The Conics of Ludwig Kiepert: a Comprehensive Lesson in the Geometry of the Triangle R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Relationships Between Six Excircles
Sangaku Journal of Mathematics (SJM) c SJM ISSN 2534-9562 Volume 3 (2019), pp.73-90 Received 20 August 2019. Published on-line 30 September 2019 web: http://www.sangaku-journal.eu/ c The Author(s) This article is published with open access1. Relationships Between Six Excircles Stanley Rabinowitz 545 Elm St Unit 1, Milford, New Hampshire 03055, USA e-mail: [email protected] web: http://www.StanleyRabinowitz.com/ Abstract. If P is a point inside 4ABC, then the cevians through P divide 4ABC into smaller triangles of various sizes. We give theorems about the rela- tionship between the radii of certain excircles of some of these triangles. Keywords. Euclidean geometry, triangle geometry, excircles, exradii, cevians. Mathematics Subject Classification (2010). 51M04. 1. Introduction Let P be any point inside a triangle ABC. The cevians through P divide 4ABC into six smaller triangles. In a previous paper [5], we found relationships between the radii of the circles inscribed in these triangles. For example, if P is at the orthocenter H, as shown in Figure 1, then we found that r1r3r5 = r2r4r6, where the ri are radii of the incircles as shown in the figure. arXiv:1910.00418v1 [math.HO] 28 Sep 2019 Figure 1. r1r3r5 = r2r4r6 In this paper, we will find similar results using excircles instead of incircles. When the cevians through a point P interior to a triangle ABC are drawn, many smaller 1This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. -
Second Rapport Intermédiaire
Compte-rendu intermédiaire 01/04/2016-31/03/2107 Projet ANR- AA-PPPP-000 Cirmath Circulations des mathématiques dans et par les journaux : histoire, territoires et publics Programme xxxxx 200x A IDENTIFICATION ................................................................ 3 B LIVRABLES ET JALONS ......................................................... 4 C RAPPORT D’AVANCEMENT SUR LA PERIODE CONCERNEE (01/04/16- 31/03/17) .................................................................... 6 C.1 Description des travaux effectués ............................................. 6 C.1.1 Rappel : Une présentation rapide du programme de recherche de Cirmath 6 C.1.2 Le séminaire Cirmath 7 C.1.3 Les colloques Cirmath 7 C.1.4 La base de données des journaux mathématiques - Cirmath-data 8 C.1.5 Conclusion 11 C.2 Résultats marquants (si applicable) ........................................ 11 C.3 Réunions du consortium (si applicable) ................................... 11 C.4 Commentaires libres............................................................. 12 D IMPACT DU PROJET DEPUIS LE DEBUT ...................................... 13 D.1 Indicateurs d’impact ............................................................. 13 D.2 Liste des publications et communications ................................ 14 Référence du formulaire : ANR-FORM-090601-02-01 D.2.1 Liste des publications et communications directement liées au projet Cirmath. 14 D.2.2 Liste des publications et communications des membres du projet Cirmath ayant trait à la thématique de la circulation -
Special Isocubics in the Triangle Plane
Special Isocubics in the Triangle Plane Jean-Pierre Ehrmann and Bernard Gibert June 19, 2015 Special Isocubics in the Triangle Plane This paper is organized into five main parts : a reminder of poles and polars with respect to a cubic. • a study on central, oblique, axial isocubics i.e. invariant under a central, oblique, • axial (orthogonal) symmetry followed by a generalization with harmonic homolo- gies. a study on circular isocubics i.e. cubics passing through the circular points at • infinity. a study on equilateral isocubics i.e. cubics denoted 60 with three real distinct • K asymptotes making 60◦ angles with one another. a study on conico-pivotal isocubics i.e. such that