The Geometry of the Orthological Triangles

Total Page:16

File Type:pdf, Size:1020Kb

The Geometry of the Orthological Triangles Ion Pătrașcu Florentin Smarandache THE GEOMETRY OF THE ORTHOLOGICAL TRIANGLES Peer Reviewers: Prof. dr. Bencze Mihály Department of Mathematics, “Áprily Lajos” Highschool, Brașov, Romania Prof. univ. dr. Temistocle Bîrsan “Gh. Asachi” Technical University, Iași, Romania Lect. univ. dr. Claudiu-Ionuț Popîrlan Department of Computer Science, Faculty of Sciences, University of Craiova, Romania Ion Pătrașcu Florentin Smarandache THE GEOMETRY OF THE ORTHOLOGICAL TRIANGLES Pons Editions Brussels, 2020 To my grandchildren LUCAS and EVA-MARIE, with all my love – ION PĂTRAȘCU ISBN 978-1-59973-653-2 DTP: Alexandre Lukacs Translation from Romanian by Oana Dumitru Pons Editions Quai du Batelage, 5 1000 - Brussels TABLE OF CONTENTS TABLE OF CONTENTS FOREWORD ................................................................................................ 21 AUTHORS’ NOTE ....................................................................................... 23 1 INTRODUCTION ..................................................................................... 25 1.1 ORTHOLOGICAL TRIANGLES: DEFINITION .............................................. 25 DEFINITION 1 ................................................................................................... 26 OBSERVATION 1 .............................................................................................. 26 EXERCISE 1...................................................................................................... 26 1.2. CHARACTERIZATION OF THE ORTHOLOGY RELATION .......................... 26 THEOREM 1 (L. CARNOT, 1803) ...................................................................... 26 PROOF ............................................................................................................. 27 OBSERVATION 2 .............................................................................................. 28 LEMMA 1 ......................................................................................................... 28 EXERCISE 2...................................................................................................... 28 THEOREM 2 ..................................................................................................... 29 PROOF ............................................................................................................. 29 THEOREM 3 ..................................................................................................... 30 PROOF ............................................................................................................. 30 OBSERVATION 3 .............................................................................................. 31 1.3. THE ORTHOLOGICAL TRIANGLES THEOREM ......................................... 31 THEOREM 4 (J. STEINER, 1828 – THEOREM OF ORTHOLOGICAL TRIANGLES) ... 31 PROOF 1 .......................................................................................................... 31 PROOF 2 .......................................................................................................... 31 PROOF 3 .......................................................................................................... 32 PROOF 4 .......................................................................................................... 33 PROOF 5 .......................................................................................................... 34 REMARK 1 ....................................................................................................... 35 REMARK 2 ....................................................................................................... 35 PROOF 6 (ANALYTICAL) ................................................................................... 35 DEFINITION 2 ................................................................................................... 37 PROBLEM 1 ...................................................................................................... 37 PROBLEM 2 ...................................................................................................... 37 Ion Pătrașcu, Florentin Smarandache 5 THE GEOMETRY OF THE ORTHOLOGICAL TRIANGLES TABLE OF CONTENTS 2 ORTHOLOGICAL REMARKABLE TRIANGLES ............................. 39 2.1 A TRIANGLE AND ITS COMPLEMENTARY TRIANGLE ............................... 39 DEFINITION 3 ................................................................................................... 39 PROPOSITION 1 ................................................................................................ 39 PROOF ............................................................................................................. 39 OBSERVATION 4 .............................................................................................. 40 PROBLEM 3 ...................................................................................................... 40 2.2 A TRIANGLE AND ITS ANTI-COMPLEMENTARY TRIANGLE ...................... 41 DEFINITION 4 ................................................................................................... 41 PROPOSITION 2 ................................................................................................ 41 PROOF ............................................................................................................. 