Geometry of the Triangle

Total Page:16

File Type:pdf, Size:1020Kb

Geometry of the Triangle Geometry of the Triangle Paul Yiu 2016 Department of Mathematics Florida Atlantic University A b c B a C August 18, 2016 Contents 1 Some basic notions and fundamental theorems 101 1.1 Menelaus and Ceva theorems ........................101 1.2 Harmonic conjugates . ........................103 1.3 Directed angles ...............................103 1.4 The power of a point with respect to a circle ................106 1.4.1 Inversion formulas . ........................107 1.5 The 6 concyclic points theorem . ....................108 2 Barycentric coordinates 113 2.1 Barycentric coordinates on a line . ....................113 2.1.1 Absolute barycentric coordinates with reference to a segment . 113 2.1.2 The circle of Apollonius . ....................114 2.1.3 The centers of similitude of two circles . ............115 2.2 Absolute barycentric coordinates . ....................120 2.2.1 Homotheties . ........................122 2.2.2 Superior and inferior . ........................122 2.3 Homogeneous barycentric coordinates . ................122 2.3.1 Euler line and the nine-point circle . ................124 2.4 Barycentric coordinates as areal coordinates ................126 2.4.1 The circumcenter O ..........................126 2.4.2 The incenter and excenters . ....................127 2.5 The area formula ...............................128 2.5.1 Conway’s notation . ........................129 2.5.2 Conway’s formula . ........................130 2.6 Triangles bounded by lines parallel to the sidelines . ............131 2.6.1 The symmedian point . ........................132 2.6.2 The first Lemoine circle . ....................133 3 Straight lines 135 3.1 The two-point form . ........................135 3.1.1 Cevian and anticevian triangles of a point . ............136 3.2 Infinite points and parallel lines . ....................138 3.2.1 The infinite point of a line . ....................138 3.2.2 Infinite point as vector ........................141 3.3 Perpendicular lines . ........................145 iv CONTENTS 3.4 The distance formula . .........................148 3.4.1 The distance from a point to a line . .................150 4 Cevian and anticevian triangles 203 4.1 Cevian triangles . .............................203 4.1.1 The orthic triangle . .........................205 4.1.2 The intouch triangle and the Gergonne point . .........205 4.1.3 The Nagel point and the extouch triangle . .............206 4.2 The trilinear polar . .............................208 4.3 Anticevian triangles .............................209 4.3.1 The excentral triangle cev−1(I) ...................211 5 Isotomic and isogonal conjugates 213 5.1 Isotomic conjugates .............................213 5.1.1 Example: the Gergonne and Nagel points . .............214 5.1.2 Example: isotomic conjugate of the orthocenter . .........214 5.1.3 The equal-parallelians point .....................215 5.1.4 Crelle-Yff points . .........................216 5.2 Isogonal conjugates .............................218 5.2.1 The symmedian point and the centroid . .............220 5.2.2 The tangential triangle cev−1(K) ...................221 5.2.3 The Gergonne point and the insimilicenter T+ ............223 5.2.4 The Nagel point and the exsimilicenter T− ..............226 5.2.5 The Brocard points . .........................229 5.3 Isogonal conjugate of an infinite point . .................233 5.3.1 Homogeneous barycentric equation of the circumcircle . .....234 5.4 The isotomic conjugates of infinite points . .................236 6 Some basic constructions 237 6.1 Perspective triangles .............................237 6.2 Jacobi’s Theorem . .............................242 6.2.1 The Kiepert perspectors . .....................246 6.3 Gossard’s theorem . .............................247 6.4 Cevian quotients . .............................251 6.4.1 . .................................254 6.5 The cevian quotient G/P ...........................255 6.6 The cevian quotient H/P ...........................256 6.7 Pedal and reflection triangles . .....................259 6.7.1 Reflections and isogonal conjugates .................259 6.7.2 The pedal circle . .........................259 6.7.3 Pedal triangle .............................262 6.7.4 Examples . .............................262 6.7.5 Reflection triangle . .........................264 6.8 Barycentric product .............................266 6.8.1 Barycentric square . .........................266 CONTENTS v 6.8.2 Barycentric square root ........................269 7 Orthology 271 7.1 Triangle determined by orthology centers . ................271 7.1.1 Examples ...............................273 