A Common Origin for Aftershocks, Foreshocks, and Multiplets by Karen R

Total Page:16

File Type:pdf, Size:1020Kb

A Common Origin for Aftershocks, Foreshocks, and Multiplets by Karen R Bulletin of the Seismological Society of America, Vol. 94, No. 1, pp. 88–98, February 2004 A Common Origin for Aftershocks, Foreshocks, and Multiplets by Karen R. Felzer,* Rachel E. Abercrombie, and Go¨ran Ekstro¨m Abstract We demonstrate that the statistics of earthquake data in the global Cen- troid Moment Tensor (CMT) and National Earthquake Information Center (NEIC) catalogs and local California Council of the National Seismic System (CNSS) catalog are consistent with the idea that a single physical triggering mechanism is responsible for the occurrence of aftershocks, foreshocks, and multiplets. Specifically, we test the hypothesis that tectonic earthquakes usually show clustering only as a result of an initial earthquake triggering subsequent ones and that the magnitude of each trig- gered earthquake is entirely independent of the magnitude of the triggering earth- quake. Therefore a certain percentage of the time, as determined by the Gutenberg– Richter magnitude–frequency relationship, an earthquake should by chance be larger than or comparable in size to the earthquake that triggered it. This hypothesis predicts that the number of times foreshocks or multiplets are observed should be a fixed fraction of the number of aftershock observations. We find that this is indeed the case in the global CMT and NEIC catalogs; the average ratios between foreshock, aftershock, and multiplet rates are consistent with what would be predicted by the We give special attention to the Solomon .1 ס Gutenberg–Richter relationship with b Islands, where it has been claimed that unique fault structures lead to unusually high numbers of multiplets. We use Monte Carlo trials to demonstrate that the Solomon Islands multiplets may be explained simply by a high regional aftershock rate and earthquake density. We also verify our foreshock results from the more complete recordings of small earthquakes available in the California catalog and find that foreshock rates for a wide range of foreshock and mainshock magnitudes can be ס projected from aftershock rates using the Gutenberg–Richter relationship with b 1 and the relationship that the number of earthquakes triggered varies with triggering earthquake magnitude M as c10␣M, where c is a productivity constant and ␣ is equal to 1. Finally, we test an alternative model that proposes that foreshocks do not trigger their mainshocks but are instead triggered by the mainshock nucleation phase. In this model, the nucleation phase varies with mainshock magnitude, so we would expect mainshock magnitude to be correlated with the magnitude, number, or spatial extent of the foreshocks. We find no evidence for any of these correlations. Introduction The term “aftershocks” is generally used to refer to a multiplets and foreshocks is different than that for after- cluster of smaller earthquakes following a larger one, which shocks, with multiplets being especially prevalent only is referred to as the “mainshock.” Clusters of earthquakes of where seismic zones contain large, simple asperities, as has comparable size are referred to as “multiplets” (or “dou- been suggested by Lay and Kanamori (1980), and fore- blets,” for pairs of events), and clustered smaller earthquakes shocks occurring because they are triggered by the nuclea- preceding a larger one are called “foreshocks.” There is gen- tion phase of the upcoming mainshock (Ohnaka 1993; eral agreement that aftershocks are triggered by stress Dodge et al., 1995; Hurukawa 1998). changes (of some sort) induced by the mainshock’s rupture. Other researchers argue that the magnitude of a trig- Some researchers argue, however, that the physics behind gered earthquake is independent of the magnitude of the earthquake that triggered it, and thus what we see as after- shocks, multiplets, and foreshocks actually represent a single *Present address: Department of Earth and Space Sciences, 3806 Geol- ogy Building, University of California, Los Angeles, Box 951567, Los triggering process. In this model, when an earthquake oc- Angeles, California 90095-1567. curs, it may trigger slip on small fault patches surrounding 88 A Common Origin for Aftershocks, Foreshocks, and Multiplets 89 the hypocenters of future earthquakes. The number of hy- are supported by the data, testing the first two predictions pocenters triggered, n, is given by with the global data set and the second two predictions with the California earthquake catalog. We also perform addi- c10␣M , (1) tional tests to see whether it is possible to disprove the idea ס n that a single triggering mechanism is all that is necessary to where M is the magnitude of the triggering earthquake, c is explain the observed earthquake statistics. a productivity constant, and ␣ is a parameter that controls the relative number of aftershocks triggered as a function of Predictions of the Single-Mode Triggering Model mainshock magnitude. In