41 OBSERVATION 5 .............................................................................................. 42 2.3 A TRIANGLE AND ITS ORTHIC TRIANGLE ................................................. 42 DEFINITION 5 ................................................................................................... 42 OBSERVATION 6 .............................................................................................. 42 DEFINITION 6 ................................................................................................... 43 OBSERVATION 7 .............................................................................................. 43 PROPOSITION 3 ................................................................................................ 43 PROOF ............................................................................................................. 44 REMARK 3 ....................................................................................................... 44 PROPOSITION 4 ................................................................................................ 44 PROOF ............................................................................................................. 44 PROPOSITION 5 ................................................................................................ 45 PROOF ............................................................................................................. 45 REMARK 4 ....................................................................................................... 46 PROPOSITION 6 ................................................................................................ 46 PROOF ............................................................................................................. 46 REMARK 5 ....................................................................................................... 47 OBSERVATION 8 .............................................................................................. 47 2.4 THE MEDIAN TRIANGLE AND THE ORTHIC TRIANGLE ............................. 47 THEOREM 5 ..................................................................................................... 47 PROOF ............................................................................................................. 47 OBSERVATION 9 .............................................................................................. 48 PROPOSITION 7 ................................................................................................ 49 PROPOSITION 8 ................................................................................................ 49 PROPOSITION 9 ................................................................................................ 49 PROOF ............................................................................................................. 49 OBSERVATION 10 ............................................................................................ 49 6 Ion Pătrașcu, Florentin Smarandache THE GEOMETRY OF THE ORTHOLOGICAL TRIANGLES TABLE OF CONTENTS PROBLEM 4 ...................................................................................................... 49 PROBLEM 5 ...................................................................................................... 50 2.5 A TRIANGLE AND ITS CONTACT TRIANGLE .............................................. 50 DEFINITION 7 ................................................................................................... 50 OBSERVATION 11 ............................................................................................ 50 PROPOSITION 10 .............................................................................................. 50 PROOF ............................................................................................................. 51 OBSERVATION 12 ............................................................................................ 51 PROPOSITION 11 .............................................................................................. 51 PROOF ............................................................................................................
Recommended publications
  • Angle Chasing
    Angle Chasing Ray Li June 12, 2017 1 Facts you should know 1. Let ABC be a triangle and extend BC past C to D: Show that \ACD = \BAC + \ABC: 2. Let ABC be a triangle with \C = 90: Show that the circumcenter is the midpoint of AB: 3. Let ABC be a triangle with orthocenter H and feet of the altitudes D; E; F . Prove that H is the incenter of 4DEF . 4. Let ABC be a triangle with orthocenter H and feet of the altitudes D; E; F . Prove (i) that A; E; F; H lie on a circle diameter AH and (ii) that B; E; F; C lie on a circle with diameter BC. 5. Let ABC be a triangle with circumcenter O and orthocenter H: Show that \BAH = \CAO: 6. Let ABC be a triangle with circumcenter O and orthocenter H and let AH and AO meet the circumcircle at D and E, respectively. Show (i) that H and D are symmetric with respect to BC; and (ii) that H and E are symmetric with respect to the midpoint BC: 7. Let ABC be a triangle with altitudes AD; BE; and CF: Let M be the midpoint of side BC. Show that ME and MF are tangent to the circumcircle of AEF: 8. Let ABC be a triangle with incenter I, A-excenter Ia, and D the midpoint of arc BC not containing A on the circumcircle. Show that DI = DIa = DB = DC: 9. Let ABC be a triangle with incenter I and D the midpoint of arc BC not containing A on the circumcircle.
