The Fluid Power Elements and Systems Made of Plastics

Total Page:16

File Type:pdf, Size:1020Kb

The Fluid Power Elements and Systems Made of Plastics Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 176 ( 2017 ) 600 – 609 Dynamics and Vibroacoustics of Machines The fluid power elements and systems made of plastics Stryczek J.*, Banaś M., Krawczyk J., Marciniak L., Stryczek P. Department of Machine Design Fundamentals and Tribology, Fluid Power Research Group, Wroclaw University of Technology, Ignacego Łukasiewicza Street 7/9, 50-371 Wrocław, Poland Abstract The Fluid Power Research Group from Wroclaw University of Technology have been concentrating their research and development activity on the application of plastics for the construction of hydraulic components. Their work focuses primarily on the gerotor pump, the pressure relief valve, the manifold and the hydraulic cylinder. The paper presents the theoretical basis of designing those elements, examples of the design solutions, as well as the experimental research results. A prototype of the hydraulic system featuring the plastic elements has been assembled and tested, and it proves to work properly. ©© 2017 2017 The The Authors. Authors.Published Published by byElsevier Elsevier Ltd. Ltd.This is an open access article under the CC BY-NC-ND license (Peer-reviewhttp://creativecommons.org/licenses/by-nc-nd/4.0/ under responsibility ofthe organizing). committee of the International Conference on Dynamics and Vibroacoustics of Peer-reviewMachines. under responsibility of the organizing committee of the international conference on Dynamics and Vibroacoustics of Machines Keywords:hydraulic components; plastics; gerotor pump; production 1. Introduction Application of plastics instead of metals is a currently observed tendency in the making of fluid power elements and systems. The use of plastics is advantageous both for the construction and operational reasons, as it leads to: reduction of weight and size, reduction of vibration and noise, improvement of tribological properties, capability of self-sealing, increase in resistance to impurities, ability to work with a variety of working media including water and aggressive chemicals. It is also advantageous for technological reasons as it enables: manufacture of complicated profiles of the fluid power elements using a simple method of injection molding, simplifying and shortening of the production process. The application of plastics is profitable also for economic reasons as it: lowers the material costs,lowers the * Corresponding author. Tel.:+48-601-822-334; E-mail address: [email protected] 1877-7058 © 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of the organizing committee of the international conference on Dynamics and Vibroacoustics of Machines doi: 10.1016/j.proeng.2017.02.303 J. Stryczek et al. / Procedia Engineering 176 ( 2017 ) 600 – 609 601 manufacture costs and reduces the production time. Nevertheless, along with the advantages, the use of plastics has some disadvantages, and those are: decrease in strength of the elements and the narrowing of the working pressure range, occurrence of the elements' size instability resulting from the change in the working fluid temperature and from the absorption of water solved in the working fluid. Hence, the researchers look for plastics which would be more useful in the making of fluid power elements and systems [1], as well as give examples of their application [2]. They also provide rules of designing plastic machine units such as, for instance, bearings [3]. In papers [4, 5], rules of designing and manufacturing plastic gear systems used in gerotor pumps were presented. The experimental research described in [6] proved the plastic gear system in the pump to work properly. In [7], a possible application of plastics as the material for the making of the slipper in the piston pump was shown. A plastic has also been successfully used for the making of hydraulic cylinders [8]. In [9], high applicability of plastics as well as special manufacture technologies of the plastics for the making of the high-pressure tanks and hydraulic cylinders are described. In that situation, the Fluid Power Research Group Wroclaw - FPRGWroclaw (www.fprg.pwr.wroc.pl) from Wroclaw University of Science and Technology, took up systematic research and development work aiming at: the development of the design and the manufacturing of the models of a set of the basic hydraulic elements made of plastics combining a gerotor pump, pressure relief valve, and a 2 position/2way directional control valve, and a hydraulic cylinder, the development, manufacturing, and testing of an exemplary fluid power system including those elements. Prior to the research and development work, it was assumed that at least half of the hydraulic machines' and elements' parts would be made of plastics. At the same time, they were supposed to be the essential parts, in terms of the design and operation of those units. 