the line through two isoconjugate • points envelopes a conic. A number of practical constructions is provided and many examples of “unusual” cubics appear. Most of these cubics (and many other) can be seen on the web-site : http://bernard.gibert.pagesperso-orange.fr where they are detailed and referenced under a catalogue number of the form Knnn. We sincerely thank Edward Brisse, Fred Lang, Wilson Stothers and Paul Yiu for their friendly support and help. Chapter 1 Preliminaries and definitions 1.1 Notations We will denote by the cubic curve with barycentric equation • K F (x,y,z) = 0 where F is a third degree homogeneous polynomial in x,y,z. Its partial derivatives ∂F ∂2F will be noted F ′ for and F ′′ for when no confusion is possible. x ∂x xy ∂x∂y Any cubic with three real distinct asymptotes making 60◦ angles with one another • will be called an equilateral cubic or a 60. -
Generalized Gergonne and Nagel Points
Generalized Gergonne and Nagel Points B. Odehnal June 16, 2009 Abstract In this paper we show that the Gergonne point G of a triangle ∆ in the Euclidean plane can in fact be seen from the more general point of view, i.e., from the viewpoint of projective geometry. So it turns out that there are up to four Gergonne points associated with ∆. The Gergonne and Nagel point are isotomic conjugates of each other and thus we find up to four Nagel points associated with a generic triangle. We reformulate the problems in a more general setting and illustrate the different appearances of Gergonne points in different affine geometries. Darboux’s cubic can also be found in the more general setting and finally a projective version of Feuerbach’s circle appears. Mathematics Subject Classification (2000): 51M04, 51M05, 51B20 Key Words: triangle, incenter, excenters, Gergonne point, Brianchon’s theorem, Nagel point, isotomic conjugate, Darboux’s cubic, Feuerbach’s nine point circle. 1 Introduction Assume ∆ = {A,B,C} is a triangle with vertices A, B, and C and the incircle i. Gergonne’s point is the locus of concurrency of the three cevians connecting the contact points of i and ∆ with the opposite vertices. The Gergonne point, which can also be labelled with X7 according to [10, 11] has frequently attracted mathematician’s interest. Some generalizations have been given. So, for example, one can replace the incircle with a concentric 1 circle and replace the contact points of the incircle and the sides of ∆ with their reflections with regard to the incenter as done in [2]. -
Cevians, Symmedians, and Excircles Cevian Cevian Triangle & Circle
10/5/2011 Cevians, Symmedians, and Excircles MA 341 – Topics in Geometry Lecture 16 Cevian A cevian is a line segment which joins a vertex of a triangle with a point on the opposite side (or its extension). B cevian C A D 05-Oct-2011 MA 341 001 2 Cevian Triangle & Circle • Pick P in the interior of ∆ABC • Draw cevians from each vertex through P to the opposite side • Gives set of three intersecting cevians AA’, BB’, and CC’ with respect to that point. • The triangle ∆A’B’C’ is known as the cevian triangle of ∆ABC with respect to P • Circumcircle of ∆A’B’C’ is known as the evian circle with respect to P. 05-Oct-2011 MA 341 001 3 1 10/5/2011 Cevian circle Cevian triangle 05-Oct-2011 MA 341 001 4 Cevians In ∆ABC examples of cevians are: medians – cevian point = G perpendicular bisectors – cevian point = O angle bisectors – cevian point = I (incenter) altitudes – cevian point = H Ceva’s Theorem deals with concurrence of any set of cevians. 05-Oct-2011 MA 341 001 5 Gergonne Point In ∆ABC find the incircle and points of tangency of incircle with sides of ∆ABC. Known as contact triangle 05-Oct-2011 MA 341 001 6 2 10/5/2011 Gergonne Point These cevians are concurrent! Why? Recall that AE=AF, BD=BF, and CD=CE Ge 05-Oct-2011 MA 341 001 7 Gergonne Point The point is called the Gergonne point, Ge. Ge 05-Oct-2011 MA 341 001 8 Gergonne Point Draw lines parallel to sides of contact triangle through Ge. -