7.2 Perspective orthologic triangles . ....................275 7.2.1 . ...................................275 8 The circumcircle 303 8.1 The circumcircle ...............................303 8.1.1 Tangents to the circumcircle . ....................304 8.2 Simson lines . ...............................306 8.3 Line of reflections . ........................310 8.4 Reflections of a line in the sidelines of T ..................311 8.4.1 . ...................................314 8.4.2 Perspectivity of reflection triangles . ................316 8.5 Circumcevian triangles . ........................317 8.5.1 Circumcevian triangle ........................319 8.5.2 The circumcevian triangle of H ...................320 8.5.3 The circum-tangential triangle ....................321 8.5.4 Circumcevian triangles congruent to the reference triangle . ....322 8.6 Triangle bounded by the reflections of a tangent to the circumcircle in the sidelines ...................................323 9 Circles 325 9.1 Generic circles . ...............................325 9.2 Power of a point with respect to a circle . ................328 9.2.1 Radical axis and radical center ....................328 9.3 The tritangent circles . ........................330 9.3.1 The Feuerbach theorem ........................331 9.3.2 Radical axes of the circumcircle with the excircles . ........334 9.3.3 The radical center of the excircles . ................336 9.3.4 The Spieker radical circle . ....................337 9.4 The Conway circle . ........................339 9.4.1 Sharp’s triad of circles ........................341 9.5 The Taylor circle ...............................343 9.5.1 The Taylor circle of the excentral triangle . ............345 9.6 Some triads of circles . ........................346 9.6.1 Circles with sides as diameters ....................346 9.6.2 Circles with cevians as diameters . ................347 9.6.3 Circles with centers at vertices and altitudes as radii ........348 9.6.4 Circles with altitudes as diameters . ................349 9.6.5 Excursus: A construction problem . ................350 9.6.6 Excursus: Radical center of a triad of circles ............352 9.6.7 Concurrency of three Euler lines . ................353 vi CONTENTS 10 Tucker circles 401 10.1 The Taylor circle . .............................401 10.1.1 The pedals of pedals .........................401 10.1.2 The Taylor circle . .........................402 10.1.3 The Taylor center . .........................402 10.1.4 The Taylor circle of the excentral triangle . .............404 10.1.5 A triad of Taylor circles . .....................404 10.2 The Taylor circle . .............................405 10.2.1 . .................................406 10.3 Tucker circles . .............................408 10.3.1 The center of Tucker circle . .....................409 10.3.2 Construction of Tucker circle with given center . .........411 10.3.3 Dao’s construction of the Tucker circles . .............412 10.4 The Lemoine circles .............................414 10.4.1 The first Lemoine circle . .....................414 10.4.2 The second Lemoine circle . .....................416 10.4.3 Ehrmann’s third Lemoine circle . .................417 10.4.4 Bui’s fourth Lemoine circle .....................418 10.5 The Apollonius circle . .........................419 10.6 Tucker circles which are pedal circles . .................421 10.6.1 The Gallatly circle . .........................422 10.7 Tucker circles which are cevian circumcircles . .............423 10.7.1 Tucker circle congruent to the circumcircle .............424 10.8 Torres’ circle .................................425 10.9 Tucker circles tangent to the tritangent circles . .............426 10.9.1 The incircle . .............................426 10.9.2 The excircles .............................427 11 Some special circles 431 11.1 The Dou circle . .............................431 11.2 The Adams circles .............................433 11.3 Hagge circles . .............................434 11.3.1 . .................................434 11.4 The deLongchamps triad of circles (A(a),B(b),C(c)) ...........435 11.5 The orthial circles . .............................437 11.6 Bui’s triad of circles .............................438 11.7 Appendix: More triads of circles . .....................439 11.7.1 The triad {A(AH )} ..........................439 11.7.2 The triad of circles (AG(AH ),BG(BH ),CG(CH )) ..........442 11.8 The triad of circles (AG(AH ),BG(BH ),CG(CH )) .............443 11.9 The Lucas circles . .............................444 CONTENTS vii 12 The triangle of reflections 447 12.1 The triangle of reflections T† ........................447 12.2 Triangles with degenerate triangle of reflections . ............449 12.3 Triads of concurent circles . ........................451 12.3.1 Musselman’s theorem ........................451 12.3.2 The triad of circles AB†C†, BC†A†, CA†B†