this model, each triggered earth- quake then grows to a magnitude randomly chosen from We make four predictions using the single-mode trig- the Gutenberg–Richter magnitude–frequency relationship, gering model. The first is that since the model holds that -bm, where N is the number aftershocks and doublets result from the same triggering proמ a ס (which gives that log(N of earthquakes larger than or equal to magnitude m, b is a cess, regional aftershock and doublet rates should vary lin- constant typically close to unity, and a is a constant that early with each other. For example, where aftershock rates depends on the local activity rate (Ishimoto and Iida, 1939; are low doublet rates should also be low, and so on. Gutenberg and Richter, 1944). This single-process triggering The second prediction is that, for the same reason, af- model has been used to build statistical models of seismicity tershock and foreshock rates should vary linearly with each (Vere-Jones, 1966; Kagan and Knopoff, 1981; Ogata, 1988; other. Thus, significant regional variations in the rate of fore- Helmstetter and Sornette, 2002), to analyze earthquake clus- shock occurrence as observed, for example, by Reasenberg tering (Console and Murru, 2001), to estimate the prevalence (1999), may be simply explained by regional variations in of secondary aftershocks (Felzer et al., 2002), to study fore- earthquake-triggering efficiency and should correlate di- shocks (Shaw, 1993; Jones et al., unpublished manuscript), rectly with aftershock rate variability. and to find the average time-dependent risk in California of Our third prediction is that aftershock production should ␣M1 a large earthquake being triggered by recent seismic activity vary with mainshock magnitude, M1,asc10 where c is Therefore, if we count aftershocks .1.0 ס ␣ Reasenberg and Jones, 1989). a constant and) The purpose of this article is to use earthquake statistics, above some set cutoff magnitude M2, the number of after- Ն derived from the global International Seismological Centre shocks larger than or equal to M2, N(m M2), should be (ISC) and National Earthquake Information Center (NEIC) given by catalogs and regional California Council of the National M1 ס Seismic System (CNSS) catalog, to investigate whether after- Ն N(m M2) c10 , (2) shocks, multiplets, and foreshocks represent a single physi- cal processes or multiple ones. In order to perform this in- where M may be either smaller or larger than M . ␣ 2 1 vestigation, it is necessary to set a value for in equation Our fourth prediction is that the number of aftershocks ע and a value for b in the Gutenberg–Richter equation. We (1) having a magnitude M2 DM, where M2 is now a variable follow Reasenberg and Jones (1989), Michael and Jones rather than a fixed value, should vary as (1998), Console and Murru (2001), and Felzer et al. (2002) Mמ b because this allows for the reproduction of b M ס ␣ and set (C10( 12) , (3 ס (DM ע N(M Ba˚th’s law, an empirical relationship that states that the av- 2 erage magnitude difference between a mainshock and its This prediction is arrived .1.0 ס where C is a constant and b largest aftershock is independent of mainshock magnitude at by multiplying together prediction 3, that the number of (Utsu, 1961; Ba˚th, 1965; Tapanos, 1990; Felzer et al., 2002). triggered earthquakes should vary as 10M1, with the speci- b ס ␣ b, or more precisely setting ס ␣ In addition, setting fication that the magnitude of each triggered earthquake is which is the typically observed b-value, is consistent ,1.0 ס chosen randomly from the Gutenberg–Richter relationship, with California aftershock counts, as we will demonstrate which gives that the probability of having an earthquake of מ -later, and means (assuming constant stress drop) that after M2. A similar prediction was 10 ן magnitude M is 10a shock production varies directly with mainshock faulting 2 made and investigated by Michael and Jones (1998). area, which agrees with empirical observations (Yamanaka and Shimazaki, 1990; Jones and Hauksson, unpublished manuscript). Other values for ␣ given in the literature in- Testing the Predictions of the Single-Mode clude 0.5 (Console et al., 2003) and 0.8 (Helmstetter, 2003). Triggering Model In the rest of this article we will refer to the single physical model for earthquake triggering, along with the stipulations Data Processing -and that ␣ and b remain invariant with To test the first two predictions of the single-mode trig 1.0 ס b ס ␣ that time, as the “single-mode triggering model.” gering model, we need to compare different regions with In this article we use the single-mode triggering model aftershock, doublet, and foreshock rates that vary signifi- to make four predictions. We then test if these predictions cantly. This requires use of a global catalog. To keep mag- 90 K. R. Felzer, R. E. Abercrombie, and G. Ekstro¨m nitude measurements as consistent as possible, we use we wish to compare aftershock and doublet rates, the two moment magnitudes from the Harvard Centroid Moment data sets cannot be allowed to overlap.