The Isogonal Tripolar Conic
Forum Geometricorum b Volume 1 (2001) 33–42. bbb FORUM GEOM The Isogonal Tripolar Conic Cyril F. Parry Abstract. In trilinear coordinates with respect to a given triangle ABC,we define the isogonal tripolar of a point P (p, q, r) to be the line p: pα+qβ+rγ = 0. We construct a unique conic Φ, called the isogonal tripolar conic, with respect to which p is the polar of P for all P . Although the conic is imaginary, it has a real center and real axes coinciding with the center and axes of the real orthic inconic. Since ABC is self-conjugate with respect to Φ, the imaginary conic is harmonically related to every circumconic and inconic of ABC. In particular, Φ is the reciprocal conic of the circumcircle and Steiner’s inscribed ellipse. We also construct an analogous isotomic tripolar conic Ψ by working with barycentric coordinates. 1. Trilinear coordinates For any point P in the plane ABC, we can locate the right projections of P on the sides of triangle ABC at P1, P2, P3 and measure the distances PP1, PP2 and PP3. If the distances are directed, i.e., measured positively in the direction of −→ −→ each vertex to the opposite side, we can identify the distances α =PP1, β =PP2, −→ γ =PP3 (Figure 1) such that aα + bβ + cγ =2 where a, b, c, are the side lengths and area of triangle ABC. This areal equation for all positions of P means that the ratio of the distances is sufficient to define the trilinear coordinates of P (α, β, γ) where α : β : γ = α : β : γ. -
EUROPEAN MATHEMATICAL SOCIETY EDITOR-IN-CHIEF ROBIN WILSON Department of Pure Mathematics the Open University Milton Keynes MK7 6AA, UK E-Mail: [email protected]
CONTENTS EDITORIAL TEAM EUROPEAN MATHEMATICAL SOCIETY EDITOR-IN-CHIEF ROBIN WILSON Department of Pure Mathematics The Open University Milton Keynes MK7 6AA, UK e-mail: [email protected] ASSOCIATE EDITORS VASILE BERINDE Department of Mathematics, University of Baia Mare, Romania e-mail: [email protected] NEWSLETTER No. 47 KRZYSZTOF CIESIELSKI Mathematics Institute March 2003 Jagiellonian University Reymonta 4 EMS Agenda ................................................................................................. 2 30-059 Kraków, Poland e-mail: [email protected] Editorial by Sir John Kingman .................................................................... 3 STEEN MARKVORSEN Department of Mathematics Executive Committee Meeting ....................................................................... 4 Technical University of Denmark Building 303 Introducing the Committee ............................................................................ 7 DK-2800 Kgs. Lyngby, Denmark e-mail: [email protected] An Answer to the Growth of Mathematical Knowledge? ............................... 9 SPECIALIST EDITORS Interview with Vagn Lundsgaard Hansen .................................................. 15 INTERVIEWS Steen Markvorsen [address as above] Interview with D V Anosov .......................................................................... 20 SOCIETIES Krzysztof Ciesielski [address as above] Israel Mathematical Union ......................................................................... 25 EDUCATION Tony Gardiner -
Arxiv:2101.02592V1 [Math.HO] 6 Jan 2021 in His Seminal Paper [10]
International Journal of Computer Discovered Mathematics (IJCDM) ISSN 2367-7775 ©IJCDM Volume 5, 2020, pp. 13{41 Received 6 August 2020. Published on-line 30 September 2020 web: http://www.journal-1.eu/ ©The Author(s) This article is published with open access1. Arrangement of Central Points on the Faces of a Tetrahedron Stanley Rabinowitz 545 Elm St Unit 1, Milford, New Hampshire 03055, USA e-mail: [email protected] web: http://www.StanleyRabinowitz.com/ Abstract. We systematically investigate properties of various triangle centers (such as orthocenter or incenter) located on the four faces of a tetrahedron. For each of six types of tetrahedra, we examine over 100 centers located on the four faces of the tetrahedron. Using a computer, we determine when any of 16 con- ditions occur (such as the four centers being coplanar). A typical result is: The lines from each vertex of a circumscriptible tetrahedron to the Gergonne points of the opposite face are concurrent. Keywords. triangle centers, tetrahedra, computer-discovered mathematics, Eu- clidean geometry. Mathematics Subject Classification (2020). 