Recommended publications
  • Relationships Between Six Excircles
    Sangaku Journal of Mathematics (SJM) c SJM ISSN 2534-9562 Volume 3 (2019), pp.73-90 Received 20 August 2019. Published on-line 30 September 2019 web: http://www.sangaku-journal.eu/ c The Author(s) This article is published with open access1. Relationships Between Six Excircles Stanley Rabinowitz 545 Elm St Unit 1, Milford, New Hampshire 03055, USA e-mail: [email protected] web: http://www.StanleyRabinowitz.com/ Abstract. If P is a point inside 4ABC, then the cevians through P divide 4ABC into smaller triangles of various sizes. We give theorems about the rela- tionship between the radii of certain excircles of some of these triangles. Keywords. Euclidean geometry, triangle geometry, excircles, exradii, cevians. Mathematics Subject Classification (2010). 51M04. 1. Introduction Let P be any point inside a triangle ABC. The cevians through P divide 4ABC into six smaller triangles. In a previous paper [5], we found relationships between the radii of the circles inscribed in these triangles. For example, if P is at the orthocenter H, as shown in Figure 1, then we found that r1r3r5 = r2r4r6, where the ri are radii of the incircles as shown in the figure. arXiv:1910.00418v1 [math.HO] 28 Sep 2019 Figure 1. r1r3r5 = r2r4r6 In this paper, we will find similar results using excircles instead of incircles. When the cevians through a point P interior to a triangle ABC are drawn, many smaller 1This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
    [Show full text]
  • Yet Another New Proof of Feuerbach's Theorem
    Global Journal of Science Frontier Research: F Mathematics and Decision Sciences Volume 16 Issue 4 Version 1.0 Year 2016 Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 2249-4626 & Print ISSN: 0975-5896 Yet Another New Proof of Feuerbach’s Theorem By Dasari Naga Vijay Krishna Abstract- In this article we give a new proof of the celebrated theorem of Feuerbach. Keywords: feuerbach’s theorem, stewart’s theorem, nine point center, nine point circle. GJSFR-F Classification : MSC 2010: 11J83, 11D41 YetAnother NewProofofFeuerbachsTheorem Strictly as per the compliance and regulations of : © 2016. Dasari Naga Vijay Krishna. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Notes Yet Another New Proof of Feuerbach’s Theorem 2016 r ea Y Dasari Naga Vijay Krishna 91 Abstra ct- In this article we give a new proof of the celebrated theorem of Feuerbach. Keywords: feuerbach’s theorem, stewart’s theorem, nine point center, nine point circle. V I. Introduction IV ue ersion I s The Feuerbach’s Theorem states that “The nine-point circle of a triangle is s tangent internally to the in circle and externally to each of the excircles”. I Feuerbach's fame is as a geometer who discovered the nine point circle of a XVI triangle. This is sometimes called the Euler circle but this incorrectly attributes the result.
    [Show full text]
  • Special Isocubics in the Triangle Plane
    Special Isocubics in the Triangle Plane Jean-Pierre Ehrmann and Bernard Gibert June 19, 2015 Special Isocubics in the Triangle Plane This paper is organized into five main parts : a reminder of poles and polars with respect to a cubic. • a study on central, oblique, axial isocubics i.e. invariant under a central, oblique, • axial (orthogonal) symmetry followed by a generalization with harmonic homolo- gies. a study on circular isocubics i.e. cubics passing through the circular points at • infinity. a study on equilateral isocubics i.e. cubics denoted 60 with three real distinct • K asymptotes making 60◦ angles with one another. a study on conico-pivotal isocubics i.e. such that the line through two isoconjugate • points envelopes a conic. A number of practical constructions is provided and many examples of “unusual” cubics appear. Most of these cubics (and many other) can be seen on the web-site : http://bernard.gibert.pagesperso-orange.fr where they are detailed and referenced under a catalogue number of the form Knnn. We sincerely thank Edward Brisse, Fred Lang, Wilson Stothers and Paul Yiu for their friendly support and help. Chapter 1 Preliminaries and definitions 1.1 Notations We will denote by the cubic curve with barycentric equation • K F (x,y,z) = 0 where F is a third degree homogeneous polynomial in x,y,z. Its partial derivatives ∂F ∂2F will be noted F ′ for and F ′′ for when no confusion is possible. x ∂x xy ∂x∂y Any cubic with three real distinct asymptotes making 60◦ angles with one another • will be called an equilateral cubic or a 60.
