Associated with Unipolar Major Depression and CLOCK and VIP with Bipolar Disorder 1 ` 1 2 3 4 Virginia Soria ,Erika Martı´nez-Amoro´s , Geo`rgia Escaramı´s , Joaquı´n Valero , Rosario Pe´rez-Egea , 5 3 4 5 1,6 Cecilia Garcı´a , Alfonso Gutie´rrez-Zotes , Dolors Puigdemont ,Mo`nica Baye´s , Jose´ M Crespo , 3 3 3 1,6 4 1,6 Lourdes Martorell , Elisabet Vilella , Antonio Labad , Julio Vallejo ,Vı´ctor Pe´rez , Jose´ M Mencho´n , 2,7 ,2 1,6 Xavier Estivill ,Mo`nica Grataco`s* and Mikel Urretavizcaya 1 CIBERSAM (CIBER en Salud Mental), Mood Disorders Clinical and Research Unit, Psychiatry Department, Bellvitge University Hospital, 2 Barcelona, Spain; CIBERESP (CIBER en Epidemiologı´a y Salud Pu´blica), Genes and Disease Program, Center for Genomic Regulation (CRG), Barcelona, Spain; 3Hospital Psiquiatric Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, Reus, Spain; 4CIBERSAM (CIBER en Salud Mental), Psychiatry Department, Hospital de la Santa Creu i Sant Pau, Universitat Auto`noma de Barcelona, Barcelona, Spain; 5Genomics 6 Core Facility and Centro Nacional de Genotipado (CeGen), Center for Genomic Regulation (CRG), Barcelona, Spain; Department of Clinical 7 Sciences, Bellvitge Campus, Barcelona University, Barcelona, Spain; Experimental and Health Sciences Department, Pompeu Fabra University, Barcelona, Spain Disruptions in circadian rhythms have been described in mood disorders (MD), but the involvement of genetic variation in genes pertaining to the molecular circadian machinery in the susceptibility to MD has not been conclusively determined.
    [Show full text]