Recommended publications
  • Coulomb Stresses Imparted by the 25 March
    LETTER Earth Planets Space, 60, 1041–1046, 2008 Coulomb stresses imparted by the 25 March 2007 Mw=6.6 Noto-Hanto, Japan, earthquake explain its ‘butterfly’ distribution of aftershocks and suggest a heightened seismic hazard Shinji Toda Active Fault Research Center, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), site 7, 1-1-1 Higashi Tsukuba, Ibaraki 305-8567, Japan (Received June 26, 2007; Revised November 17, 2007; Accepted November 22, 2007; Online published November 7, 2008) The well-recorded aftershocks and well-determined source model of the Noto Hanto earthquake provide an excellent opportunity to examine earthquake triggering associated with a blind thrust event. The aftershock zone rapidly expanded into a ‘butterfly pattern’ predicted by static Coulomb stress transfer associated with thrust faulting. We found that abundant aftershocks occurred where the static Coulomb stress increased by more than 0.5 bars, while few shocks occurred in the stress shadow calculated to extend northwest and southeast of the Noto Hanto rupture. To explore the three-dimensional distribution of the observed aftershocks and the calculated stress imparted by the mainshock, we further resolved Coulomb stress changes on the nodal planes of all aftershocks for which focal mechanisms are available. About 75% of the possible faults associated with the moderate-sized aftershocks were calculated to have been brought closer to failure by the mainshock, with the correlation best for low apparent fault friction. Our interpretation is that most of the aftershocks struck on the steeply dipping source fault and on a conjugate northwest-dipping reverse fault contiguous with the source fault.
    [Show full text]
  • Intraplate Earthquakes in North China
    5 Intraplate earthquakes in North China mian liu, hui wang, jiyang ye, and cheng jia Abstract North China, or geologically the North China Block (NCB), is one of the most active intracontinental seismic regions in the world. More than 100 large (M > 6) earthquakes have occurred here since 23 BC, including the 1556 Huax- ian earthquake (M 8.3), the deadliest one in human history with a death toll of 830,000, and the 1976 Tangshan earthquake (M 7.8) which killed 250,000 people. The cause of active crustal deformation and earthquakes in North China remains uncertain. The NCB is part of the Archean Sino-Korean craton; ther- mal rejuvenation of the craton during the Mesozoic and early Cenozoic caused widespread extension and volcanism in the eastern part of the NCB. Today, this region is characterized by a thin lithosphere, low seismic velocity in the upper mantle, and a low and flat topography. The western part of the NCB consists of the Ordos Plateau, a relic of the craton with a thick lithosphere and little inter- nal deformation and seismicity, and the surrounding rift zones of concentrated earthquakes. The spatial pattern of the present-day crustal strain rates based on GPS data is comparable to that of the total seismic moment release over the past 2,000 years, but the comparison breaks down when using shorter time windows for seismic moment release. The Chinese catalog shows long-distance roaming of large earthquakes between widespread fault systems, such that no M ࣙ 7.0 events ruptured twice on the same fault segment during the past 2,000 years.