    [Show full text]
  • Generalized Gergonne and Nagel Points
    Generalized Gergonne and Nagel Points B. Odehnal June 16, 2009 Abstract In this paper we show that the Gergonne point G of a triangle ∆ in the Euclidean plane can in fact be seen from the more general point of view, i.e., from the viewpoint of projective geometry. So it turns out that there are up to four Gergonne points associated with ∆. The Gergonne and Nagel point are isotomic conjugates of each other and thus we find up to four Nagel points associated with a generic triangle. We reformulate the problems in a more general setting and illustrate the different appearances of Gergonne points in different affine geometries. Darboux’s cubic can also be found in the more general setting and finally a projective version of Feuerbach’s circle appears. Mathematics Subject Classification (2000): 51M04, 51M05, 51B20 Key Words: triangle, incenter, excenters, Gergonne point, Brianchon’s theorem, Nagel point, isotomic conjugate, Darboux’s cubic, Feuerbach’s nine point circle. 1 Introduction Assume ∆ = {A,B,C} is a triangle with vertices A, B, and C and the incircle i. Gergonne’s point is the locus of concurrency of the three cevians connecting the contact points of i and ∆ with the opposite vertices. The Gergonne point, which can also be labelled with X7 according to [10, 11] has frequently attracted mathematician’s interest. Some generalizations have been given. So, for example, one can replace the incircle with a concentric 1 circle and replace the contact points of the incircle and the sides of ∆ with their reflections with regard to the incenter as done in [2].
    [Show full text]
  • Cevians, Symmedians, and Excircles Cevian Cevian Triangle & Circle
    10/5/2011 Cevians, Symmedians, and Excircles MA 341 – Topics in Geometry Lecture 16 Cevian A cevian is a line segment which joins a vertex of a triangle with a point on the opposite side (or its extension). B cevian C A D 05-Oct-2011 MA 341 001 2 Cevian Triangle & Circle • Pick P in the interior of ∆ABC • Draw cevians from each vertex through P to the opposite side • Gives set of three intersecting cevians AA’, BB’, and CC’ with respect to that point. • The triangle ∆A’B’C’ is known as the cevian triangle of ∆ABC with respect to P • Circumcircle of ∆A’B’C’ is known as the evian circle with respect to P. 05-Oct-2011 MA 341 001 3 1 10/5/2011 Cevian circle Cevian triangle 05-Oct-2011 MA 341 001 4 Cevians In ∆ABC examples of cevians are: medians – cevian point = G perpendicular bisectors – cevian point = O angle bisectors – cevian point = I (incenter) altitudes – cevian point = H Ceva’s Theorem deals with concurrence of any set of cevians. 05-Oct-2011 MA 341 001 5 Gergonne Point In ∆ABC find the incircle and points of tangency of incircle with sides of ∆ABC. Known as contact triangle 05-Oct-2011 MA 341 001 6 2 10/5/2011 Gergonne Point These cevians are concurrent! Why? Recall that AE=AF, BD=BF, and CD=CE Ge 05-Oct-2011 MA 341 001 7 Gergonne Point The point is called the Gergonne point, Ge. Ge 05-Oct-2011 MA 341 001 8 Gergonne Point Draw lines parallel to sides of contact triangle through Ge.