2. Plastics as the material for the construction of hydraulic components Analysis and selection of the plastic is the first and crucial stage of designing the fluid power components. The following selection criteria for the plastic were applied: possibly high strength manifested by high yield strength Re and a high Young's modulus, resistance to high temperature (T), high dimensional stability understood as a small linear elongation (W) and low material shrinkage (S) resulting from the injection process, small absorption (A) of water from the working fluid, low price and availability on the market, the processability by injection molding. For the construction of the hydraulic components, three types of material were selected, namely POM, PPS and PEEK. Their properties are presented in table 1. POM was treated as the base material featuring sufficient mechanical properties, the processability by the injection molding, as well as a low price and availability on the market. Another material used was PPS which showed higher strength but, at the same time, was harder for processing and more expensive. The material of the highest strength was PEEK, which was mechanically processed and, simultaneously, the most expensive. It is also possible to compose a special material combining the base material and additives. Tab. 1. Properties of the chosen plastic materials (polyoxymethylene - POM, polyphenylsulfone - PPS and polyetheretherketone – PEEK) No Parameter Symbol Unit POM PPS PEEK 1. Yield strenght Re MPa 60 180 230 2. Young's modulus E MPa 3000 16000 12700 3. Maximum work temperature T oC 100 160 240 4. Shinkage S cm/cm 0.0285 0.005 0.005 5. Coefficient of linear expansion W cm/oK 0.0001 0.00005 0.00004 6. Coefficient of water absorption A % 0.7 0.02 0.4 3. Gerotor pump with plastic gears The design of the gerotor pump of q = 10 cm3/rev displacement has been presented in figure 1. The body of the pump consists of three parts, namely of the front part (1), the central part (2) and the back part (3). All the three parts 602 J. Stryczek et al. / Procedia Engineering 176 ( 2017 ) 600 – 609 of the body are connected by screw joints (4). Inside the central part of the body, there is an internal cycloidal gear system (6,7) of z2–z1=7-6=1 tooth difference. The operation principle of the pump is the following: the gears are driven by the shaft (5), and they rotate in the slidebearing (8). The working fluid supplied to the pump through the inlet (I), gets into the inlet chamber, and from the inlet chamber (CRI), into the spinning intertooth chambers (T) made between the teeth of the epicycloidal gears. From the intertooth chambers, it is pumped into the outlet chamber (CRo), and next, into the outlet (O). Fig. 1. Design of the gerotor pump 1, 2, 3 – body parts, 4 – screw joints, 5 – shaft, 6, 7 – epicycloidal gears, 8- bearing ring , I – inlet, O – outlet, CRI – inlet chamber, CRO – outlet chamber, T – intertooth displacement chamber Figure 2 illustrates the gear system used in the gerotor pump, and figure 2a depicts the POM gears, figure 2b shows the PPS gears, whereas figure 2c, the PEEK gears. The gears have been designed according to the rules given in [10, 11]. The gears feature small height, a streamlined tooth profile (1), relatively thick rings under the gearing (2, 3), and three keys in the driving external gear (4). The POM and PPS was made by means of injection molding, while the PEEK gears, by means of machining. The gears' teeth are smooth. All the teeth in the gear system get into mesh with zero intertooth radial clearances hr. The side surface of the gears is also smooth, and the accurate fitting of the pump's central body provides the required axial clearance ha (figure 2). Fig. 2 The gears made of a) POM, b) PPS and c) PEEK Along with the manufacturing process, the FEM analysis of the gear system was being carried out [11]. Exemplary stress and strain of the POM gear system loaded with torque M = 7 MPa and pressure p = 4 MPa are presented in figure 3. The figure shows that the stress in the gears did not exceed the maximum allowed values. The J. Stryczek et al. / Procedia Engineering 176 ( 2017 ) 600 – 609 603 figure depicts also the gears' deformation generating intertooth clearances ∆hrp which result in the leakage inside the pump and in a decrease of the pump's volumetric efficiency. The systematic FEM analysis [12] showed that the POM gears can work within pressure range of p = 6 MPa. The research on the gerotor pump with the plastic gears was conducted on a test stand in the laboratory of the Fluid Power Research Group from Wroclaw University of Technology. The research results are presented in figure 4. Figure 4a shows that highest values of volumetric efficiency ηv are achieved in the case of using the PEEK.