    [Show full text]
  • Cyclic Quadrilaterals — the Big Picture Yufei Zhao [email protected]
    Winter Camp 2009 Cyclic Quadrilaterals Yufei Zhao Cyclic Quadrilaterals | The Big Picture Yufei Zhao [email protected] An important skill of an olympiad geometer is being able to recognize known configurations. Indeed, many geometry problems are built on a few common themes. In this lecture, we will explore one such configuration. 1 What Do These Problems Have in Common? 1. (IMO 1985) A circle with center O passes through the vertices A and C of triangle ABC and intersects segments AB and BC again at distinct points K and N, respectively. The circumcircles of triangles ABC and KBN intersects at exactly two distinct points B and M. ◦ Prove that \OMB = 90 . B M N K O A C 2. (Russia 1995; Romanian TST 1996; Iran 1997) Consider a circle with diameter AB and center O, and let C and D be two points on this circle. The line CD meets the line AB at a point M satisfying MB < MA and MD < MC. Let K be the point of intersection (different from ◦ O) of the circumcircles of triangles AOC and DOB. Show that \MKO = 90 . C D K M A O B 3. (USA TST 2007) Triangle ABC is inscribed in circle !. The tangent lines to ! at B and C meet at T . Point S lies on ray BC such that AS ? AT . Points B1 and C1 lies on ray ST (with C1 in between B1 and S) such that B1T = BT = C1T . Prove that triangles ABC and AB1C1 are similar to each other. 1 Winter Camp 2009 Cyclic Quadrilaterals Yufei Zhao A B S C C1 B1 T Although these geometric configurations may seem very different at first sight, they are actually very related.
    [Show full text]
  • The Role of Euclidean Geometry in High School
    JOURNAL OF MATHEMATICAL BEHAVIOR 15, 221-237 (1996) The Role of Euclidean Geometry in High School HUNG-HSI Wu University of California When I was a high school student long ago, the need to study Euclidean geome- try was taken for granted. In fact, the novelty of learning to prove something was so overwhelming to me and some of my friends that, years later, we would look back at Euclidean geometry as the high point of our mathematics education. In recent years, the value of Euclid has depreciated considerably. A vigorous debate is now going on about how much, if any, of his work is still relevant. In this article, I would like to give my perspective on this subject, and in so doing, I will be taking a philosophical tour, so to speak, of a small portion of mathematics. This may not be so surprising because after all, in life as in mathematics, one does need a little philosophy for guidance from time to time. The bone of contention in the geometry curriculum is of course how many of the traditional “two-column proofs” should be retained. Let me first briefly indicate the range of available options in this regard: 1. A traditional text in use in a local high school in Berkeley not too long ago begins on page 1 with the undefined terms of the axioms, and formal proofs start on page 22. There is no motivation or explanation of the whys and hows of an axiomatic system. 2. A recently published text does experimental geometry (i.e., “hands-on ge- ometry” with no proofs) all the way until the last 130 pages of its 700 pages of exposition.
    [Show full text]
  • Prove It Classroom
    How to Prove it ClassRoom SHAILESH SHIRALI Euler’s formula for the area of a pedal triangle Given a triangle ABC and a point P in the plane of ABC In this episode of “How (note that P does not have to lie within the triangle), the To Prove It”, we prove pedal triangle of P with respect to ABC is the triangle △ a beautiful and striking whose vertices are the feet of the perpendiculars drawn from formula first found by P to the sides of ABC. See Figure 1. The pedal triangle relates Leonhard Euler; it gives the area of the pedal triangle in a natural way to the parent triangle, and we may wonder of a point with reference whether there is a convenient formula giving the area of the to another triangle. pedal triangle in terms of the parameters of the parent triangle. The great 18th-century mathematician Euler found just such a formula (given in Box 1). It is a compact and pleasing result, and it expresses the area of the pedal triangle in terms of the radius R of the circumcircle of ABC and the △ distance between P and the centre O of the circumcircle. A O: circumcentre of ABC E △ P: arbitrary point Area ( DEF) 1 OP2 F △ = 1 P Area ( ABC) 4 − R2 O △ ( ) B D C Figure 1. Euler's formula for the area of the pedal triangle of an arbitrary point Keywords: Circle theorem, pedal triangle, power of a point, Euler, sine rule, extended sine rule, Wallace-Simson theorem Azim Premji University At Right Angles, July 2018 95 1 A E F P O B D C Figure 2.