    [Show full text]
  • Nagel , Speiker, Napoleon, Torricelli
    Nagel , Speiker, Napoleon, Torricelli MA 341 – Topics in Geometry Lecture 17 Centroid The point of concurrency of the three medians. 07-Oct-2011 MA 341 2 Circumcenter Point of concurrency of the three perpendicular bisectors. 07-Oct-2011 MA 341 3 Orthocenter Point of concurrency of the three altitudes. 07-Oct-2011 MA 341 4 Incenter Point of concurrency of the three angle bisectors. 07-Oct-2011 MA 341 5 Symmedian Point Point of concurrency of the three symmedians. 07-Oct-2011 MA 341 6 Gergonne Point Point of concurrency of the three segments from vertices to intangency points. 07-Oct-2011 MA 341 7 Spieker Point The Spieker point is the incenter of the medial triangle. 07-Oct-2011 MA 341 8 Nine Point Circle Center The 9 point circle center is midpoint of the Euler segment. 07-Oct-2011 MA 341 9 Mittenpunkt Point The mittenpunkt of ΔABC is the symmedian point of the excentral triangle 05-Oct-2011 MA 341 001 10 Nagel Point Nagel point = point of concurrency of cevians to points of tangency of excircles 05-Oct-2011 MA 341 001 11 Nagel Point 05-Oct-2011 MA 341 001 12 The Nagel Point Ea has the unique property of being the point on the perimeter that is exactly half way around the triangle from A. = AB+BEaa AC+CE =s Then =- =- =- =- BEaa s AB s c and CE s AC s b BE sc- a = - CEa s b 07-Oct-2011 MA 341 13 The Nagel Point Likewise CE sa- b = - AEb s c AE sb- c = - BEc s a Apply Ceva’s Theorem AE BE CE sbscsa--- cab=´´=1 --- BEcab CE AE s a s b s c 07-Oct-2011 MA 341 14 The Nagel Segment 1.
    [Show full text]
  • Barycentric Coordinates in Olympiad Geometry
    Barycentric Coordinates in Olympiad Geometry Max Schindler∗ Evan Cheny July 13, 2012 I suppose it is tempting, if the only tool you have is a hammer, to treat everything as if it were a nail. Abstract In this paper we present a powerful computational approach to large class of olympiad geometry problems{ barycentric coordinates. We then extend this method using some of the techniques from vector computations to greatly extend the scope of this technique. Special thanks to Amir Hossein and the other olympiad moderators for helping to get this article featured: I certainly did not have such ambitious goals in mind when I first wrote this! ∗Mewto55555, Missouri. I can be contacted at igoroogenfl[email protected]. yv Enhance, SFBA. I can be reached at [email protected]. 1 Contents Title Page 1 1 Preliminaries 4 1.1 Advantages of barycentric coordinates . .4 1.2 Notations and Conventions . .5 1.3 How to Use this Article . .5 2 The Basics 6 2.1 The Coordinates . .6 2.2 Lines . .6 2.2.1 The Equation of a Line . .6 2.2.2 Ceva and Menelaus . .7 2.3 Special points in barycentric coordinates . .7 3 Standard Strategies 9 3.1 EFFT: Perpendicular Lines . .9 3.2 Distance Formula . 11 3.3 Circles . 11 3.3.1 Equation of the Circle . 11 4 Trickier Tactics 12 4.1 Areas and Lines . 12 4.2 Non-normalized Coordinates . 13 4.3 O, H, and Strong EFFT . 13 4.4 Conway's Formula . 14 4.5 A Few Final Lemmas . 15 5 Example Problems 16 5.1 USAMO 2001/2 .
