Water Temperature Drives Variability in Salmonfly Abundance, Emergence Timing, and Body Size
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phylogeographic and Nested Clade Analysis of the Stonefly Pteronarcys
J. N. Am. Benthol. Soc., 2004, 23(4):824–838 q 2004 by The North American Benthological Society Phylogeographic and nested clade analysis of the stonefly Pteronarcys californica (Plecoptera:Pteronarcyidae) in the western USA JOHN S. K. KAUWE1 Department of Biology, Washington University, St. Louis, Missouri 63110 USA DENNIS K. SHIOZAWA2 Department of Integrative Biology, Brigham Young University, Provo, Utah 84602 USA R. PAUL EVANS3 Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah 84602 USA Abstract. Long-distance dispersal by aquatic insects can be difficult to detect because direct mea- surement methods are expensive and inefficient. When dispersal results in gene flow, signs of that dispersal can be detected in the pattern of genetic variation within and between populations. Four hundred seventy-five base pairs of the mitochondrial gene, cytochrome b, were examined to inves- tigate the pattern of genetic variation in populations of the stonefly Pteronarcys californica and to determine if long-distance dispersal could have contributed to this pattern. Sequences were obtained from 235 individuals from 31 different populations in the western United States. Sequences also were obtained for Pteronarcella badia, Pteronarcys dorsata, Pteronarcys princeps, Pteronarcys proteus, and Pter- onarcys biloba. Phylogenies were constructed using all of the samples. Nested clade analysis on the P. californica sequence data was used to infer the processes that have generated the observed patterns of genetic variation. An eastern North American origin and 2 distinct genetic lineages of P.californica could be inferred from the analysis. Most of the current population structure in both lineages was explained by a pattern of restricted gene flow with isolation by distance (presumably the result of dispersal via connected streams and rivers), but our analyses also suggested that long-distance, over- land dispersal has contributed to the observed pattern of genetic variation. -
14 January 2008 a Short History of Pteronarcys Californica and Pteronarcella Badia in the Logan River, Cache County, Utah by Mark Vinson, [email protected]
Last update: 14 January 2008 A short history of Pteronarcys californica and Pteronarcella badia in the Logan River, Cache County, Utah By Mark Vinson, [email protected] The salmonflies, Pteronarcys californica and Pteronarcella badia (Plecotpera: Pteronarcyidae) were once abundant in the Logan River. In a 1927 paper, James Needham wrote “Pteronarcys californica abounds in the clear waters of Logan River below 6000 feet. It is undoubtedly one of the most important insect species of the stream. Its greatest abundance seems to be in trash piles that gather against the upstream side of the larger rocks in midstream where it finds both food and shelter. Fifty or more well-grown nymphs could be taken on a screen by dislodging a single large stone (Needham, 1927)”. In later pages of this publication he comments as well on the abundance of Pteronarcella badia in the Logan River. I first noticed that Pteronarcyidae were absent in the Logan River about 10 years ago, but I did not know they had once been common until about 5 years ago. It always seemed a bit strange to that they were not in the Logan River as both species are very common in the Blacksmith Fork River - the Logan River’s largest tributary stream that drains the basin just to the south of the Logan River. Anyway, for the last 5 years I have been on a somewhat of quest to find these species in the Logan River and its tributaries and to work at summarizing the history of collections of these species in the Logan River. -
Invertebrate Prey Selectivity of Channel Catfish (Ictalurus Punctatus) in Western South Dakota Prairie Streams Erin D
South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Electronic Theses and Dissertations 2017 Invertebrate Prey Selectivity of Channel Catfish (Ictalurus punctatus) in Western South Dakota Prairie Streams Erin D. Peterson South Dakota State University Follow this and additional works at: https://openprairie.sdstate.edu/etd Part of the Aquaculture and Fisheries Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Peterson, Erin D., "Invertebrate Prey Selectivity of Channel Catfish (Ictalurus punctatus) in Western South Dakota Prairie Streams" (2017). Electronic Theses and Dissertations. 1677. https://openprairie.sdstate.edu/etd/1677 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. INVERTEBRATE PREY SELECTIVITY OF CHANNEL CATFISH (ICTALURUS PUNCTATUS) IN WESTERN SOUTH DAKOTA PRAIRIE STREAMS BY ERIN D. PETERSON A thesis submitted in partial fulfillment of the degree for the Master of Science Major in Wildlife and Fisheries Sciences South Dakota State University 2017 iii ACKNOWLEDGEMENTS South Dakota Game, Fish & Parks provided funding for this project. Oak Lake Field Station and the Department of Natural Resource Management at South Dakota State University provided lab space. My sincerest thanks to my advisor, Dr. Nels H. Troelstrup, Jr., for all of the guidance and support he has provided over the past three years and for taking a chance on me. -