Recommended publications
  • Overview of Materials Used for the Basic Elements of Hydraulic Actuators and Sealing Systems and Their Surfaces Modification Methods
    materials Review Overview of Materials Used for the Basic Elements of Hydraulic Actuators and Sealing Systems and Their Surfaces Modification Methods Justyna Skowro ´nska* , Andrzej Kosucki and Łukasz Stawi ´nski Institute of Machine Tools and Production Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Lodz, Poland; [email protected] (A.K.); [email protected] (Ł.S.) * Correspondence: [email protected] Abstract: The article is an overview of various materials used in power hydraulics for basic hydraulic actuators components such as cylinders, cylinder caps, pistons, piston rods, glands, and sealing systems. The aim of this review is to systematize the state of the art in the field of materials and surface modification methods used in the production of actuators. The paper discusses the requirements for the elements of actuators and analyzes the existing literature in terms of appearing failures and damages. The most frequently applied materials used in power hydraulics are described, and various surface modifications of the discussed elements, which are aimed at improving the operating parameters of actuators, are presented. The most frequently used materials for actuators elements are iron alloys. However, due to rising ecological requirements, there is a tendency to looking for modern replacements to obtain the same or even better mechanical or tribological parameters. Sealing systems are manufactured mainly from thermoplastic or elastomeric polymers, which are characterized by Citation: Skowro´nska,J.; Kosucki, low friction and ensure the best possible interaction of seals with the cooperating element. In the A.; Stawi´nski,Ł. Overview of field of surface modification, among others, the issue of chromium plating of piston rods has been Materials Used for the Basic Elements discussed, which, due, to the toxicity of hexavalent chromium, should be replaced by other methods of Hydraulic Actuators and Sealing of improving surface properties.
    [Show full text]
  • Rescue Rams Operating Instructions Rescue Tools
    Operating Instructions Rescue Tools 84150/6106-85 GB Rescue Rams Issue 04.2006 replaces 09.2005 10 11 1 Control valve with star ring 1.1 12 2 Hose, black: Pressure 3 Hose, blue: Return 4 Quick-connect socket StMu 61 - 0 5 Quick-connect plug StNi 61 - D LZR 6 Hydraulic cylinder 7 Piston rod 12/550 PS 8 Claw, cylinder side 9 Claw, piston side 10 Peeling tip 11 Penetration tip 12 Counterpart for peeling 9 1 7 1.1 6 3 5 2 8 4 LZR 12/... LTR 6/570 LTR 3,5/820EN LZR 19/325 1 1 Basic operation and designated use of the machine 1.1 The machine has been built in accordance with state-of-the-art standards and the recognized safety rules. Nevertheless, its use may constitute a risk to life and limb of the user or of third parties, or cause damage to the machine and to other material property. 1.2 The machine must only be used in technically perfect condition in accordance with its designated use and the instructions set out in the operation manual, and only by safety-conscious persons who are fully aware of the risks involved in operating the machine. Any functional disorders, especially those affecting the safety of the machine/plant, should therefore be rectified immediately! 1.3 The machine is exclusively designed for the use described in the operating manual. Using the machine for purposes other than those mentioned in the manual, such as driving and controlling other pneumatic systems, is considered contrary to its designated use.