51M04, 51-08. 1. Introduction Over the centuries, many notable points have been found that are associated with an arbitrary triangle. Familiar examples include: the centroid, the circumcenter, the incenter, and the orthocenter. Of particular interest are those points that Clark Kimberling classifies as \triangle centers". He notes over 100 such points arXiv:2101.02592v1 [math.HO] 6 Jan 2021 in his seminal paper [10]. Given an arbitrary tetrahedron and a choice of triangle center (for example, the circumcenter), we may locate this triangle center in each face of the tetrahedron. -
HENRI BROCARD (1865) UN INGÉNIEUR SAVANT DU Xixe SIÈCLE
OCTOBRE 2015 • LA JAUNE ET LA ROUGE 36 PARCOURS TRAJECTOIRES PAULINE ROMERA-LEBRET chercheur associé au Groupe d’histoire et diffusion des sciences d’Orsay (GHDSO) HENRI BROCARD (1865) UN INGÉNIEUR SAVANT DU XIXe SIÈCLE Dans une nécrologie d’Henri Brocard 1, on peut lire que sa curiosité s’étendait « à de nombreux domaines : sciences naturelles, économie rurale, météorologie », même si « c’est surtout comme mathématicien qu’il s’est fait un nom » et s’il vouait une passion à la bibliographie. Henri Brocard 2 est un exemple d’ingénieur-savant du XIXe siècle, à savoir un polytechnicien à la charnière entre la théorie et la pratique mais aussi entre les mathématiques et la physique. DR Brocard fournit sur son temps libre une importante production mathématique, en particulier sur la nouvelle géométrie du triangle. ENRI BROCARD est né le 12 mai au 2e régiment de Montpellier, il fait 1845 dans une petite commune ensuite un bref passage dans l’armée H de la Meuse, à quarante kilo- du Rhin. Il participe à ses premières mètres de Bar-le-Duc. Il entre à campagnes pendant la guerre franco- l’École polytechnique allemande de 1870. en 1865 puis rejoint le Il est fait prison- Corps des ingénieurs « Durant trente-sept ans nier lors de la de l’armée française. défaite de Sedan. En 1869, après deux dans l’armée, il participe Il fait aussi par- années d’études à à onze campagnes » tie de la colonne l’École d’application, de Sétif lors de il est nommé lieute- la révolte des nant en second du Génie. -
Degree of Triangle Centers and a Generalization of the Euler Line
Beitr¨agezur Algebra und Geometrie Contributions to Algebra and Geometry Volume 51 (2010), No. 1, 63-89. Degree of Triangle Centers and a Generalization of the Euler Line Yoshio Agaoka Department of Mathematics, Graduate School of Science Hiroshima University, Higashi-Hiroshima 739–8521, Japan e-mail: [email protected] Abstract. We introduce a concept “degree of triangle centers”, and give a formula expressing the degree of triangle centers on generalized Euler lines. This generalizes the well known 2 : 1 point configuration on the Euler line. We also introduce a natural family of triangle centers based on the Ceva conjugate and the isotomic conjugate. This family contains many famous triangle centers, and we conjecture that the de- gree of triangle centers in this family always takes the form (−2)k for some k ∈ Z. MSC 2000: 51M05 (primary), 51A20 (secondary) Keywords: triangle center, degree of triangle center, Euler line, Nagel line, Ceva conjugate, isotomic conjugate Introduction In this paper we present a new method to study triangle centers in a systematic way. Concerning triangle centers, there already exist tremendous amount of stud- ies and data, among others Kimberling’s excellent book and homepage [32], [36], and also various related problems from elementary geometry are discussed in the surveys and books [4], [7], [9], [12], [23], [26], [41], [50], [51], [52]. In this paper we introduce a concept “degree of triangle centers”, and by using it, we clarify the mutual relation of centers on generalized Euler lines (Proposition 1, Theorem 2). Here the term “generalized Euler line” means a line connecting the centroid G and a given triangle center P , and on this line an infinite number of centers lie in a fixed order, which are successively constructed from the initial center P 0138-4821/93 $ 2.50 c 2010 Heldermann Verlag 64 Y. -