The Morphology of the Pterothorax of Ephemeroptera, Odonata
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Stuttgarter Beiträge Naturkunde Serie A [Biologie] Jahr/Year: 2008 Band/Volume: NS_1_A Autor(en)/Author(s): Willkommen Jana Artikel/Article: The morphology of the pterothorax of Ephemeroptera, Odonata and Plecoptera (Insecta) and the homology of wing base sclerites and flight muscles 203-300 Stuttgarter Beiträge zur Naturkunde A, Neue Serie 1: 203–300; Stuttgart, 30.IV.2008. 203 The morphology of the pterothorax of Ephemeroptera, Odonata and Plecoptera (Insecta) and the homology of wing base sclerites and flight muscles1 JANA WILLKOMMEN Abstract The ability to fly was the decisive factor for the evolutionary success of the most diverse group of insects, the Pterygota. Nevertheless, the ground plan of the functionally important wing base has not been sufficiently clari- fied. The aim of this study is to homologise the wing base sclerites of Ephemeroptera, usually regarded as sister group of the remaining Pterygota, with that of other basal pterygote lineages and to reconstruct the ground plan of the wing base of Pterygota. The pterothoracic musculature of representatives of the three basal lineages of Ptery- gota (Ephemeroptera, Odonata and Neoptera) is also described and discussed. Contrary to previous hypotheses, it is shown that most elements of the neopteran wing base are also present in Ephemeroptera and Odonata. The wing base in the ground plan of Pterygota is presumably composed of three axil- lary sclerites. The proximal median plate is probably also present in the ground plan of Pterygota. The first axillary is provided with two muscles. -
Monophyletic Polyneoptera Recovered by Wing Base Structure
Title Monophyletic Polyneoptera recovered by wing base structure Author(s) Yoshizawa, Kazunori Systematic Entomology, 36(3), 377-394 Citation https://doi.org/10.1111/j.1365-3113.2011.00572.x Issue Date 2011-07 Doc URL http://hdl.handle.net/2115/49480 Rights The definitive version is available at http://onlinelibrary.wiley.com/ Type article (author version) File Information SE36-3_377-394.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Running title: Phylogeny of Polyneoptera Monophyletic Polyneoptera recovered by the wing base structure KAZUNORI YOSHIZAWA Systematic Entomology, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan Correspondence: Kazunori Yoshizawa, Systematic Entomology, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan. E-mail. [email protected] Abstract. Phylogenetic relationships among the winged orders of Polyneoptera (Blattodea, Dermaptera, Embiodea or Embioptera, Isoptera, Mantodea, Orthoptera, Phasmatodea, Plecoptera, Zoraptera) were estimated based on morphological data selected from the hindwing base structure. Cladistic analyses were carried out using the hindwing base data alone and in combination with other, more general, morphological data. Both data sets resulted in similar trees and recovered monophyly of Polyneoptera. Deepest phylogenetic relationships among the polyneopteran orders were not confidently estimated, but monophyly of Mystroptera (= Embiodea + Zoraptera), Orthopterida (= Orthoptera + Phasmatodea) and Dictyoptera (= Blattodea + Mantodea + Isoptera) was supported consistently. In contrast, placements of Plecoptera and Dermaptera were unstable, although independent analysis of the wing base data supported their sister group relationship with two non-homoplasious synapomorphies (unique conditions in the ventral basisubcostale and in the articulation between the antemedian notal wing process and first axillary sclerite). -
Microsoft Outlook
Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA). -
MAINE STREAM EXPLORERS Photo: Theb’S/FLCKR Photo
