Mouse Mrgpre Conditional Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Mrgpre Conditional Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Mrgpre Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Mrgpre conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Mrgpre gene (NCBI Reference Sequence: NM_175534 ; Ensembl: ENSMUSG00000048965 ) is located on Mouse chromosome 7. 2 exons are identified, with the ATG start codon in exon 2 and the TAA stop codon in exon 2 (Transcript: ENSMUST00000054048). Exon 2 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Mrgpre gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP24-271L24 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for a knock-out allele exhibit alterations in the development but not maintenance of allodynia. Exon 2 covers 100.0% of the coding region. Start codon is in exon 2, and stop codon is in exon 2. The size of effective cKO region: ~1252 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy gRNA region Wildtype allele T A 5' gRNA region A 3' 1 2 Targeting vector T A A Targeted allele T A A Constitutive KO allele (After Cre recombination) Legends Exon of mouse Mrgpre Homology arm cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix. It may be difficult to construct this targeting vector. Overview of the GC Content Distribution Window size: 300 bp Sequence 12 Summary: Full Length(6930bp) | A(22.31% 1546) | C(29.24% 2026) | T(22.87% 1585) | G(25.58% 1773) Note: The sequence of homologous arms and cKO region is analyzed to determine the GC content. Significant high GC-content regions are found. It may be difficult to construct this targeting vector. Page 3 of 7 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr7 - 143781765 143784764 3000 browser details YourSeq 38 1302 1377 3000 88.4% chr12 + 5772489 5772563 75 browser details YourSeq 29 1299 1333 3000 96.9% chr10 + 12666318 12666356 39 browser details YourSeq 27 1300 1329 3000 96.6% chr12 - 107448188 107448221 34 browser details YourSeq 27 1052 1081 3000 96.7% chr1 + 173811836 173811866 31 browser details YourSeq 20 1302 1321 3000 100.0% chr4 - 58314667 58314686 20 Note: The 3000 bp section upstream of Exon 2 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr7 - 143777835 143780834 3000 browser details YourSeq 229 644 2470 3000 95.0% chr11 + 54662117 54776243 114127 browser details YourSeq 179 618 2429 3000 94.2% chr17 - 84522835 84642118 119284 browser details YourSeq 155 674 2468 3000 94.4% chr10 - 110667275 110925106 257832 browser details YourSeq 115 2149 2519 3000 81.3% chr17 - 7750501 7750874 374 browser details YourSeq 111 2140 2519 3000 83.7% chr9 - 51037083 51037473 391 browser details YourSeq 94 2319 2510 3000 76.0% chr8 - 22993164 22993355 192 browser details YourSeq 92 2313 2514 3000 75.5% chr6 + 107854905 107855108 204 browser details YourSeq 89 2391 2599 3000 88.1% chr5 + 133598954 133599513 560 browser details YourSeq 88 2368 2519 3000 89.3% chr15 - 52611895 52612048 154 browser details YourSeq 88 2368 2517 3000 90.1% chr12 + 26419156 26502571 83416 browser details YourSeq 81 2376 2519 3000 88.0% chr5 - 37003337 37003485 149 browser details YourSeq 81 2375 2518 3000 91.0% chr5 - 30472281 30472431 151 browser details YourSeq 81 611 891 3000 95.6% chr2 + 104562860 104563217 358 browser details YourSeq 80 2368 2519 3000 85.3% chrX + 36995701 36995856 156 browser details YourSeq 79 2376 2518 3000 79.3% chr7 + 63572661 63572786 126 browser details YourSeq 79 767 860 3000 94.4% chr1 + 20761965 20762058 94 browser details YourSeq 77 2386 2516 3000 88.3% chr4 - 35589737 35589868 132 browser details YourSeq 76 2391 2510 3000 89.7% chr14 + 60276954 60277076 123 browser details YourSeq 76 2389 2519 3000 80.4% chr1 + 121413415 121413542 128 Note: The 3000 bp section downstream of Exon 2 is BLAT searched against the genome. No significant similarity is found. Page 4 of 7 https://www.alphaknockout.com Gene and protein information: Mrgpre MAS-related GPR, member E [ Mus musculus (house mouse) ] Gene ID: 244238, updated on 12-Aug-2019 Gene summary Official Symbol Mrgpre provided by MGI Official Full Name MAS-related GPR, member E provided by MGI Primary source MGI:MGI:2441884 See related Ensembl:ENSMUSG00000048965 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as Mgrf; MrgE; Ebrt3; C130069N09Rik Expression Ubiquitous expression in thymus adult (RPKM 3.2), CNS E18 (RPKM 3.1) and 26 other tissues See more Orthologs human all Genomic context Location: 7; 7 F5 See Mrgpre in Genome Data Viewer Exon count: 2 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 7 NC_000073.6 (143778363..143784500, complement) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 7 NC_000073.5 (150964268..150970405, complement) Chromosome 7 - NC_000073.6 Page 5 of 7 https://www.alphaknockout.com Transcript information: This gene has 1 transcript Gene: Mrgpre ENSMUSG00000048965 Description MAS-related GPR, member E [Source:MGI Symbol;Acc:MGI:2441884] Gene Synonyms C130069N09Rik, MrgE Location Chromosome 7: 143,778,363-143,784,500 reverse strand. GRCm38:CM001000.2 About this gene This gene has 1 transcript (splice variant), 51 orthologues, 21 paralogues, is a member of 1 Ensembl protein family and is associated with 1 phenotype. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Mrgpre-201 ENSMUST00000054048.9 3761 310aa ENSMUSP00000058000.8 Protein coding CCDS22046 Q4V9R2 Q91ZB7 TSL:1 GENCODE basic APPRIS P1 26.14 kb Forward strand 143.77Mb 143.78Mb 143.79Mb Genes Gm22064-201 >miRNA (Comprehensive set... Contigs AC158299.7 > Genes (Comprehensive set... < Gm44998-201TEC < Mrgpre-201protein coding Regulatory Build 143.77Mb 143.78Mb 143.79Mb Reverse strand 26.14 kb Regulation Legend CTCF Enhancer Open Chromatin Promoter Promoter Flank Gene Legend Protein Coding merged Ensembl/Havana Non-Protein Coding RNA gene processed transcript Page 6 of 7 https://www.alphaknockout.com Transcript: ENSMUST00000054048 < Mrgpre-201protein coding Reverse strand 6.14 kb ENSMUSP00000058... Transmembrane heli... Low complexity (Seg) Superfamily SSF81321 Prints Mas-related G protein-coupled receptor E Mas-related G protein-coupled receptor family G protein-coupled receptor, rhodopsin-like PROSITE profiles GPCR, rhodopsin-like, 7TM PANTHER Mas-related G protein-coupled receptor family Mas-related G protein-coupled receptor E Gene3D 1.20.1070.10 CDD cd15112 All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend missense variant synonymous variant Scale bar 0 40 80 120 160 200 240 310 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC. Page 7 of 7.
Recommended publications
  • Applying Screening Techniques to Two Orphan Gpcrs
    Universidade de Lisboa Faculdade de Farmácia Deorphanization of receptors: Applying screening techniques to two orphan GPCRs Ana Catarina Rufas da Silva Santos Mestrado Integrado em Ciências Farmacêuticas 2019 Universidade de Lisboa Faculdade de Farmácia Deorphanization of receptors: Applying screening techniques to two orphan GPCRs Ana Catarina Rufas da Silva Santos Monografia de Mestrado Integrado em Ciências Farmacêuticas apresentada à Universidade de Lisboa através da Faculdade de Farmácia Orientadora: Ghazl Al Hamwi, PhD Student Co-Orientadora: Professora Doutora Elsa Maria Ribeiro dos Santos Anes, Professora Associada com Agregação em Microbiologia 2019 Abstract G-Protein Coupled Receptors represent one of the largest families of cellular receptors discovered and one of the main sources of attractive drug targets. In contrast, it also has a large number of understudied or orphan receptors. Pharmacological assays such as β-Arrestin recruitment assays, are one of the possible approaches for deorphanization of receptors. In this work, I applied the assay system previously mentioned to screen compounds in two orphan receptors, GRP37 and MRGPRX3. GPR37 has been primarily associated with a form of early onset Parkinsonism due to its’ expression patterns, and physiological role as substrate to ubiquitin E3, parkin. Although extensive literature regarding this receptor is available, the identification of a universally recognized ligand has not yet been possible. Two compounds were proposed as ligands, but both were met with controversy. These receptor association with Autosomal Recessive Juvenile Parkinson positions it as a very attractive drug target, and as such its’ deorphanization is a prime objective for investigators in this area. Regarding MRGPRX3 information is much scarcer.
    [Show full text]
  • Edinburgh Research Explorer
    Edinburgh Research Explorer International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list Citation for published version: Davenport, AP, Alexander, SPH, Sharman, JL, Pawson, AJ, Benson, HE, Monaghan, AE, Liew, WC, Mpamhanga, CP, Bonner, TI, Neubig, RR, Pin, JP, Spedding, M & Harmar, AJ 2013, 'International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands', Pharmacological reviews, vol. 65, no. 3, pp. 967-86. https://doi.org/10.1124/pr.112.007179 Digital Object Identifier (DOI): 10.1124/pr.112.007179 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Pharmacological reviews Publisher Rights Statement: U.S. Government work not protected by U.S. copyright General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 1521-0081/65/3/967–986$25.00 http://dx.doi.org/10.1124/pr.112.007179 PHARMACOLOGICAL REVIEWS Pharmacol Rev 65:967–986, July 2013 U.S.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • G Protein-Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading.