    [Show full text]
  • Core Pull Cylinder Secure and Safe Mold Clamping with Auto Clamps
    Kosmek Products for Diecast Systems New For Diecast Systems KOSMEK Diecast Clamping Systems Core Pull Cylinder Secure and Safe Mold Clamping with Auto Clamps Allows for secure and safe mold clamping with a button operation outside the machine. Hydraulic Cylinder with Boosting Mechanism Model GK□ High-Power Core Pull Cylinder Ejector Coupler Pulls out the core with 1.8 times thrust force compared to the same size general cylinder. For Diecast Systems No Connecting Work Required One touch to connect ejector rods with button operation from outside the machine. Model PMC Model PCA High-Speed Core Pull Cylinder Interchangeable with General Core Cylinder / Reduce Cycle Time http://www.kosmek.com HEAD OFFICE 1-5, 2-Chome, Murotani, Nishi-ku, Kobe 651-2241 TEL.+81-78-991-5162 FAX.+81-78-991-8787 BRANCH OFFICE (U.S.A.) KOSMEK (U.S.A.) LTD. 650 Springer Drive, Lombard, IL 60148 USA TEL. +1-630-620-7650 FAX. +1-630-620-9015 MEXICO REPRESENTATIVE OFFICE KOSMEK USA Mexico Office Blvd Jurica la Campana 1040, B Colonia Punta Juriquilla Queretaro,QRO 76230 Mexico TEL.+52-442-161-2347 BRANCH OFFICE (EUROPE) KOSMEK EUROPE GmbH Schleppeplatz 2 9020 Klagenfurt am Wörthersee Austria TEL.+43-463-287587 FAX.+43-463-287587-20 BRANCH OFFICE (INDIA) KOSMEK LTD - INDIA F 203, Level-2, First Floor, Prestige Center Point, Cunningham Road, Bangalore -560052 India TEL.+91-9880561695 Model PCB THAILAND REPRESENTATIVE OFFICE 67 Soi 58, RAMA 9 Rd., Suanluang, Suanluang, Bangkok 10250 TEL. +66-2-300-5132 FAX. +66-2-300-5133 ● FOR FURTHER INFORMATION ON UNLISTED SPECIFICATIONS AND SIZES, PLEASE CALL US.
    [Show full text]
  • Design, Manufacture and Simulate a Hydraulic Bending Press
    Int. J. Mech. Eng. & Rob. Res. 2013 Manar Abd Elhakim Eltantawie, 2013 ISSN 2278 – 0149 www.ijmerr.com Vol. 2, No. 1, January 2013 © 2013 IJMERR. All Rights Reserved Research Paper DESIGN, MANUFACTURE AND SIMULATE A HYDRAULIC BENDING PRESS Manar Abd Elhakim Eltantawie1* *Corresponding Author: Manar Abd Elhakim Eltantawie, [email protected] A small hydraulic press for V-bending operation is designed, manufactured and modeled. The hydraulic bending press consists of hydraulic circuit, punch, die and PLC control unit. Automation studio and SimHydraulic in Matlab/Simulink library are used to model the hydraulic circuit. Using PLC program, the bending operation is controlled. The press had to be capable of withstanding 2 tons of force. The punch and dies are designed to be rigidly fixed and easily removable, changeable to any kind of forming operation with decreasing of spring back effect of the sheet metal. Keywords: Hydraulic circuit, Bending press, SimHydraulic, Spring-back, PLC INTRODUCTION Hydraulic bending press has many Bending is a metal forming process in which advantages over other type of press, (1) It a force is applied to a piece of sheet metal may cost less than an equivalent mechanical causing bending of it to an angle and forming press. (2) Its production rate is equal to the the desired shape. Bending is typically mechanical press in a small lot of production, performed on a machine called a press brake where hand feeding and single stroking which can be manually or automatically occur. (3) In addition, the die shut heights operated. A press brake contains an upper tool variation do not change the force applied.
    [Show full text]
  • Basic Hydraulics and Components
    Pub.ES-100-2 BASIC HYDRAULICSANDCOMPONENTS BASIC HYDRAULICS AND COMPONENTS OIL HYDRAULIC EQUIPMENT ■ Overseas Business Department Hamamatsucho Seiwa Bldg., 4-8, Shiba-Daimon 1-Chome, Minato-ku, Tokyo 105-0012 JAPAN TEL. +81-3-3432-2110 FAX. +81-3-3436-2344 Preface This book provides an introduction to hydraulics for those unfamiliar with hydraulic systems and components, such as new users, novice salespeople, and fresh recruits of hydraulics suppliers. To assist those people to learn hydraulics, this book offers the explanations in a simple way with illustrations, focusing on actual hydraulic applications. The first edition of the book was issued in 1986, and the last edition (Pub. JS-100-1A) was revised in 1995. In the ten years that have passed since then, this book has become partly out-of-date. As hydraulic technologies have advanced in recent years, SI units have become standard in the industrial world, and electro-hydraulic control systems and mechatronics equipment are commercially available. Considering these current circumstances, this book has been wholly revised to include SI units, modify descriptions, and change examples of hydraulic equipment. Conventional hydraulic devices are, however, still used in many hydraulic drive applications and are valuable in providing basic knowledge of hydraulics. Therefore, this edition follows the preceding edition in its general outline and key text. This book principally refers hydraulic products of Yuken Kogyo Co., Ltd. as example, but does mention some products of other companies, with their consent, for reference to equipment that should be understood. We acknowledge courtesy from those companies who have given us support for this textbook.