MAINE STREAM EXPLORERS Photo: TheB’s/FLCKR Photo: A treasure hunt to find healthy streams in Maine Authors Tom Danielson, Ph.D. ‐ Maine Department of Environmental Protection Kaila Danielson ‐ Kents Hill High School Katie Goodwin ‐ AmeriCorps Environmental Steward serving with the Maine Department of Environmental Protection Stream Explorers Coordinators Sally Stockwell ‐ Maine Audubon Hannah Young ‐ Maine Audubon Sarah Haggerty ‐ Maine Audubon Stream Explorers Partners Alanna Doughty ‐ Lakes Environmental Association Brie Holme ‐ Portland Water District Carina Brown ‐ Portland Water District Kristin Feindel ‐ Maine Department of Environmental Protection Maggie Welch ‐ Lakes Environmental Association Tom Danielson, Ph.D. ‐ Maine Department of Environmental Protection Image Credits This guide would not have been possible with the extremely talented naturalists that made these amazing photographs. These images were either open for non‐commercial use and/or were used by permission of the photographers. Please do not use these images for other purposes without contacting the photographers. Most images were edited by Kaila Danielson. Most images of macroinvertebrates were provided by Macroinvertebrates.org, with exception of the following images: Biodiversity Institute of Ontario ‐ Amphipod Brandon Woo (bugguide.net) – adult Alderfly (Sialis), adult water penny (Psephenus herricki) and adult water snipe fly (Atherix) Don Chandler (buigguide.net) ‐ Anax junius naiad Fresh Water Gastropods of North America – Amnicola and Ferrissia rivularis -
2020 Progress Report
Colorado Coldwater Stream Ecology Investigations Project Summary Dan A. Kowalski Aquatic Research Scientist 2020 Progress Report Colorado Parks & Wildlife Aquatic Research Section Fort Collins, Colorado August 2020 STATE OF COLORADO Jared Polis, Governor COLORADO DEPARTMENT OF NATURAL RESOURCES Dan Gibbs, Executive Director COLORADO PARKS & WILDLIFE Dan Prenzlow, Director WILDLIFE COMMISSION Marvin McDaniel, Chair Dallas May Carrie Besnette Hauser, Vice-Chair Duke Phillips IV Marie Haskett, Secretary Luke B. Schafer Taishya Adams James Jay Tutchton Betsy Blecha Eden Vardy Charles Garcia Ex Officio/Non-Voting Members: Kate Greenberg, Dan Gibbs and Dan Prenzlow AQUATIC RESEARCH STAFF George J. Schisler, Aquatic Research Leader Kelly Carlson, Aquatic Research Program Assistant Pete Cadmus, Aquatic Research Scientist/Toxicologist, Water Pollution Studies Eric R. Fetherman, Aquatic Research Scientist, Salmonid Disease Studies Ryan Fitzpatrick, Aquatic Research Scientist, Eastern Plains Native Fishes Eric E. Richer, Aquatic Research Scientist/Hydrologist, Stream Habitat Restoration Matthew C. Kondratieff, Aquatic Research Scientist, Stream Habitat Restoration Dan Kowalski, Aquatic Research Scientist, Stream & River Ecology Adam G. Hansen, Aquatic Research Scientist, Coldwater Lakes and Reservoirs Kevin B. Rogers, Aquatic Research Scientist, Colorado Cutthroat Studies Kevin G. Thompson, Aquatic Research Scientist, 3-Species and Boreal Toad Studies Andrew J. Treble, Aquatic Research Scientist, Aquatic Data Management and Analysis Brad Neuschwanger, -
Arthropod Prey for Riparian Associated Birds in Headwater Forests of the Oregon Coast Range ⇑ Joan C
Forest Ecology and Management 285 (2012) 213–226 Contents lists available at SciVerse ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Arthropod prey for riparian associated birds in headwater forests of the Oregon Coast Range ⇑ Joan C. Hagar a, , Judith Li b,1, Janel Sobota b,1, Stephanie Jenkins c,2 a US Geological Survey Forest & Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR 97331, United States b Oregon State University, Department of Fisheries & Wildlife, Nash Hall, Room #104, Oregon State University, Corvallis, OR 97331-3803, United States c Oregon State University, Department of Forest Ecosystems & Society, 321 Richardson Hall, Corvallis, OR 97331, United States article info abstract Article history: Headwater riparian areas occupy a large proportion of the land base in Pacific Northwest forests, and thus Received 11 May 2012 are ecologically and economically important. Although a primary goal of management along small head- Received in revised form 16 August 2012 water streams is the protection of aquatic resources, streamside habitat also is important for many ter- Accepted 19 August 2012 restrial wildlife species. However, mechanisms underlying the riparian associations of some terrestrial Available online 21 September 2012 species have not been well studied, particularly for headwater drainages. We investigated the diets of and food availability for four bird species associated with riparian habitats in montane coastal forests Keywords: of western Oregon, USA. We examined variation in the availability of arthropod prey as a function of dis- Aquatic-terrestrial interface tance from stream. Specifically, we tested the hypotheses that (1) emergent aquatic insects were a food Arthropod prey Forest birds source for insectivorous birds in headwater riparian areas, and (2) the abundances of aquatic and terres- Headwater streams trial arthropod prey did not differ between streamside and upland areas during the bird breeding season. -
Larvae of North American Species of Pteronarcys (Plecoptera: Pteronarcyidae)