    [Show full text]
  • Seismic Rate Variations Prior to the 2010 Maule, Chile MW 8.8 Giant Megathrust Earthquake
    www.nature.com/scientificreports OPEN Seismic rate variations prior to the 2010 Maule, Chile MW 8.8 giant megathrust earthquake Benoit Derode1*, Raúl Madariaga1,2 & Jaime Campos1 The MW 8.8 Maule earthquake is the largest well-recorded megathrust earthquake reported in South America. It is known to have had very few foreshocks due to its locking degree, and a strong aftershock activity. We analyze seismic activity in the area of the 27 February 2010, MW 8.8 Maule earthquake at diferent time scales from 2000 to 2019. We diferentiate the seismicity located inside the coseismic rupture zone of the main shock from that located in the areas surrounding the rupture zone. Using an original spatial and temporal method of seismic comparison, we fnd that after a period of seismic activity, the rupture zone at the plate interface experienced a long-term seismic quiescence before the main shock. Furthermore, a few days before the main shock, a set of seismic bursts of foreshocks located within the highest coseismic displacement area is observed. We show that after the main shock, the seismic rate decelerates during a period of 3 years, until reaching its initial interseismic value. We conclude that this megathrust earthquake is the consequence of various preparation stages increasing the locking degree at the plate interface and following an irregular pattern of seismic activity at large and short time scales. Giant subduction earthquakes are the result of a long-term stress localization due to the relative movement of two adjacent plates. Before a large earthquake, the interface between plates is locked and concentrates the exter- nal forces, until the rock strength becomes insufcient, initiating the sudden rupture along the plate interface.
    [Show full text]
  • The 2018 Mw 7.5 Palu Earthquake: a Supershear Rupture Event Constrained by Insar and Broadband Regional Seismograms
    remote sensing Article The 2018 Mw 7.5 Palu Earthquake: A Supershear Rupture Event Constrained by InSAR and Broadband Regional Seismograms Jin Fang 1, Caijun Xu 1,2,3,* , Yangmao Wen 1,2,3 , Shuai Wang 1, Guangyu Xu 1, Yingwen Zhao 1 and Lei Yi 4,5 1 School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China; [email protected] (J.F.); [email protected] (Y.W.); [email protected] (S.W.); [email protected] (G.X.); [email protected] (Y.Z.) 2 Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan University, Wuhan 430079, China 3 Collaborative Innovation Center of Geospatial Technology, Wuhan University, Wuhan 430079, China 4 Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China; [email protected] 5 Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China * Correspondence: [email protected]; Tel.: +86-27-6877-8805 Received: 4 April 2019; Accepted: 29 May 2019; Published: 3 June 2019 Abstract: The 28 September 2018 Mw 7.5 Palu earthquake occurred at a triple junction zone where the Philippine Sea, Australian, and Sunda plates are convergent. Here, we utilized Advanced Land Observing Satellite-2 (ALOS-2) interferometry synthetic aperture radar (InSAR) data together with broadband regional seismograms to investigate the source geometry and rupture kinematics of this earthquake. Results showed that the 2018 Palu earthquake ruptured a fault plane with a relatively steep dip angle of ~85◦.