    [Show full text]
  • Things Worth Knowing About Hydraulic Cylinders
    Things Worth Knowing about Hydraulic Cylinders This chapter is intended to provide support for the design and choice of hydraulic cylinders. It contains technical explanations and data, calculation formulae, practical information and references to the data sheets of the hydraulic cylinders in question. In the data sheets, you will find further technical information and data. 1. Basic questions 4. Hydraulic connector elements 1.1 How are hydraulic cylinders built? 4.1 Which tube fittings are used? 1.2 What is the difference between single-acting and 4.2 Which hydraulic tubes are used? double-acting cylinders? 4.3 What has to be taken into account in the choice and use of hydraulic hoses? 2. Calculations and more 2.1 How to calculate push and pull forces? 5. General data and instructions What is the relationship between push and pull forces? 5.1 How much oil leakage occurs with hydraulic cylinders? Are there losses of force? 5.2 How great are the dimensional tolerances, when there is 2.2 What is the necessary piston diameter? nothing listed on the data sheet? How big are the piston areas? What is the dimensional tolerance of the housings? 2.3 How much pressure is necessary to generate a specific 5.3 What must be taken into account for safety? force? 5.4 What support can I get for assembly, start-up, 2.4 What is the maximum operating pressure for a hydraulic maintenance and repairs ? system? 5.5 What do the graphic symbols in the hydraulic 2.5 What is the oil volume required for the piston stroke? circuit diagram mean? 2.6 How is the stroke time of a cylinder calculated? 2.7 How high is the piston speed? 6.
    [Show full text]
  • Hydraulic Sealing Guide Issue 28.6
    Hydraulic Sealing Guide Issue 28.6 • Rod/gland seals • Piston seals • Wipers & scrapers • Bearing strips • ‘O’ rings High Performance Sealing Technology AppendixIntroduction A Hydraulic sealing products James Walker’s family of hydraulic sealing products is all embracing. We provide well proven products that are designed for applications ranging from delicate instruments and control actuators right up to the heaviest forging and extrusion presses. Each product has been specifically developed to give you: • Optimum equipment performance. • Reduced leakage. • Low-friction operation. • Long trouble-free working life. Complete family Family support How to use this guide We use the term hydraulic sealing We provide all these hydraulic sealing Page 5: We suggest you initially turn to products to describe the wide variety of products, and back them with: this page for our Hydraulic seal selection devices used to assist and perform the guide. This will lead you through the sealing function in all types of hydraulic • Top level technical support worldwide parameters that should be considered. and associated equipment that help to by local hydraulics sealing experts — provide dynamic reciprocating, oscillating backed by industry specialists and the Pages 6-9: Then go to our Quick or very slow rotational motion. leading-edge skills and knowledge of reference chart. This presents an overview James Walker Technology Centre. of our hydraulic products and gives a brief Nowadays, hydraulic cylinders, and description of each, plus a page reference their associated control component for detailed information on your selected • A vast range of standard sizes for all assemblies, appear in numerous forms items. A convenient fold-out version of this our hydraulic sealing products.
