Oregon Natives: Shrubs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Propagating with Nature: Simpler Is Better by Mike Creel Written for July 21, 2005 Workshop at the 22Nd Annual Cullowhee Conference “Native Plants in the Landscape
Propagating WITH Nature: Simpler Is Better By Mike Creel Written for July 21, 2005 workshop at The 22nd Annual Cullowhee Conference “Native Plants in the Landscape CONTENTS Page ---- Topics 1 -- Why You Came Here - To Learn Simple Propagation What Is Different About Creel-Way Propagation? Low-Tech, Simple, Outdoors, Cheap A Few “Technical Terms Why Learn to Propagate Native Plants 2 -- How to Get Started in Creel-Way Propagation Principles of Creel-Way Propagation When Sticking Cuttings When Planting Seed Pots Identification Tags Woody Cutting Theory 3 -- Selecting & Mixing Your Media One All-Purpose Media Mix Shade Cloth Cools Cuttings Just Local Humus, No Rooting Hormones, Repotting Cuttings Varmint Caps for Seed Pots 4 -- Drilling Pots To Improve Drainage Drilling Thin-Walled Plastic Rescuing Pots In Peril Hold-Down Wires 5 -- Selection And Use Of Propagation Domes 6 -- Cuttings by the Calendar - Winter, Spring, Summer, Fall 7 -- Cutting Selection for Native Azaleas and Other Plants Unusual Cutting Types - InstantPlant, SuperPlant Unorthodox Propagation Pots - High-Rise, Collander, Dome-Pot Potpourri 8 -- Propagator’s Review Propagation With Motivation, Advantages of Creel-Way My Latest Experiments, Several Rules Nature Is My Greenhouse, Sharing Your Fruits 9 -- American Native Azalea Species in Bloom Order for Southeast Photos and Illustrations 10 -- Creel-Way Dome-Pot one gallon 11 -- Recommended Pots & Domes 12 - -Drilling & Filling Pots for Good Drainage 13-- Menagerie of Dome-Pots 14 -- Collander Dome-Pot 15 -- Dormant Cuttings Are Really Pruning Mike Creel 155 Cannon Trail Road Lexington, South Carolina 29073 [email protected] 1 -- Propagating WITH Nature: Simpler Is Better by Mike Creel Why You Came - You have probably come to this workshop wanting to learn new, simpler ways to propagate native plants on a small scale, and you will! I do not use rooting hormones other than what is contained in the plant cutting and in local soil bacteria. -
Eastern Deciduous Forest
Eastern Deciduous Forest Physical description Most of the terrain is rolling except for the Ozark Mountains, which can be steep. The average annual precipitation ranges from approximately 35 inches to 90 inches and is usually well-distributed throughout the year. Summers are hot; winters are cold. Dominant vegetation Deciduous trees dominate the landscape across the Eastern Deciduous Forest ecoregion where there is a lack of disturbance. Depending on location, trees such as oaks, hickories, maples, American beech, basswood, buckeye, yellow poplar, walnut, and birches are common in the overstory and can be indicators of a climax successional stage. Prevalent midstory trees include flowering dogwood, sassafras, sourwood, eastern redbud, hophornbeam, American hornbeam, and striped maple. Common shrubs include arrowwood, black huckleberry, blueberries, hawthorn, pawpaw, spicebush, viburnums, and witchhazel. A wide variety of forbs and ferns may be found in the understory. Common evergreen trees on many sites undergoing succession include eastern redcedar and shortleaf pine. Figure 2. Deciduous forest cover occurs over the Eastern Deciduous Forest ecoregion, except where areas have been cleared for agriculture and livestock. Changes in the composition, structure and function of the Eastern Deciduous Forest have already occurred during the past 100 years with the loss of American chestnut and the near total exclusion of fire. Prior to fire suppression, savannas and woodlands dominated by oak and shortleaf pine were prevalent over much of this ecoregion. Well-interspersed with forested areas in the Eastern Deciduous Forest ecoregion are agricultural fields, pastures and hayfields, and fields undergoing succession. Virtually all of these “old- fields” have been cropped in the past, and the vast majority has since been planted to nonnative grasses, especially tall fescue. -
A Taxonomic Revision of Rhododendron L. Section Pentanthera G