    [Show full text]
  • Foreshock Sequences and Short-Term Earthquake Predictability on East Pacific Rise Transform Faults
    NATURE 3377—9/3/2005—VBICKNELL—137936 articles Foreshock sequences and short-term earthquake predictability on East Pacific Rise transform faults Jeffrey J. McGuire1, Margaret S. Boettcher2 & Thomas H. Jordan3 1Department of Geology and Geophysics, Woods Hole Oceanographic Institution, and 2MIT-Woods Hole Oceanographic Institution Joint Program, Woods Hole, Massachusetts 02543-1541, USA 3Department of Earth Sciences, University of Southern California, Los Angeles, California 90089-7042, USA ........................................................................................................................................................................................................................... East Pacific Rise transform faults are characterized by high slip rates (more than ten centimetres a year), predominately aseismic slip and maximum earthquake magnitudes of about 6.5. Using recordings from a hydroacoustic array deployed by the National Oceanic and Atmospheric Administration, we show here that East Pacific Rise transform faults also have a low number of aftershocks and high foreshock rates compared to continental strike-slip faults. The high ratio of foreshocks to aftershocks implies that such transform-fault seismicity cannot be explained by seismic triggering models in which there is no fundamental distinction between foreshocks, mainshocks and aftershocks. The foreshock sequences on East Pacific Rise transform faults can be used to predict (retrospectively) earthquakes of magnitude 5.4 or greater, in narrow spatial and temporal windows and with a high probability gain. The predictability of such transform earthquakes is consistent with a model in which slow slip transients trigger earthquakes, enrich their low-frequency radiation and accommodate much of the aseismic plate motion. On average, before large earthquakes occur, local seismicity rates support the inference of slow slip transients, but the subject remains show a significant increase1. In continental regions, where dense controversial23.
    [Show full text]
  • Earthquake Measurements
    EARTHQUAKE MEASUREMENTS The vibrations produced by earthquakes are detected, recorded, and measured by instruments call seismographs1. The zig-zag line made by a seismograph, called a "seismogram," reflects the changing intensity of the vibrations by responding to the motion of the ground surface beneath the instrument. From the data expressed in seismograms, scientists can determine the time, the epicenter, the focal depth, and the type of faulting of an earthquake and can estimate how much energy was released. Seismograph/Seismometer Earthquake recording instrument, seismograph has a base that sets firmly in the ground, and a heavy weight that hangs free2. When an earthquake causes the ground to shake, the base of the seismograph shakes too, but the hanging weight does not. Instead the spring or string that it is hanging from absorbs all the movement. The difference in position between the shaking part of the seismograph and the motionless part is Seismograph what is recorded. Measuring Size of Earthquakes The size of an earthquake depends on the size of the fault and the amount of slip on the fault, but that’s not something scientists can simply measure with a measuring tape since faults are many kilometers deep beneath the earth’s surface. They use the seismogram recordings made on the seismographs at the surface of the earth to determine how large the earthquake was. A short wiggly line that doesn’t wiggle very much means a small earthquake, and a long wiggly line that wiggles a lot means a large earthquake2. The length of the wiggle depends on the size of the fault, and the size of the wiggle depends on the amount of slip.
    [Show full text]
  • BY JOHNATHAN EVANS What Exactly Is an Earthquake?
    Earthquakes BY JOHNATHAN EVANS What Exactly is an Earthquake? An Earthquake is what happens when two blocks of the earth are pushing against one another and then suddenly slip past each other. The surface where they slip past each other is called the fault or fault plane. The area below the earth’s surface where the earthquake starts is called the Hypocenter, and the area directly above it on the surface is called the “Epicenter”. What are aftershocks/foreshocks? Sometimes earthquakes have Foreshocks. Foreshocks are smaller earthquakes that happen in the same place as the larger earthquake that follows them. Scientists can not tell whether an earthquake is a foreshock until after the larger earthquake happens. The biggest, main earthquake is called the mainshock. The mainshocks always have aftershocks that follow the main earthquake. Aftershocks are smaller earthquakes that happen afterwards in the same location as the mainshock. Depending on the size of the mainshock, Aftershocks can keep happening for weeks, months, or even years after the mainshock happened. Why do earthquakes happen? Earthquakes happen because all the rocks that make up the earth are full of fractures. On some of the fractures that are known as faults, these rocks slip past each other when the crust rearranges itself in a process known as plate tectonics. But the problem is, rocks don’t slip past each other easily because they are stiff, rough and their under a lot of pressure from rocks around and above them. Because of that, rocks can pull at or push on each other on either side of a fault for long periods of time without moving much at all, which builds up a lot of stress in the rocks.