    [Show full text]
  • Three Points Related to the Incenter and Excenters of a Triangle
    Three points related to the incenter and excenters of a triangle B. Odehnal Abstract In the present paper it is shown that certain normals to the sides of a triangle ∆ passing through the excenters and the incenter are concurrent. The triangle ∆S built by these three points has the incenter of ∆ for its circumcenter. The radius of the circumcircle is twice the radius of the circumcircle of ∆. Some other results concerning ∆S are stated and proved. Mathematics Subject Classification (2000): 51M04. Keywords: incenter, PSfragexcenters,replacemenortho center,ts orthoptic triangle, Feuerbach point, Euler line. A B C 1 Introduction a b c Let ∆ := fA; B; Cg be a triangle in the Euclidean plane. The side lengths of α ∆ shall be denoted by c := AB, b := ACβ and a := BC. The interior angles \ \ \ enclosed by the edges of ∆ are β := ABγC, γ := BCA and α := CAB, see Fig. 1. A1 wγ C A2 PSfrag replacements wβ wα C I A B a wα b wγ γ wβ α β A3 A c B Figure 1: Notations used in the paper. It is well-known that the bisectors wα, wβ and wγ of the interior angles of ∆ are concurrent in the incenter I of ∆. The bisectors wβ and wγ of the exterior angles at the vertices A and B and wα are concurrent in the center A1 of the excircle touching ∆ along BC from the outside. 1 S3 nA2 (BC) nI (AB) nA1 (AC) A1 C A2 n (AB) PSfrag replacements I A1 nA2 (AB) B A nI (AC) S2 nI (BC) S1 nA3 (BC) nA3 (AC) A3 Figure 2: Three remarkable points occuring as the intersection of some normals.
    [Show full text]
  • Degree of Triangle Centers and a Generalization of the Euler Line
    Beitr¨agezur Algebra und Geometrie Contributions to Algebra and Geometry Volume 51 (2010), No. 1, 63-89. Degree of Triangle Centers and a Generalization of the Euler Line Yoshio Agaoka Department of Mathematics, Graduate School of Science Hiroshima University, Higashi-Hiroshima 739–8521, Japan e-mail: [email protected] Abstract. We introduce a concept “degree of triangle centers”, and give a formula expressing the degree of triangle centers on generalized Euler lines. This generalizes the well known 2 : 1 point configuration on the Euler line. We also introduce a natural family of triangle centers based on the Ceva conjugate and the isotomic conjugate. This family contains many famous triangle centers, and we conjecture that the de- gree of triangle centers in this family always takes the form (−2)k for some k ∈ Z. MSC 2000: 51M05 (primary), 51A20 (secondary) Keywords: triangle center, degree of triangle center, Euler line, Nagel line, Ceva conjugate, isotomic conjugate Introduction In this paper we present a new method to study triangle centers in a systematic way. Concerning triangle centers, there already exist tremendous amount of stud- ies and data, among others Kimberling’s excellent book and homepage [32], [36], and also various related problems from elementary geometry are discussed in the surveys and books [4], [7], [9], [12], [23], [26], [41], [50], [51], [52]. In this paper we introduce a concept “degree of triangle centers”, and by using it, we clarify the mutual relation of centers on generalized Euler lines (Proposition 1, Theorem 2). Here the term “generalized Euler line” means a line connecting the centroid G and a given triangle center P , and on this line an infinite number of centers lie in a fixed order, which are successively constructed from the initial center P 0138-4821/93 $ 2.50 c 2010 Heldermann Verlag 64 Y.
    [Show full text]
  • The Feuerbach Point and the Fuhrmann Triangle
    Forum Geometricorum Volume 16 (2016) 299–311. FORUM GEOM ISSN 1534-1178 The Feuerbach Point and the Fuhrmann Triangle Nguyen Thanh Dung Abstract. We establish a few results on circles through the Feuerbach point of a triangle, and their relations to the Fuhrmann triangle. The Fuhrmann triangle is perspective with the circumcevian triangle of the incenter. We prove that the perspectrix is the tangent to the nine-point circle at the Feuerbach point. 1. Feuerbach point and nine-point circles Given a triangle ABC, we consider its intouch triangle X0Y0Z0, medial trian- gle X1Y1Z1, and orthic triangle X2Y2Z2. The famous Feuerbach theorem states that the incircle (X0Y0Z0) and the nine-point circle (N), which is the common cir- cumcircle of X1Y1Z1 and X2Y2Z2, are tangent internally. The point of tangency is the Feuerbach point Fe. In this paper we adopt the following standard notation for triangle centers: G the centroid, O the circumcenter, H the orthocenter, I the incenter, Na the Nagel point. The nine-point center N is the midpoint of OH. A Y2 Fe Y0 Z1 Y1 Z0 H O Z2 I T Oa B X0 U X2 X1 C Ja Figure 1 Proposition 1. Let ABC be a non-isosceles triangle. (a) The triangles FeX0X1, FeY0Y1, FeZ0Z1 are directly similar to triangles AIO, BIO, CIO respectively. (b) Let Oa, Ob, Oc be the reflections of O in IA, IB, IC respectively. The lines IOa, IOb, IOc are perpendicular to FeX1, FeY1, FeZ1 respectively. Publication Date: July 25, 2016. Communicating Editor: Paul Yiu. 300 T. D. Nguyen Proof.