Chapter 10 Isotomic and Isogonal Conjugates
Chapter 10 Isotomic and isogonal conjugates 10.1 Isotomic conjugates The Gergonne and Nagel points are examples of isotomic conjugates. Two points P and Q (not on any of the side lines of the reference triangle) are said to be isotomic conjugates if their respective traces are symmetric with respect to the midpoints of the corresponding sides. Thus, BX = X′C, CY = Y ′A, AZ = Z′B. B X′ Z X Z′ P P • C A Y Y ′ We shall denote the isotomic conjugate of P by P •. If P =(x : y : z), then 1 1 1 P • = : : =(yz : zx : xy). x y z 320 Isotomic and isogonal conjugates 10.1.1 The Gergonne and Nagel points 1 1 1 Ge = s a : s b : s c , Na =(s a : s : s c). − − − − − − Ib A Ic Z′ Y Y Z I ′ Na Ge B C X X′ Ia 10.1 Isotomic conjugates 321 10.1.2 The isotomic conjugate of the orthocenter The isotomic conjugate of the orthocenter is the point 2 2 2 2 2 2 2 2 2 H• =(b + c a : c + a b : a + b c ). − − − Its traces are the pedals of the deLongchamps point Lo, the reflection of H in O. A Z′ L Y o O Y ′ H• Z H B C X X′ Exercise 1. Let XYZ be the cevian triangle of H•. Show that the lines joining X, Y , Z to the midpoints of the corresponding altitudes are concurrent. What is the common point? 1 2. Show that H• is the perspector of the triangle of reflections of the centroid G in the sidelines of the medial triangle. -
6A. Mathematics
19-th Century ROMANTIC AGE Mathematics Collected and edited by Prof. Zvi Kam, Weizmann Institute, Israel The 19th century is called “Romantic” because of the romantic trend in literature, music and arts opposing the rationalism of the 18th century. The romanticism adored individualism, folklore and nationalism and distanced itself from the universality of humanism and human spirit. Coming back to nature replaced the superiority of logics and reasoning human brain. In Literature: England-Lord byron, Percy Bysshe Shelly Germany –Johann Wolfgang von Goethe, Johann Christoph Friedrich von Schiller, Immanuel Kant. France – Jean-Jacques Rousseau, Alexandre Dumas (The Hunchback from Notre Dam), Victor Hugo (Les Miserable). Russia – Alexander Pushkin. Poland – Adam Mickiewicz (Pan Thaddeus) America – Fennimore Cooper (The last Mohican), Herman Melville (Moby Dick) In Music: Germany – Schumann, Mendelsohn, Brahms, Wagner. France – Berlioz, Offenbach, Meyerbeer, Massenet, Lalo, Ravel. Italy – Bellini, Donizetti, Rossini, Puccini, Verdi, Paganini. Hungary – List. Czech – Dvorak, Smetana. Poland – Chopin, Wieniawski. Russia – Mussorgsky. Finland – Sibelius. America – Gershwin. Painters: England – Turner, Constable. France – Delacroix. Spain – Goya. Economics: 1846 - The American Elias Howe Jr. builds the general purpose sawing machine, launching the clothing industry. 1848 – The communist manifest by Karl Marks & Friedrich Engels is published. Describes struggle between classes and replacement of Capitalism by Communism. But in the sciences, the Romantic era was very “practical”, and established in all fields the infrastructure for the modern sciences. In Mathematics – Differential and Integral Calculus, Logarithms. Theory of functions, defined over Euclidian spaces, developed the field of differential equations, the quantitative basis of physics. Matrix Algebra developed formalism for transformations in space and time, both orthonormal and distortive, preparing the way to Einstein’s relativity.