    [Show full text]
  • Characteristics of Foreshocks and Short Term Deformation in the Source Area of Major Earthquakes
    Characteristics of Foreshocks and Short Term Deformation in the Source Area of Major Earthquakes Peter Molnar Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, Massachusetts 02139 USGS CONTRACT NO. 14-08-0001-17759 Supported by the EARTHQUAKE HAZARDS REDUCTION PROGRAM OPEN-FILE NO.81-287 U.S. Geological Survey OPEN FILE REPORT This report was prepared under contract to the U.S. Geological Survey and has not been reviewed for conformity with USGS editorial standards and stratigraphic nomenclature. Opinions and conclusions expressed herein do not necessarily represent those of the USGS. Any use of trade names is for descriptive purposes only and does not imply endorsement by the USGS. Appendix A A Study of the Haicheng Foreshock Sequence By Lucile Jones, Wang Biquan and Xu Shaoxie (English Translation of a Paper Published in Di Zhen Xue Bao (Journal of Seismology), 1980.) Abstract We have examined the locations and radiation patterns of the foreshocks to the 4 February 1978 Haicheng earthquake. Using four stations, the foreshocks were located relative to a master event. They occurred very close together, no more than 6 kilo­ meters apart. Nevertheless, there appear to have been too clusters of foreshock activity. The majority of events seem to have occurred in a cluster to the east of the master event along a NNE-SSW trend. Moreover, all eight foreshocks that we could locate and with a magnitude greater than 3.0 occurred in this group. The're also "appears to be a second cluster of foresfiocks located to the northwest of the first. Thus it seems possible that the majority of foreshocks did not occur on the rupture plane of the mainshock, which trends WNW, but on another plane nearly perpendicualr to the mainshock.
    [Show full text]
  • Source Parameters of the 1933 Long Beach Earthquake
    Bulletin of the Seismological Society of America, Vol. 81, No. 1, pp. 81- 98, February 1991 SOURCE PARAMETERS OF THE 1933 LONG BEACH EARTHQUAKE BY EGILL HAUKSSON AND SUSANNA GROSS ABSTRACT Regional seismographic network and teleseismic data for the 1933 (M L -- 6.3) Long Beach earthquake sequence have been analyzed, Both the teleseismic focal mechanism of the main shock and the distribution of the aftershocks are consistent with the event having occurred on the Newport-lnglewood fault. The focal mechanism had a strike of 315 °, dip of 80 o to the northeast, and rake of - 170°. Relocation of the foreshock- main shock-aftershock sequence using modern events as fixed refer- ence events, shows that the rupture initiated near the Huntington Beach-Newport Beach City boundary and extended unilaterally to the northwest to a distance of 13 to 16 km. The centroidal depth was 10 +_ 2 km. The total source duration was 5 sec, and the seismic moment was 5.102s dyne-cm, which corresponds to an energy magnitude of M w = 6.4. The source radius is estimated to have been 6.6 to 7.9 km, which corresponds to a Brune stress drop of 44 to 76 bars. Both the spatial distribution of aftershocks and inversion for the source time function suggest that the earthquake may have consisted of at least two subevents. When the slip estimate from the seismic moment of 85 to 120 cm is compared with the long-term geological slip rate of 0.1 to 1.0 mm I yr along the Newport-lnglewood fault, the 1933 earthquake has a repeat time on the order of a few thousand years.
    [Show full text]
  • PEAT8002 - SEISMOLOGY Lecture 13: Earthquake Magnitudes and Moment
    PEAT8002 - SEISMOLOGY Lecture 13: Earthquake magnitudes and moment Nick Rawlinson Research School of Earth Sciences Australian National University Earthquake magnitudes and moment Introduction In the last two lectures, the effects of the source rupture process on the pattern of radiated seismic energy was discussed. However, even before earthquake mechanisms were studied, the priority of seismologists, after locating an earthquake, was to quantify their size, both for scientific purposes and hazard assessment. The first measure introduced was the magnitude, which is based on the amplitude of the emanating waves recorded on a seismogram. The idea is that the wave amplitude reflects the earthquake size once the amplitudes are corrected for the decrease with distance due to geometric spreading and attenuation. Earthquake magnitudes and moment Introduction Magnitude scales thus have the general form: A M = log + F(h, ∆) + C T where A is the amplitude of the signal, T is its dominant period, F is a correction for the variation of amplitude with the earthquake’s depth h and angular distance ∆ from the seismometer, and C is a regional scaling factor. Magnitude scales are logarithmic, so an increase in one unit e.g. from 5 to 6, indicates a ten-fold increase in seismic wave amplitude. Note that since a log10 scale is used, magnitudes can be negative for very small displacements. For example, a magnitude -1 earthquake might correspond to a hammer blow. Earthquake magnitudes and moment Richter magnitude The concept of earthquake magnitude was introduced by Charles Richter in 1935 for southern California earthquakes. He originally defined earthquake magnitude as the logarithm (to the base 10) of maximum amplitude measured in microns on the record of a standard torsion seismograph with a pendulum period of 0.8 s, magnification of 2800, and damping factor 0.8, located at a distance of 100 km from the epicenter.