    [Show full text]
  • Hydraulic Cylinders and Cylinder Systems for Mobile Hydraulics
    Hydraulic Cylinders and Cylinder Systems for Mobile Hydraulics HS-E 10.102.0/02.15 Your Partner for Expertise. Cylinder solutions for all For cylinders and cylinder systems customer requirement in mobile applications At a glance HYDROSAAR, part of the global Engineering expertise HYDAC group, develops and manufactures a broad range of hydraulic cylinders and cylinder systems for mobile applications. Development / design / strength calculation / testing Telescopic systems Drawing on our knowledge base, z Single-cylinder telescopic systems we develop the most appropriate To fulfil the stringent requirements hydraulic cylinder solution for required of the final product, we z Securing locking system your application. For example, employ the latest technology: z Telescopic guide system z 3D design innovative position sensor z Controller technology can be installed, or z Finite element calculation for the cylinder piston rods can be optimised design supplied with special surface z Structural analysis coatings. Our cylinder engineering z Non-linear stability calculations includes design and calculations z Structural durability analysis performed with cutting-edge 3D CAD and FE tools. Boom, outrigger and special cylinders Each cylinder is optimised individually to fulfil the customer’s Surface treatment processes z Weight-optimised, space-saving specific requirements. z Electroplating design z High-speed flame spraying and plasma z Integrated valve technology and Hydrosaar has been engaged sensors in mobile hydraulics for more spraying (metallic and ceramic coatings) than a decade, supplying z Induction melting of compound layers global manufacturers of cranes, z Laser-welded and plasma-welded layers construction machinery, z Customised paint finishes (corrosivity agricultural machines and special- categories up to C5-M) purpose vehicles.
    [Show full text]
  • Hydraulic Servo Systems : Dynamic Properties and Control
    Hydraulic Servo Systems Dynamic Properties and Control by Closed loop stiffness for a Karlposition-Erik servo Rydberg with velocity feedback s2 2 K h s 1 K s K K qi K 2 K vfv f sav A K FL vfv h vfv h p qi S Kvfv 1 K fv Ksav c X K V A p ce t p 2 1 s Ap 4eKce s s2 2 Steady state loop gain [1/s] 1 h s 1 2 2 Ap Kvv Kvfv h Kvfv h Kqi 1 Sc Kvv Kvfv Kvv Ksav K f K V Ap Kvfv ce 1 t s K K (without velocity feedback) K-E Rydberg 4eKce Feedbacks in Electro-Hydraulicvv v Servo Systems 7 For the same amplitude margin, Kv must have the same value in the system with and without velocity feedback. Velocity feedback increases the steady state stiffness with the factor Kvfv.FL K æ V ö ce ç1+ t s÷ Karl-Erik Rydberg, Linköping University, Sweden 2 ç 21 ÷ Ap è 4be K ce ø Threshold Saturation - . u i i imax Kqi 1 xp xp c K r v 1 1 + + sav s + s2 2d ei Ap 1+ + h s + 1 s - - n wv 2 w wh h Velocity feedback Kfv Position feedback Closed loop stiffness for a position servoK fwith velocityFigure 12: A feedbacklinear valve controlled position servo with velocity feedback Am = 6 dB If the bandwidth of the valve is relatively high and threshold and saturation is neglected With velocity feedback, K = 20 1/s, K = 9.0 the velocity feedbackvv will givevfv the effect on the hydraulic resonance frequency and damping as shown in Figure 13.
    [Show full text]
  • Design and Evaluation of Hydraulic Suspension Without Spring In
    CORE Metadata, citation and similar papers at core.ac.uk Provided by MAT Journals Journal of Mechanical and Mechanics Engineering Volume 4 Issue 2 Design And Evaluation Of Hydraulic Suspension Without Spring In LMV K.Ravishankar1, S.Anandakumar2 1PG Student, Dept of MechanicalEngg, ShreeVenkateshwara HI Tech Engineering College, Gobichettipalayam, Tamilnadu 2Assistant professor, Dept of Mechanical Engg, Shree Venkateshwara HI Tech Engineering College, Gobichettipalayam, Tamilnadu [email protected], [email protected] Abstract - The suspension is the backbone of all Apart from that safe driving plays an important vehicles its principle function is to safely carry the role in automobile. When the level of maximum load for all designed operating conditions. suspension reduces it leads to increase in noise. This project defines design and evaluation of By using hydraulic suspension we can reduce hydraulic suspension without spring in LMV. Shock the vibration and also improve riding comfort. reduction is an important characteristic which reduces Auto manufacturers are still trying to catch up with the vibration of the vehicle and carries the load safely. the combination of features offered by this hydraulic In this project a hydraulic suspension is used to suspension system, typically by adding layers of produce hydraulic pressure that negates external complexity to an ordinary steel spring mechanical forces acting on the vehicle. As a result, the system. suspension system is able to control vehicle movement freely and continuously. This control ACTIVE SUSPENSION capability makes it possible to provide higher levels of ride comfort and vehicle dynamics which obtained A. INTRODUCTION OF ACTIVE SUSPENSION with conventional suspension systems. The design A suspension is self-propelledequipmentit controls was done using CREO PARAMETRIC 2.0 and the the upright movement of all the wheels via an model is imported to Proficy / SCADA (IFix version onboard system reasonably than the effort being 4.0) for evaluation.