A TAXONOMIC REVISION OF RHODODENDRON L. SECTION PENTANTHERA G. DON (ERICACEAE) BY KATHLEEN ANNE KRON A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 1987 , ACKNOWLEDGMENTS I gratefully acknowledge the supervision and encouragement given to me by Dr. Walter S. Judd. I thoroughly enjoyed my work under his direction. I would also like to thank the members of my advisory committee, Dr. Bijan Dehgan, Dr. Dana G. Griffin, III, Dr. James W. Kimbrough, Dr. Jonathon Reiskind, Dr. William Louis Stern, and Dr. Norris H. Williams for their critical comments and suggestions. The National Science Foundation generously supported this project in the form of a Doctoral Dissertation Improvement Grant;* field work in 1985 was supported by a grant from the Highlands Biological Station, Highlands, North Carolina. I thank the curators of the following herbaria for the loan of their material: A, AUA, BHA, DUKE, E, FSU, GA, GH, ISTE, JEPS , KW, KY, LAF, LE NCSC, NCU, NLU NO, OSC, PE, PH, LSU , M, MAK, MOAR, NA, , RSA/POM, SMU, SZ, TENN, TEX, TI, UARK, UC, UNA, USF, VDB, VPI, W, WA, WVA. My appreciation also is offered to the illustrators, Gerald Masters, Elizabeth Hall, Rosa Lee, Lisa Modola, and Virginia Tomat. I thank Dr. R. Howard * BSR-8601236 ii Berg for the scanning electron micrographs. Mr. Bart Schutzman graciously made available his computer program to plot the results of the principal components analyses. The herbarium staff, especially Mr. Kent D. Perkins, was always helpful and their service is greatly appreciated. -
Fall Color Is a Byproduct of the Physiological Response of Temperate-Zone Plants to Shortening Days
Printed in: Southwest Horticulture (2001) 18(6):6 The Colors of Fall Ursula Schuch, Plant Sciences Department, University of Arizona, Tucson Cool nights and warm, sunny days signal the onset of fall, and perfect weather for the development of brilliant crimson, gold, copper or yellow foliage. Fall color is a byproduct of the physiological response of temperate-zone plants to shortening days. Best fall colors are generally seen in deciduous, broadleaf woody plants that originate in USDA zones 3 to 9. In Arizona, fall color is scarce in the low desert, but is displayed more generously at higher elevations. Chlorophyll is responsible for the green color of leaves or stems and enables plants to produce sugars through the process of photosynthesis. In green leaves, chlorophyll is the dominant pigment. Visible light is absorbed by pigments, and leaves appear green because chlorophyll absorbs red and blue light while transmitting and reflecting green light. Carotenoids are accessory pigments in the photosynthesis process with colors in shades of yellow to orange; however, they are much less abundant than chlorophyll. Starting in spring, when plant growth begins for temperate-zone plants, and throughout summer, chlorophyll is continuously produced in the growing leaves to enable maximum food production. This is the time of greatest stem elongation, new leaf production, and growth in girth. As summer transitions into fall, plants respond to shorter days with reduced stem elongation, initiation of leaf abscission, reduced chlorophyll production, and increased production of other pigments. This marks the onset of dormancy and the beginning of frost hardiness. The splendor of fall color begins when chlorophyll production declines in the leaves and when the less abundant carotenoids unveil yellow to orange hues, or anthocyanins flaunt colors of red and purple. -
OSU Gardening with Oregon Native Plants
GARDENING WITH OREGON NATIVE PLANTS WEST OF THE CASCADES EC 1577 • Reprinted March 2008 CONTENTS Benefi ts of growing native plants .......................................................................................................................1 Plant selection ....................................................................................................................................................2 Establishment and care ......................................................................................................................................3 Plant combinations ............................................................................................................................................5 Resources ............................................................................................................................................................5 Recommended native plants for home gardens in western Oregon .................................................................8 Trees ...........................................................................................................................................................9 Shrubs ......................................................................................................................................................12 Groundcovers ...........................................................................................................................................19 Herbaceous perennials and ferns ............................................................................................................21 -