    [Show full text]
  • Geometry of the Triangle
    Geometry of the Triangle Paul Yiu 2016 Department of Mathematics Florida Atlantic University A b c B a C August 18, 2016 Contents 1 Some basic notions and fundamental theorems 101 1.1 Menelaus and Ceva theorems ........................101 1.2 Harmonic conjugates . ........................103 1.3 Directed angles ...............................103 1.4 The power of a point with respect to a circle ................106 1.4.1 Inversion formulas . ........................107 1.5 The 6 concyclic points theorem . ....................108 2 Barycentric coordinates 113 2.1 Barycentric coordinates on a line . ....................113 2.1.1 Absolute barycentric coordinates with reference to a segment . 113 2.1.2 The circle of Apollonius . ....................114 2.1.3 The centers of similitude of two circles . ............115 2.2 Absolute barycentric coordinates . ....................120 2.2.1 Homotheties . ........................122 2.2.2 Superior and inferior . ........................122 2.3 Homogeneous barycentric coordinates . ................122 2.3.1 Euler line and the nine-point circle . ................124 2.4 Barycentric coordinates as areal coordinates ................126 2.4.1 The circumcenter O ..........................126 2.4.2 The incenter and excenters . ....................127 2.5 The area formula ...............................128 2.5.1 Conway’s notation . ........................129 2.5.2 Conway’s formula . ........................130 2.6 Triangles bounded by lines parallel to the sidelines . ............131 2.6.1 The symmedian point . ........................132 2.6.2 The first Lemoine circle . ....................133 3 Straight lines 135 3.1 The two-point form . ........................135 3.1.1 Cevian and anticevian triangles of a point . ............136 3.2 Infinite points and parallel lines . ....................138 3.2.1 The infinite point of a line .
    [Show full text]
  • The Secrets of Triangles: a Mathematical Journey
    2 3 Published 2012 by Prometheus Books The Secrets of Triangles: A Mathematical Journey. Copyright © 2012 by Alfred S. Posamentier and Ingmar Lehmann. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, digital, electronic, mechanical, photocopying, recording, or otherwise, or conveyed via the Internet or a website without prior written permission of the publisher, except in the case of brief quotations embodied in critical articles and reviews. Cover image © Media Bakery/Glenn Mitsui Jacket design by Jacqueline Nasso Cooke Inquiries should be addressed to Prometheus Books 59 John Glenn Drive Amherst, New York 14228–2119 OICE: 716–691–0133 FAX: 716–691–0137 WWW.PROMETHE SBOOKS.COM 16 15 14 13 12 5 4 3 2 1 Library of Congress Cataloging-in-Publication Data Posamentier, Alfred S. The secrets of triangles : a mathematical journey / by Alfred S. Posamentier and Ingmar Lehmann. p. cm. Includes bibliographical references and index. ISBN 978–1–61614–587–3 (cloth : alk. paper) ISBN 978–1–61614–588–0 (ebook) 1. Trigonometry. 2. Triangle. I. Lehmann, Ingmar. II. Title. QA531.P67 2012 516'.154—dc23 2012013635 4 Printed in the nited States of America on acid-free paper 5 6 Acknowledgments Preface 1. Introduction to the Triangle 2. Concurrencies of a Triangle 3. Noteworthy Points in a Triangle 4. Concurrent Circles of a Triangle 5. Special Lines of a Triangle 6. seful Triangle Theorems 7. Areas of and within Triangles 8. Triangle Constructions 9. Inequalities in a Triangle 10. Triangles and Fractals Appendix Notes References Index 7 The authors wish to extend sincere thanks for proofreading and useful suggestions to Dr.
    [Show full text]
  • Topics in Elementary Geometry
    Topics in Elementary Geometry Second Edition O. Bottema (deceased) Topics in Elementary Geometry Second Edition With a Foreword by Robin Hartshorne Translated from the Dutch by Reinie Erne´ 123 O. Bottema Translator: (deceased) Reinie Ern´e Leiden, The Netherlands [email protected] ISBN: 978-0-387-78130-3 e-ISBN: 978-0-387-78131-0 DOI: 10.1007/978-0-387-78131-0 Library of Congress Control Number: 2008931335 Mathematics Subject Classification (2000): 51-xx This current edition is a translation of the Second Dutch Edition of, Hoofdstukken uit de Elementaire Meetkunde, published by Epsilon-Uitgaven, 1987. c 2008 Springer Science+Business Media, LLC All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connec- tion with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper 987654321 springer.com At school I was good in mathematics; now I discovered that I found the so-called higher mathematics – differential and integral calculus – easier than the complicated (but elementary) plane geometry.