    [Show full text]
  • Inbuilt Hydraulic Jack in Automobile Vehicles
    ,QWHUQDWLRQDO-RXUQDORI,QQRYDWLRQVLQ(QJLQHHULQJDQG7HFKQRORJ\ ,-,(7 Inbuilt Hydraulic Jack in Automobile Vehicles Mohammed Abuzaid Department of Mechanical Engineering Satyam Education and Social Welfare Sociaty Group of Institutions, Bhopal, MP, India Mohammad Hasnain Department of Mechanical Engineering Satyam Education and Social Welfare Sociaty Group of Institutions, Bhopal, MP, India Shabaj Alam Department of Mechanical Engineering Satyam Education and Social Welfare Sociaty Group of Institutions, Bhopal, MP, India Sohail khan Department of Mechanical Engineering Satyam Education and Social Welfare Sociaty Group of Institutions, Bhopal, MP, India Prof. Surendra Agarwal Department of Mechanical Engineering Satyam Education and Social Welfare Sociaty Group of Institutions, Bhopal, MP, India Abstract- An inbuilt hydraulic jack system is attached to automobile vehicle on front and rear par of the chassis. An automobile hydraulic jack system can be easily attached to all currently manufacture automobile chassis and frames. There is a front suspension hydraulic jack that is mounted centrally to the front suspension of an automobile between its front wheels. There is also a rear suspension hydraulic jack that is mounted centrally to the rear suspension of the automobile between its rear wheels. The system operates from a compressed fluid reservoir tank that has connections for the front and rear car jack outlets. Additional outlets can be added to the compressed fluid reservoir tank for connecting a hydraulic lug wrench and another for a tire inflating hose. The Major Project entitled “Inbuilt hydraulic jack in automobile vehicle” Worked on the principal of hydraulic power and operated by 12 Volt DC current, solves the all major problem of maintenance of all automobiles specially the heavy vehicles like truck and bus.
    [Show full text]
  • Hydraulic Press Brake 90-350 Proform
    OPERATION, SAFETY AND MAINTENANCE MANUAL 90-350 PROFORM HYDRAULIC PRESS BRAKE EM-506 (N-07/03) COPYRIGHT © 2003 CINCINNATI INCORPORATED PROFORM PRESS BRAKE CONTENTS INTRODUCTION SECTION 1 IDENTIFICATION SECTION 2 INSTALLATION UNLOADING.................................................................................................. 2-1 LIFTING AND MOVING ................................................................................. 2-1 FOUNDATION ............................................................................................... 2-1 ERECTION .................................................................................................... 2-1 MACHINES SHIPPED WITH BED REMOVED ....................................... 2-2 CLEANING..................................................................................................... 2-2 LEVELING ..................................................................................................... 2-3 HYDRAULIC RESERVOIR ............................................................................ 2-4 LUBRICATION............................................................................................... 2-4 ELECTRICAL CONNECTION........................................................................ 2-4 SECTION 3 SAFETY SAFETY RECOMMENDATIONS FOR PRESS BRAKE OPERATION ......... 3-1 LOCKOUT / TAGOUT – POTENTIAL HAZARDOUS ENERGY.................... 3-1 FOR SAFE OPERATION OF YOUR CINCINNATI PRESS BRAKE ............. 3-2 RULES FOR SAFE OPERATION.................................................................
    [Show full text]