KERN RIVER PARKWAY PLANT LIST (Only Plant Species Permitted for Projects Within the Kern River Parkway Area - Includes Streetscape and Parking Lots)
KERN RIVER PARKWAY PLANT LIST (only plant species permitted for projects within the Kern River Parkway area - includes streetscape and parking lots) Scientific Name Common Name Type Acer macrophyllum Bigleaf maple Large tree Acer negundo ssp, californicum California box elder Large tree Aesculus californica California buckeye Large tree Alnus rhombifolia White alder Large tree Amelanchier pallida Western service berry Shrub or small tree Artemisia californica Coastal sage Shrub or small tree Artostaphlos densiflora Manzanita Shrub or small tree Artostaphlos glauca Manzanita Shrub or small tree Artostaphlos manzanita Manzanita Shrub or small tree Artostaphlos parryi Manzanita Shrub or small tree Atriplex lentiformis Quailbush Shrub or small tree Baccharis glutinosa Mulefat Shrub or small tree Baccharis pilularis "Twin Peaks" Dwarf coyote bush Flowering herb or groundcover Baccharis pilularis ssp. consanquinea Coyote bush Shrub or small tree Calycanthus occidentalis Western spice bush Shrub or small tree Carpenteria californica Tree anemone Shrub or small tree Castanopsis spp. Chiquapin Shrub or small tree Ceanothus cunneatus Ceanothus Shrub or small tree Ceanothus gloriosos Navarro ceanothus Flowering herb or groundcover Ceanothus griseus Carmel creeper Flowering herb or groundcover Ceanothus integerrimus Ceanothus Shrub or small tree Ceanothus leucodermis Ceanothus Shrub or small tree Ceanothus purpureus Ceanothus Shrub or small tree Ceanothus thrysiflorus Blue blossom Shrub or small tree Ceanothus thrysiflorus Ceanothus Shrub or small -
Rhododendrons and Azaleas at Shore Acres
Overview Tips on Growing Rhodies and Azaleas All rhodies and azaleas are members Most azaleas and small-leaved rhodies of the genus Rhododendron. Azaleas Rhododendrons Rhodies and azaleas do not like “wet feet.” They prefer moist well- enjoy considerable sun in the Pacific differ from rhododendrons in that they Northwest if given adequate moisture can be evergreen or deciduous, while drained acid soil that contains lots of and Azaleas organic material. If your soil is a heavy during dry periods. Avoid hot spots like most rhodies are evergreen. They tend the south and west walls of buildings. However to have smaller leaves and flower clusters, clay-type, try to improve it by adding organic at Shore Acres material like compost or ground bark. Thoroughly the vast majority of rhodies and azaleas will as opposed to the larger flower trusses of not thrive in full or complete shade. More rhododendrons. Azaleas usually have 5-lobed dig or rototill in with the native soil. Do not totally replace the old soil with new material. shade promotes deeper green foliage but low flowers with 1 stamen per lobe, as opposed light intensity also reduces flower bud set to rhododendrons, which have 2 stamens per There should be a blend of native soil and soil amendments in the planting hole. If conditions and produces a leggier plant as it tries to find lobe. Other technical points that distinguish adequate sunshine. azaleas from rhododendrons are best left to are really challenging, consider a raised bed with those with microscopes. at least half of the root ball above the general ground level and good soil mounded around it. -
Ecological Site AX001X04X401 Cryic Udic Forest