    [Show full text]
  • G Protein‐Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: G protein-coupled receptors. British Journal of Pharmacology (2019) 176, S21–S141 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors Stephen PH Alexander1 , Arthur Christopoulos2 , Anthony P Davenport3 , Eamonn Kelly4, Alistair Mathie5 , John A Peters6 , Emma L Veale5 ,JaneFArmstrong7 , Elena Faccenda7 ,SimonDHarding7 ,AdamJPawson7 , Joanna L Sharman7 , Christopher Southan7 , Jamie A Davies7 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia 3Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK 4School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 5Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 6Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 7Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website.
    [Show full text]
  • 1 1 2 3 Cell Type-Specific Transcriptomics of Hypothalamic
    1 2 3 4 Cell type-specific transcriptomics of hypothalamic energy-sensing neuron responses to 5 weight-loss 6 7 Fredrick E. Henry1,†, Ken Sugino1,†, Adam Tozer2, Tiago Branco2, Scott M. Sternson1,* 8 9 1Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 10 20147, USA. 11 2Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, 12 Cambridge CB2 0QH, UK 13 14 †Co-first author 15 *Correspondence to: [email protected] 16 Phone: 571-209-4103 17 18 Authors have no competing interests 19 1 20 Abstract 21 Molecular and cellular processes in neurons are critical for sensing and responding to energy 22 deficit states, such as during weight-loss. AGRP neurons are a key hypothalamic population 23 that is activated during energy deficit and increases appetite and weight-gain. Cell type-specific 24 transcriptomics can be used to identify pathways that counteract weight-loss, and here we 25 report high-quality gene expression profiles of AGRP neurons from well-fed and food-deprived 26 young adult mice. For comparison, we also analyzed POMC neurons, an intermingled 27 population that suppresses appetite and body weight. We find that AGRP neurons are 28 considerably more sensitive to energy deficit than POMC neurons. Furthermore, we identify cell 29 type-specific pathways involving endoplasmic reticulum-stress, circadian signaling, ion 30 channels, neuropeptides, and receptors. Combined with methods to validate and manipulate 31 these pathways, this resource greatly expands molecular insight into neuronal regulation of 32 body weight, and may be useful for devising therapeutic strategies for obesity and eating 33 disorders.
    [Show full text]
  • Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells Amy Sue Bogard University of Tennessee Health Science Center
    University of Tennessee Health Science Center UTHSC Digital Commons Theses and Dissertations (ETD) College of Graduate Health Sciences 12-2013 Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells Amy Sue Bogard University of Tennessee Health Science Center Follow this and additional works at: https://dc.uthsc.edu/dissertations Part of the Medical Cell Biology Commons, and the Medical Molecular Biology Commons Recommended Citation Bogard, Amy Sue , "Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells" (2013). Theses and Dissertations (ETD). Paper 330. http://dx.doi.org/10.21007/etd.cghs.2013.0029. This Dissertation is brought to you for free and open access by the College of Graduate Health Sciences at UTHSC Digital Commons. It has been accepted for inclusion in Theses and Dissertations (ETD) by an authorized administrator of UTHSC Digital Commons. For more information, please contact [email protected]. Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells Document Type Dissertation Degree Name Doctor of Philosophy (PhD) Program Biomedical Sciences Track Molecular Therapeutics and Cell Signaling Research Advisor Rennolds Ostrom, Ph.D. Committee Elizabeth Fitzpatrick, Ph.D. Edwards Park, Ph.D. Steven Tavalin, Ph.D. Christopher Waters, Ph.D. DOI 10.21007/etd.cghs.2013.0029 Comments Six month embargo expired June 2014 This dissertation is available at UTHSC Digital Commons: https://dc.uthsc.edu/dissertations/330 Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells A Dissertation Presented for The Graduate Studies Council The University of Tennessee Health Science Center In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy From The University of Tennessee By Amy Sue Bogard December 2013 Copyright © 2013 by Amy Sue Bogard.