    [Show full text]
  • A Tour of Triangle Geometry
    A Tour of Triangle Geometry Paul Yiu Department of Mathematical Sciences Florida Atlantic University 1. Introduction Interests in triangle geometry have been rekindled in recent years with the availability of dynamic software such as the Geometer’s Sketchpad and Cabri for geometric constructions. In this paper we outline some interesting results with illustrations made by such software. We shall center around the notions of reflection and isogonal conjugation, and introduce a number of interesting triangle centers, 1 lines, conics, and a few cubic curves. 2 Many results in triangle geometry can be discovered from such dynamic sketches, and proved either synthetically or by calculations. Although we do not present any proof, all results without references have been confirmed by calculations using barycentric coordinates. 3 The reader is invited to repro- duce the figures in this paper as dynamic sketches using computer software, and to discover further results. The conics in this paper are constructed by the five-point-conic command available in both Geometer’s Sketchpad and Cabri. The location of the center of a rectangular hyperbola will be treated in detail in §?? below. In The 37th Annual Meeting of the Florida Section of the Mathematical Association of America, University of Central Florida, Orlando, Florida, USA. 1Most of the triangle centers in this paper appear in Kimberling’s Encyclopedia of Tri- angle Centers [10], hereafter ETC. For example, the centroid, circumcenter, orthocenter, and incenter appear as X2, X3, X4, and X1 respectively. We shall reference occurrences in ETC of other triangle centers in footnotes. 2Most of the questions we consider are about the concurrency of three lines.
    [Show full text]
  • Application of Geometry Expressions to Theorems from Machine Proofs in Geometry Saltire Software Internal Report 2016-1
    Application of Geometry Expressions to Theorems from Machine Proofs in Geometry Saltire Software internal Report 2016-1 By Philip Todd [email protected] In this document we apply Geometry Expressions to a set of theorems from [1]. While not human readable, Geometry Expressions does provide a form of proof. The objective here is to calibrate its performance against this given set of examples. 1 Introduction The goal in this document is to try and “prove” the theorem using Geometry Expressions. If we cannot, we try to use an external CAS to help. If this fails, we will look at special cases we can try and address. If all fail we will look to improve Geometry Expressions! Examples are numbered as they appear in the book. The bulk of this document consists of screenshots taken from Geometry Expressions. These screenshots indicate both the model, which would be input by the user, and the result, constituting the Geometry Expressions proof, which was generated automatically. Examples 6.1 to 6.207 are treated. 1.1 Results Example by example comments are given below. In summary, however, of the 207 examples, 196 are solved in a reasonable amount of time on a modern PC by Geometry Expressions, using an initial formulation. 5 examples failed on the initial formulation, but succeeded on a second formulation (6.69, 6.122, 6.149, 6.163, 6.182). In 3 cases (6.22, 6.104, 6.200), the internal Geometry Expressions CAS was unable to simplify the result, but Maple was able to complete the simplification. In 2 cases, the initial formulation failed, but succeeded after supplying a simple intermediate result (6.172, 6.174).