    [Show full text]
  • Hypocenter and Focal Mechanism Determination of the August 23, 2011 Virginia Earthquake Aftershock Sequence: Collaborative Research with VA Tech and Boston College
    Final Technical Report Award Numbers G13AP00044, G13AP00043 Hypocenter and Focal Mechanism Determination of the August 23, 2011 Virginia Earthquake Aftershock Sequence: Collaborative Research with VA Tech and Boston College Martin Chapman, John Ebel, Qimin Wu and Stephen Hilfiker Department of Geosciences Virginia Polytechnic Institute and State University 4044 Derring Hall Blacksburg, Virginia, 24061 (MC, QW) Department of Earth and Environmental Sciences Boston College Devlin Hall 213 140 Commonwealth Avenue Chestnut Hill, Massachusetts 02467 (JE, SH) Phone (Chapman): (540) 231-5036 Fax (Chapman): (540) 231-3386 Phone (Ebel): (617) 552-8300 Fax (Ebel): (617) 552-8388 Email: [email protected] (Chapman), [email protected] (Ebel), [email protected] (Wu), [email protected] (Hilfiker) Project Period: July 2013 - December, 2014 1 Abstract The aftershocks of the Mw 5.7, August 23, 2011 Mineral, Virginia, earthquake were recorded by 36 temporary stations installed by several institutions. We located 3,960 aftershocks from August 25, 2011 through December 31, 2011. A subset of 1,666 aftershocks resolves details of the hypocenter distribution. We determined 393 focal mechanism solutions. Aftershocks near the mainshock define a previously recognized tabular cluster with orientation similar to a mainshock nodal plane; other aftershocks occurred 10-20 kilometers to the northeast. Detailed relocation of events in the main tabular cluster, and hundreds of focal mechanisms, indicate that it is not a single extensive fault, but instead is comprised of at least three and probably many more faults with variable orientation. A large percentage of the aftershocks occurred in regions of positive Coulomb static stress change and approximately 80% of the focal mechanism nodal planes were brought closer to failure.
    [Show full text]
  • Earthquake Location Accuracy
    Theme IV - Understanding Seismicity Catalogs and their Problems Earthquake Location Accuracy 1 2 Stephan Husen • Jeanne L. Hardebeck 1. Swiss Seismological Service, ETH Zurich 2. United States Geological Survey How to cite this article: Husen, S., and J.L. Hardebeck (2010), Earthquake location accuracy, Community Online Resource for Statistical Seismicity Analysis, doi:10.5078/corssa-55815573. Available at http://www.corssa.org. Document Information: Issue date: 1 September 2010 Version: 1.0 2 www.corssa.org Contents 1 Motivation .................................................................................................................................................. 3 2 Location Techniques ................................................................................................................................... 4 3 Uncertainty and Artifacts .......................................................................................................................... 9 4 Choosing a Catalog, and What to Expect ................................................................................................ 25 5 Summary, Further Reading, Next Steps ................................................................................................... 30 Earthquake Location Accuracy 3 Abstract Earthquake location catalogs are not an exact representation of the true earthquake locations. They contain random error, for example from errors in the arrival time picks, as well as systematic biases. The most important source of systematic
    [Show full text]