    [Show full text]
  • Regulation of Pancreatic Islet Gene Expression in Mouse Islets by Pregnancy
    265 Regulation of pancreatic islet gene expression in mouse islets by pregnancy B T Layden, V Durai, M V Newman, A M Marinelarena, C W Ahn, G Feng1, S Lin1, X Zhang2, D B Kaufman2, N Jafari3, G L Sørensen4 and W L Lowe Jr Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Tarry 15, Chicago, Illinois 60611, USA 1Northwestern University Biomedical Informatics Center, 2Division of Transplantation Surgery, Department of Surgery and 3Genomics Core, Center for Genetic Medicine, Northwestern University, Chicago, Illinois 60611, USA 4Medical Biotechnology Center, University of Southern Denmark, DK-5000 Odense C, Denmark (Correspondence should be addressed to W L Lowe Jr; Email: [email protected]) Abstract Pancreatic b cells adapt to pregnancy-induced insulin were confirmed in murine islets. Cytokine-induced resistance by unclear mechanisms. This study sought to expression of SP-D in islets was also demonstrated, suggesting identify genes involved in b cell adaptation during pregnancy. a possible role as an anti-inflammatory molecule. Comple- To examine changes in global RNA expression during menting these studies, an expression array was performed to pregnancy, murine islets were isolated at a time point of define pregnancy-induced changes in expression of GPCRs increased b cell proliferation (E13.5), and RNA levels were that are known to impact islet cell function and proliferation. determined by two different assays (global gene expression This assay, the results of which were confirmed using real- array and G-protein-coupled receptor (GPCR) array). time reverse transcription-PCR assays, demonstrated that free Follow-up studies confirmed the findings for select genes.
    [Show full text]
  • Oxygenated Fatty Acids Enhance Hematopoiesis Via the Receptor GPR132
    Oxygenated Fatty Acids Enhance Hematopoiesis via the Receptor GPR132 The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Lahvic, Jamie L. 2017. Oxygenated Fatty Acids Enhance Hematopoiesis via the Receptor GPR132. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:42061504 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Oxygenated Fatty Acids Enhance Hematopoiesis via the Receptor GPR132 A dissertation presented by Jamie L. Lahvic to The Division of Medical Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Developmental and Regenerative Biology Harvard University Cambridge, Massachusetts May 2017 © 2017 Jamie L. Lahvic All rights reserved. Dissertation Advisor: Leonard I. Zon Jamie L. Lahvic Oxygenated Fatty Acids Enhance Hematopoiesis via the Receptor GPR132 Abstract After their specification in early development, hematopoietic stem cells (HSCs) maintain the entire blood system throughout adulthood as well as upon transplantation. The processes of HSC specification, renewal, and homing to the niche are regulated by protein, as well as lipid signaling molecules. A screen for chemical enhancers of marrow transplant in the zebrafish identified the endogenous lipid signaling molecule 11,12-epoxyeicosatrienoic acid (11,12-EET). EET has vasodilatory properties, but had no previously described function on HSCs.
    [Show full text]
  • Supplemental Material
    Supplemental material Systems Pharmacology Approach to Prevent Retinal Degeneration in Stargardt Disease Yu Chen, Grazyna Palczewska, Debarshi Mustafi, Marcin Golczak, Zhiqian Dong, Osamu Sawada, Tadao Maeda, Akiko Maeda, and Krzysztof Palczewski Table of Contents: 1. Supplemental Table 1. 2. Supplemental Table 2. 3. Supplemental Table 3. 4. References. 