Myers, L.W. and B.C. Kondratieff. 2017. Larvae of North American species of Pteronarcys (Plecoptera: Pteronarcyidae). Illiesia, 13(16):192-224. https://doi.org/10.25031/2017/13.16 http://zoobank.org/ urn:lsid:zoobank.org:pub:68D355B3-CD8A-4699-AC4E-94527D18FE24 LARVAE OF NORTH AMERICAN SPECIES OF PTERONARCYS (PLECOPTERA: PTERONARCYIDAE) L.W. Myers1 and B.C. Kondratieff2 1 Lake Champlain Research Institute, SUNY Plattsburgh, Plattsburgh, NY 12901, U.S.A. E-mail: [email protected] 2 Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, 80523, U.S.A. E-mail: [email protected] ABSTRACT Larvae of the eight North American Pteronarcys (Plecoptera: Pteronarcyidae) species have been difficult or impossible to identify over the past century. This stems from the lack of rigorous comparisons of reared material. The absence of a reliable key diminishes the importance of Pteronarcys larvae in aquatic ecological and biomonitoring studies. We provide comparative larval descriptions and a key illustrated with high resolution photographs of important diagnostic characters for the eight North American species of Pteronarcys. Earlier descriptions are reviewed and supplemented with new photographs, illustrations and morphometric data to aid in the separation of morphologically similar species. Keywords: Stonefly larvae, Plecoptera, Pteronarcyidae, Pteronarcys, North America INTRODUCTION Hanson (1971) originally recognized six species The stonefly genus Pteronarcys Newman, 1838 is groups, whereas Stark & Szczytko (1982) only represented by eight valid species in North America recognized three species groups within Pteronarcys. (Stark & Szczytko 1982, Nelson 2000, DeWalt et al. Larvae of species that possessed abdominal spines 2017). Two more species, P. -
Plecoptera:Perlidae)
THE LIFE HISTORY AND ECOLOGY OF THE STONEFLY NEOPERLA CLYMENE (NEWMAN)(PLECOPTERA:PERLIDAE) APPROVED: or Professo moxy Processor Director of the Department of Biology Dean of the Graduate School Vaught, George L., The Life History and Ecology of the Stonefly Neoperla clymene (Newman)(Plecoptera:Perlidae). Master of Science (Biology), August, 1972, 56pp., 4 tables, 10 illustrations, bibliography, 53 titles. The objective of this investigation was to provide new and more detailed information on the life history and eco- logy of Neoperla clymene, through an intensive study of the species in the Brazos River, Texas. Nymphal development was determined from 737 specimens from monthly quantitative sam- ples, and bi-monthly qualitative samples taken from November 1970 to October 1971. A total of 443 nymphs were collected during the months of March, April, May, and July to determine the kinds and numbers of food organisms consumed by N. clymene, and to investigate periodicity and electivity of feeding. Light trap samples were taken from March to September 1971 for determination of emergence cycle and adult sex ratios. Mating, fecundity, incubation and egg descriptions were de- termined through field and supplemental laboratory observa- tions. The conclusions of this investigation were: 1) Emergence, mating and oviposition of adults was noc- turnal, reaching a peak during the months of June and July. 2) Mean fecundity of dissected virgin females was 646 eggs, up to 3 egg masses were obtained from females held in laboratory aquaria and they averaged 98 eggs/egg mass. The number of eggs per egg mass from field-collected females ranged from 59-324, with a mean of 173. -
Plecoptera) of a Western Oregon
AN ABSTRACT OF THE THESIS OF CARY DEAN KERST for the MASTER OF SCIENCE (Name) (Degree) in ENTOMOLOGY presentedon 1,--0"J, (Major) (Date) Title: THE SEASONAL OCCURRENCE AND DISTRIBUTION OF STONEFLIES (PLECOPTERA) OF A WESTERN OREGON STREAM Abstract approved: Redacted for Privacy N. H. Anderson Plecoptera were collected from four sampling stations selected to represent a range of conditions on Oak Creek, a small woodland stream originating in the foothills of the Oregon Coast Range.The elevation of Site I was 700 ft. while the lowest site was located at 225 ft.Monthly benthos samples were taken for one year from a riffle and glide section at each site using a stovepipe sampler (6 in. dia. ) and a standard tropical fish net.Samples were sorted in the laboratory and Plecoptera identified and placed into 1 mm size classes.Emer- gence of adults was measured for 13 months using a tent-shaped trap (1 m2) at each site.Traps were checked once or twice weekly. Forty-two species of Plecoptera were found in Oak Creek.The number of species is very large when compared with other studies. The stonefly fauna is fairly similar to that reported 35 years ago. Thirty-seven of the 42 species complete emergence during the spring.Temporal separation is marked in the emergence periods of Nemoura and Leuctra. Examples of split emergence periods and early emergence of males were found.Life cycle information is given for a number of species and genera. Using the Shannon-Wiener function, diversity of emerging adults ranks by season as: Spring > Summer > Winter > Fall.The diversity of the sites on a yearly basis is:II > I > III > IV.Using a percentage of similarity index it is concluded that Sites I and II are very similar.