    [Show full text]
  • Feuerbach's Theorem, and a Brief Biographical Note on Karl Feuerbach
    FEURBACH's THEOREM A NEW PURELY SYNTHETIC PROOF Jean - Louis AYME 1 A Fe 2 1 B C Abstract. We present a new purely synthetic proof of the Feuerbach's theorem, and a brief biographical note on Karl Feuerbach. The figures are all in general position and all cited theorems can all be demonstrated synthetically. Summary A. A short biography of Karl Feuerbach 2 B. Four lemmas 3 1. Lemma 1 Example 1 Example 2 2. Lemma 2 3. Lemma 3 4. Lemma 4 C. Proof of Feuerbach’s theorem 7 Remerciements. Je remercie très vivement le Professeur Francisco Bellot Rosado d'avoir relu et traduit en espagnol cet article qu’il a publié dans sa revue électronique Revistaoim 2 ainsi que le professeur Dmitry Shvetsov pour l’avoir traduit en russe et publié dans son site Geometry.ru 3. 1 St-Denis, Île de la Réunion (France), le 25/11/2010. 2 El teorema de Feuerbach : una demonstration puramente sintética, Revistaoim 26 (2006) ; http://www.oei.es/oim/revistaoim/index.html 3 http://geometry.ru/articles.htm 2 A. A SHORT BIOGRAPHY OF KARL FEUERBACH 4 Karl Feuerbach, the brother of the famous philosopher Ludwig Feuerbach, was born on the 30th of May 1800 in Jena (Germany). Son of the jurist Paul Feuerbach and of Eva Troster, he was a brilliant student at the Universities of Erlangen and Freiburg, and received his doctorate at the age of 22 years. He started teaching mathematics at the Gymnasium of Erlangen in 1822 but he continued to frequent a circle of his ancient fellow' students known for their debauchery and debts.
    [Show full text]
  • A Tour of Triangle Geometry
    A Tour of Triangle Geometry Paul Yiu Department of Mathematical Sciences Florida Atlantic University 1. Introduction Interests in triangle geometry have been rekindled in recent years with the availability of dynamic software such as the Geometer’s Sketchpad and Cabri for geometric constructions. In this paper we outline some interesting results with illustrations made by such software. We shall center around the notions of reflection and isogonal conjugation, and introduce a number of interesting triangle centers, 1 lines, conics, and a few cubic curves. 2 Many results in triangle geometry can be discovered from such dynamic sketches, and proved either synthetically or by calculations. Although we do not present any proof, all results without references have been confirmed by calculations using barycentric coordinates. 3 The reader is invited to repro- duce the figures in this paper as dynamic sketches using computer software, and to discover further results. The conics in this paper are constructed by the five-point-conic command available in both Geometer’s Sketchpad and Cabri. The location of the center of a rectangular hyperbola will be treated in detail in §?? below. In The 37th Annual Meeting of the Florida Section of the Mathematical Association of America, University of Central Florida, Orlando, Florida, USA. 1Most of the triangle centers in this paper appear in Kimberling’s Encyclopedia of Tri- angle Centers [10], hereafter ETC. For example, the centroid, circumcenter, orthocenter, and incenter appear as X2, X3, X4, and X1 respectively. We shall reference occurrences in ETC of other triangle centers in footnotes. 2Most of the questions we consider are about the concurrency of three lines.
    [Show full text]