1 Supplemental Table 1. Expression of GPCRs in the eye and retina of C57BL/6J mice and the retina of a human donor eye (normalized FPKM values)A. Genes B6 mouse B6 mouse Human retina eye retina Rho 6162.04 11630.18 6896.09 Rgr 355.74 97.66 123.98 Opn1sw 125.13 198.54 31.69 Drd4 93.84 241.78 139.49 Opn1mw 62.97 95.77 172.56 Gprc5b 29.82 12.95 22.85 Gpr162 29.37 73.32 46.29 Gpr37 28.47 41.28 66.65 Ednrb 22.27 1.94 5.77 Rorb 21.69 23.52 24.31 Gpr153 20.42 37.18 15.31 Gabbr1 19.78 40.24 35.38 Rrh 19.29 9.23 40.34 2 Gpr152 18.55 40.46 3.05 Adora1 16.20 18.26 13.55 Lphn1 15.98 29.73 31.85 Tm2d1 15.56 10.31 17.63 Cxcr7 14.30 3.58 2.37 Ppard 13.68 19.37 21.61 Agtrap 13.64 17.21 8.18 Cd97 12.93 1.77 1.55 Gpr19 12.21 8.45 1.11 Fzd1 11.99 3.29 7.35 Fzd6 11.34 1.85 2.76 Gpr87 11.34 0.04 0.00 Lgr4 11.09 9.50 18.07 Drd2 10.82 23.10 26.33 Smo 10.75 6.35 5.91 S1pr1 10.66 11.21 11.78 Bai1 10.08 27.10 10.82 3 Glp2r 9.94 34.85 0.31 Ptger1 9.59 14.88 0.94 Gpr124 9.56 8.94 19.82 F2r 9.31 5.32 0.15 Adra2c 8.96 7.17 2.38 Gpr146 8.91 7.49 6.17 Vipr2 8.79 14.33 10.69 Fzd5 8.69 10.01 7.73 Gpr110 8.59 0.08 0.02 Adrb1 8.43 20.18 3.84 S1pr3 8.42 6.95 3.56 Gabbr2 7.80 17.03 10.57 Lphn2 7.66 9.02 8.79 Lpar1 7.47 0.91
    [Show full text]
  • MRGPRX4 Is a Novel Bile Acid Receptor in Cholestatic Itch Huasheng Yu1,2,3, Tianjun Zhao1,2,3, Simin Liu1, Qinxue Wu4, Omar
    bioRxiv preprint doi: https://doi.org/10.1101/633446; this version posted May 9, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 MRGPRX4 is a novel bile acid receptor in cholestatic itch 2 Huasheng Yu1,2,3, Tianjun Zhao1,2,3, Simin Liu1, Qinxue Wu4, Omar Johnson4, Zhaofa 3 Wu1,2, Zihao Zhuang1, Yaocheng Shi5, Renxi He1,2, Yong Yang6, Jianjun Sun7, 4 Xiaoqun Wang8, Haifeng Xu9, Zheng Zeng10, Xiaoguang Lei3,5, Wenqin Luo4*, Yulong 5 Li1,2,3* 6 7 1State Key Laboratory of Membrane Biology, Peking University School of Life 8 Sciences, Beijing 100871, China 9 2PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China 10 3Peking-Tsinghua Center for Life Sciences, Beijing 100871, China 11 4Department of Neuroscience, Perelman School of Medicine, University of 12 Pennsylvania, Philadelphia, PA 19104, USA 13 5Department of Chemical Biology, College of Chemistry and Molecular Engineering, 14 Peking University, Beijing 100871, China 15 6Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory 16 of Molecular Diagnosis on Dermatoses, Beijing 100034, China 17 7Department of Neurosurgery, Peking University Third Hospital, Peking University, 18 Beijing, 100191, China 19 8State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in 20 Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, 21 Chinese Academy of Sciences, Beijing, 100101, China 22 9Department of Liver Surgery, Peking Union Medical College Hospital, Chinese bioRxiv preprint doi: https://doi.org/10.1101/633446; this version posted May 9, 2019.
    [Show full text]
  • Host Lipid Metabolism and Its Effect on the Infectivity of Hepatitis C Virus
    THE CRITICAL ROLE OF MRGPRS IN NON-HISTAMINERGIC PRURITUS OF CHOLESTASIS AND ALLERGIC CONTACT DERMATITIS by James Meixiong A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, MD June 2019 © 2019 James Meixiong All Rights Reserved Abstract Clinically relevant chronic itch conditions commonly result from kidney failure, cholestasis, and skin disorders like allergic contact dermatitis (ACD). Recently, numerous members of the Mas-related G-protein coupled receptor (Mrgpr) family of GPCRs have been identified as receptors for non-histaminergic pruritogens. In this thesis, I utilized Ca2+ imaging, mouse genetics, and mouse models of disease to determine the role of Mrgprs in two non-histaminergic pruritus conditions: cholestasis and ACD. In chapter one, I demonstrate that pathophysiologic levels of bilirubin observed in cholestasis, bound two Mrgprs, mouse MRGPRA1 and human MRGPRX4, activated sensory neurons via Mrgprs, and elicited Mrgpr-dependent pruritus. Genetic deletion of either Mrgpra1 or Bvlra, the bilirubin-producing enzyme, attenuated mouse models of cholestatic itch. In chapter two, I present evidence that human MRGPRX4 is a bile acid receptor. To assess the in vivo relevance of bile acid activation of MRGPRX4, I generated a humanized mouse with targeted expression of MRGPRX4 to itch-encoding sensory neurons. Bile acids activated MRGPRX4-positive sensory neurons at higher levels compared to wild-type (WT) neurons. Compared to WT animals, MRGPRX4-mice scratched more upon acute injection of bile acids and in a model of cholestatic itch. In the final chapter, I examine the role of recently identified mast-cell expressed Mrgprs, murine Mrgprb2 and human MRGPRX2, in pruritus.
    [Show full text]