    [Show full text]
  • Complements to Classic Topics of Circles Geometry
    Ion Patrascu | Florentin Smarandache Complements to Classic Topics of Circles Geometry Pons Editions Brussels | 2016 Complements to Classic Topics of Circles Geometry Ion Patrascu | Florentin Smarandache Complements to Classic Topics of Circles Geometry 1 Ion Patrascu, Florentin Smarandache In the memory of the first author's father Mihail Patrascu and the second author's mother Maria (Marioara) Smarandache, recently passed to eternity... 2 Complements to Classic Topics of Circles Geometry Ion Patrascu | Florentin Smarandache Complements to Classic Topics of Circles Geometry Pons Editions Brussels | 2016 3 Ion Patrascu, Florentin Smarandache © 2016 Ion Patrascu & Florentin Smarandache All rights reserved. This book is protected by copyright. No part of this book may be reproduced in any form or by any means, including photocopying or using any information storage and retrieval system without written permission from the copyright owners. ISBN 978-1-59973-465-1 4 Complements to Classic Topics of Circles Geometry Contents Introduction ....................................................... 15 Lemoine’s Circles ............................................... 17 1st Theorem. ........................................................... 17 Proof. ................................................................. 17 2nd Theorem. ......................................................... 19 Proof. ................................................................ 19 Remark. ............................................................ 21 References.
    [Show full text]
  • Complements to Classic Topics of Circles Geometry
    University of New Mexico UNM Digital Repository Mathematics and Statistics Faculty and Staff Publications Academic Department Resources 2016 Complements to Classic Topics of Circles Geometry Florentin Smarandache University of New Mexico, [email protected] Ion Patrascu Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebra Commons, Algebraic Geometry Commons, Applied Mathematics Commons, Geometry and Topology Commons, and the Other Mathematics Commons Recommended Citation Smarandache, Florentin and Ion Patrascu. "Complements to Classic Topics of Circles Geometry." (2016). https://digitalrepository.unm.edu/math_fsp/264 This Book is brought to you for free and open access by the Academic Department Resources at UNM Digital Repository. It has been accepted for inclusion in Mathematics and Statistics Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. Ion Patrascu | Florentin Smarandache Complements to Classic Topics of Circles Geometry Pons Editions Brussels | 2016 Complements to Classic Topics of Circles Geometry Ion Patrascu | Florentin Smarandache Complements to Classic Topics of Circles Geometry 1 Ion Patrascu, Florentin Smarandache In the memory of the first author's father Mihail Patrascu and the second author's mother Maria (Marioara) Smarandache, recently passed to eternity... 2 Complements to Classic Topics of Circles Geometry Ion Patrascu | Florentin Smarandache Complements to Classic Topics of Circles Geometry Pons Editions Brussels | 2016 3 Ion Patrascu, Florentin Smarandache © 2016 Ion Patrascu & Florentin Smarandache All rights reserved. This book is protected by copyright. No part of this book may be reproduced in any form or by any means, including photocopying or using any information storage and retrieval system without written permission from the copyright owners.
    [Show full text]
  • Volume One: Geometry Without Multiplication
    Geometry–Do Volume One: Geometry without Multiplication by Victor Aguilar, author of Axiomatic Theory of Economics Chapters Postulates White Belt Foundations 1. Two points fully define the segment between them. Yellow Belt Congruence 2. By extending it, a segment fully defines a line. Orange Belt Parallelograms 3. Three noncollinear points fully define a triangle. Green Belt Triangle Construction 4. The center and the radius fully define a circle. Red Belt Triangles, Advanced 5. All right angles are equal; equivalently, all straight Blue Belt Quadrature Theory angles are equal. Cho–Dan Harmonic Division 6. A line and a point not on it fully define the parallel Yi–Dan Circle Inversion through that point. This book was NOT funded by the Bill and Melinda Gates Foundation. A journey of discovery? A death march? It’s the same thing! Copyright ©2020 This PDF file, which consists only of the foundational pages and the index, is the ONLY authorized free PDF file for Geometry–Do. Do not accept PDF files that do not have the copyright notice. www.researchgate.net/publication/291333791_Volume_One_Geometry_without_Multiplication Volume One, white through red belt, is available as a bound paperback, as is an abridgement consisting of white, yellow and early orange belt. Free review copies are available to mathematicians. Teachers can purchase individual copies from book sellers or contact me directly for quantity discounts, but I do not need the reviews of people with education degrees, so no free review copies are available to them. A math degree is a degree granted by a university mathematics department; people with an education degree (granted by a university education department) should not call it a math degree; doing so will not get them a free review copy.
    [Show full text]