Natural Resources Conservation Service Ecological site AX001X04X401 Cryic Udic Forest Last updated: 1/06/2021 Accessed: 09/26/2021 General information Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site. MLRA notes Major Land Resource Area (MLRA): 001X–Northern Pacific Coast Range, Foothills, and Valleys This long and narrow resource area stretches along the Pacific Border Province of the Pacific Mountain System in Oregon and Washington. The area is bounded by the Olympic Mountains on the north and the Klamath Mountains on the south. Most of the area consists of hills and low mountains with gentle to steep slopes. The parent materials are composed primarily of young Tertiary sedimentary rocks with some minor volcanic rocks. Glacial till and outwash deposits are found in the northern half of the area within Washington. In the far southern portion of the area, near the Klamath Mountains, the sedimentary rocks are older and some have been metamorphosed. The average annual precipitation ranges from 60 to 200 inches, increasing with elevation. The dominant soil orders in this MLRA are Andisols, Inceptisols, and Ultisols. Soil depth ranges from shallow to very deep. While most soils in the area are well drained and occur on foothills, mountain slopes and ridges, floodplain and depressional soils can range from well drained to very poorly drained. Soil textures are typically medial, loamy, or clayey. The dominant soils in the area have a mesic or frigid soil temperature regime and a udic soil moisture regime; however, soils with an aquic soil moisture regime or cryic soil temperature regime do occur. -
Fluorescent Band Pattern of Chromosomes in Pseudolarix Amabilis, Pinaceae
© 2015 The Japan Mendel Society Cytologia 80(2): 151–157 Fluorescent Band Pattern of Chromosomes in Pseudolarix amabilis, Pinaceae Masahiro Hizume* Faculty of Education, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790–8577, Japan Received October 27, 2014; accepted November 18, 2014 Summary Pseudolarix amabilis belongs to one of three monotypic genera in Pinaceae. This species had 2n=44 chromosomes in somatic cells and its karyotype was composed of four long submetacentric chromosomes and 40 short telocentric chromosomes that varied gradually in length, supporting previous reports by conventional staining. The chromosomes were stained sequentially with the fluorochromes, chromomycin A3 (CMA) and 4′,6-diamidino-2-phenylindole (DAPI). CMA- bands appeared on 12 chromosomes at near terminal region and proximal region. DAPI-bands appeared at centromeric terminal regions of all 40 telocentric chromosomes. The fluorescent-banded karyotype of this species was compared with those of other Pinaceae genera considering taxonomical treatment and molecular phylogenetic analyses reported. On the basis of the fluorescent-banded karyotype, the relationship between Pseudolarix amabilis and other Pinaceae genera was discussed. Key words Chromomycin, Chromosome, DAPI, Fluorescent banding, Pinaceae, Pseudolarix amabilis. In Pinaceae, 11 genera with about 220 species are distinguished and grow mostly in the Northern Hemisphere (Farjon 1990). Most genera are evergreen trees, and only Larix and Pseudolarix are deciduous. Pinus is the largest genus in species number, and Cathaya, Nothotsuga and Pseudolarix are monotypic genera. The taxonomy of Pinaceae with 11 genera is complicated, having some problems in species or variety level. Several higher taxonomic treatments were reported on the base of anatomy and morphology such as resin canal in the vascular cylinder, seed scale, position of mature cones, male strobili in clusters from a single bud, and molecular characters in base sequences of several DNA regions. -
Temperate Deciduous Forest
Temperate Deciduous Forest Found in Europe, the eastern part of the U.S.A., and China Temperate Deciduous Forest • Found below 50ºN latitude • 75 to 150 cm precipitation yearly Temperate Deciduous Forest • Wide range of temperatures with 4 seasons • Below freezing in winter to 30ºC in summer Temperate Deciduous Forest • Soil is rich in nutrients from layers of decomposing leaves Temperate Deciduous Forest • Layers of vegetation – Canopy – Understory – Forest floor Layers of Vegetation Canopy- tree tops that shade the ground below Understory- shrub layer Forest floor- dark and moist layer of dead leaves, twigs, and seeds Layers of Vegetation Canopy Layers of Vegetation Understory Layers of Vegetation Forest floor Life in the Temperate Deciduous Forest The mild climate and rich soil of the temperate deciduous forest supports a wide variety of plant and animal life. Plants of the Temperate Deciduous Forest Plant life is abundant. Examples: •Oak trees •Shrubs •Hickory trees •Wildflowers •Maple trees •Ferns Plants of the Temperate Deciduous Forest •Oak tree Plants of the Temperate Deciduous Forest •Hickory tree Plants of the Temperate Deciduous Forest •Maple tree Plants of the Temperate Deciduous Forest •Shrubs (Azalea) Plants of the Temperate Deciduous Forest •Shrubs (Holly) Plants of the Temperate Deciduous Forest •Wildflowers Plants of the Temperate Deciduous Forest •Wildflowers Plants of the Temperate Deciduous Forest •Ferns Plants of the Temperate Deciduous Forest ADAPTATIONS • Wildflowers grow on forest floor early in the spring before trees leaf-out and shade the forest floor • Many trees are deciduous (they drop/shed their leaves in the autumn, and grow new ones in spring). • Most deciduous trees have thin, broad, light-weight leaves that can capture a lot of sunlight to make a lot of food for the tree in warm weather. -
The Humble Groundcover a New Look at an Old Landscape Staple
The humble groundcover A new look at an old landscape staple Definition of a groundcover Weed management Groundcovers for un-irrigated landscapes Neil Bell OSU Extension Service Marion and Polk Counties Ground cover: a definition In horticulture, ground covers may be considered to be those perennial plants, usually requiring minimal maintenance, that may be substituted for lawn grasses on special sites where the latter normally do not thrive or where lawn maintenance becomes difficult, as in dense shade, on steep slopes or terraces and on sandy or rocky soil where water is not available. Hortus Third, 1976 1 2 Longleaf Mahonia (Mahonia nervosa) Dome Rock, Willamette National Forest 3 4 Juniper: glyphosate damage Birch: phenoxy herbicide damage The things broad-leaved ground covers do… • Suppress weeds • Prevent soil compaction • Add organic matter to soil (also N in some cases) • Add aesthetic value to the landscape • Provide pollen and nectar to pollinators 5 Creeping Juniper (Juniperus horizontalis) Creeping Phlox (Phlox subulata) Strawberry (Fragaria spp.) Hosta, etc. 6 Sedum spp. Carpet Broom (Genista sp.) Cotoneaster (Cotoneaster sp.) Olivier Filippi Pepiniere Filippi Meze, France http://www.jardin-sec.com/ St. Johns Wort (Hypericum perforatum) 7 Rosemary (Rosmarinus officinalis ‘Punta di Canelle’) Olivier Filippi garden, Meze, France Argyle Winery, Dundee, OR Rockrose (Cistus x hybridus) 8 David’s Viburnum (Viburnum davidii) Periwinkle (Vinca sp.) Vinca sp. 9 Cotoneaster, Shrub Dogwood and Western Redcedar, Salem, OR Creeping Mahonia (Mahonia repens) Cistus x hybridus Creeping Mahonia (Mahonia repens). Columbia River Gorge 10 Longleaf Mahonia (Mahonia nervosa) Oregon Grape (Mahonia aquifolium ‘Compacta’ (?)) Oregon Grape (Berberis aquifolium) Creeping Mahonia (Mahonia repens) and Cotoneaster (Cotoneaster sp.) Salal, Creeping Mahonia and Strawberry, West Salem Long leaf Mahonia (Mahonia nervosa) 11 Oregon Grape (Mahonia aquifolium ‘Compacta’ (?)) Longleaf Mahonia (Mahonia nervosa) Oregon Grape (Mahonia aquifolium). -
Native Plant List CITY of OREGON CITY 320 Warner Milne Road , P.O
Native Plant List CITY OF OREGON CITY 320 Warner Milne Road , P.O. Box 3040, Oregon City, OR 97045 Phone: (503) 657-0891, Fax: (503) 657-7892 Scientific Name Common Name Habitat Type Wetland Riparian Forest Oak F. Slope Thicket Grass Rocky Wood TREES AND ARBORESCENT SHRUBS Abies grandis Grand Fir X X X X Acer circinatumAS Vine Maple X X X Acer macrophyllum Big-Leaf Maple X X Alnus rubra Red Alder X X X Alnus sinuata Sitka Alder X Arbutus menziesii Madrone X Cornus nuttallii Western Flowering XX Dogwood Cornus sericia ssp. sericea Crataegus douglasii var. Black Hawthorn (wetland XX douglasii form) Crataegus suksdorfii Black Hawthorn (upland XXX XX form) Fraxinus latifolia Oregon Ash X X Holodiscus discolor Oceanspray Malus fuscaAS Western Crabapple X X X Pinus ponderosa Ponderosa Pine X X Populus balsamifera ssp. Black Cottonwood X X Trichocarpa Populus tremuloides Quaking Aspen X X Prunus emarginata Bitter Cherry X X X Prunus virginianaAS Common Chokecherry X X X Pseudotsuga menziesii Douglas Fir X X Pyrus (see Malus) Quercus garryana Garry Oak X X X Quercus garryana Oregon White Oak Rhamnus purshiana Cascara X X X Salix fluviatilisAS Columbia River Willow X X Salix geyeriana Geyer Willow X Salix hookerianaAS Piper's Willow X X Salix lucida ssp. lasiandra Pacific Willow X X Salix rigida var. macrogemma Rigid Willow X X Salix scouleriana Scouler Willow X X X Salix sessilifoliaAS Soft-Leafed Willow X X Salix sitchensisAS Sitka Willow X X Salix spp.* Willows Sambucus spp.* Elderberries Spiraea douglasii Douglas's Spiraea Taxus brevifolia Pacific Yew X X X Thuja plicata Western Red Cedar X X X X Tsuga heterophylla Western Hemlock X X X Scientific Name Common Name Habitat Type Wetland Riparian Forest Oak F.