The Geometry of Homological Triangles

Total Page:16

File Type:pdf, Size:1020Kb

The Geometry of Homological Triangles FLORENTIN SMARANDACHE ION PĂTRAŞCU THE GEOMETRY OF HOMOLOGICAL TRIANGLES 2012 1 Table of Contents Preface ..………………………………………………………………………………………………………………………………………………….5 Chapter 1 ....................................................................................................................................................... 6 Remarkable pairs of homological triangles .................................................................................................. 6 1.1. Homological triangles’ theorem ......................................................................................................... 6 1.2. Some remarkable homological triangles .......................................................................................... 15 A. The orthic triangle .......................................................................................................................... 15 B. The Cevian triangle ........................................................................................................................ 17 C. The anti-supplemental triangle ....................................................................................................... 18 D. The K-symmedian triangle ............................................................................................................. 19 E. The tangential triangle .................................................................................................................... 23 F. The contact triangle ........................................................................................................................ 24 G. The medial triangle ........................................................................................................................ 27 H. The cotangent triangle .................................................................................................................... 31 I. The ex-tangential triangle ................................................................................................................ 41 J. The circum-pedal triangle (or meta-harmonic) ............................................................................... 43 K. The Coşniţă triangle ....................................................................................................................... 46 Chapter 2 ..................................................................................................................................................... 52 Triplets of homological triangles ................................................................................................................ 52 2.1. Theorems relative to the triplets of homological triangles ............................................................... 52 2.2. A remarkable triplet of homological triangles ................................................................................. 57 2.3. Other theorems on homological triangles ........................................................................................ 72 Chapter 3 ..................................................................................................................................................... 82 Bi-homological and tri-homological triangles ............................................................................................. 82 3.1. The necessary and sufficient condition of homology ...................................................................... 82 3.2. Bi-homological and tri-homological triangles ................................................................................. 83 1.3. Tri-homological equilateral triangles which have the same center ............................................. 91 1.4. The Pappus’ Theorem ................................................................................................................. 93 1.5. The duality principle ................................................................................................................... 94 Chapter 4 ..................................................................................................................................................... 99 Homological triangles inscribed in circle .................................................................................................... 99 4.1. Theorems related to circles. ............................................................................................................. 99 3 4.1. Homological triangles inscribed in a circle. ................................................................................... 106 Chapter 5 ................................................................................................................................................... 116 Proposed problems. Open problems ........................................................................................................ 116 5.1. Proposed problems ......................................................................................................................... 116 5.2. Open problems ............................................................................................................................... 132 Chapter 6 ................................................................................................................................................... 134 Notes ......................................................................................................................................................... 134 6.1. Menelaus’ theorem and Ceva’s theorem ........................................................................................ 134 Annex 1 ..................................................................................................................................................... 139 Important formulae in the triangle geometry ...................................................................................... 139 C. Distances between remarkable points in triangle geometry ........................................................... 140 D. Application ........................................................................................................................................ 142 6.3. The point’s power in rapport to a circle ......................................................................................... 144 6.4. The non-harmonic rapport ............................................................................................................. 150 6.5. Pole and polar in rapport with a circle ........................................................................................... 157 Transformation by duality in rapport with a circle ........................................................................... 159 6.6. Homothety ...................................................................................................................................... 166 Homothety definition ....................................................................................................................... 166 Properties .......................................................................................................................................... 166 Applications ....................................................................................................................................... 170 6.7. Inversion in plane ........................................................................................................................... 175 A. Definition, Notations ................................................................................................................. 175 B. The image of a figure through an inversion .............................................................................. 175 C. The construction with the compass and the ruler of the inverses of a line and of a circle ........ 179 D. Other properties of the inversion .............................................................................................. 183 Applications ....................................................................................................................................... 186 Chapter 7 ................................................................................................................................................... 189 Solutions and indications to the proposed problems ............................................................................... 189 REFERENCES .............................................................................................................................................. 242 4 PREFACE This book is addressed to students, professors and researchers of geometry, who will find herein many interesting and original results. The originality of the book The Geometry of Homological Triangles consists in using the homology of triangles as a “filter” through which remarkable notions and theorems from the geometry of the triangle are unitarily passed. Our research is structured in seven chapters, the first four are dedicated to the homology of the triangles while the last ones to their applications. In the first chapter one proves the theorem of homological triangles (Desargues, 1636), one survey the remarkable pairs of homological triangles, making various connections between their homology centers and axes. Second chapter boards the theorem relative to the triplets of homological triangles. The Veronese Theorem is proved and it is mentioned a remarkable triplet
Recommended publications
  • Some Concurrencies from Tucker Hexagons
    Forum Geometricorum b Volume 2 (2002) 5–13. bbb FORUM GEOM ISSN 1534-1178 Some Concurrencies from Tucker Hexagons Floor van Lamoen Abstract. We present some concurrencies in the figure of Tucker hexagons to- gether with the centers of their Tucker circles. To find the concurrencies we make use of extensions of the sides of the Tucker hexagons, isosceles triangles erected on segments, and special points defined in some triangles. 1. The Tucker hexagon Tφ and the Tucker circle Cφ Consider a scalene (nondegenerate) reference triangle ABC in the Euclidean plane, with sides a = BC, b = CA and c = AB. Let Ba be a point on the sideline CA. Let Ca be the point where the line through Ba antiparallel to BC meets AB. Then let Ac be the point where the line through Ca parallel to CA meets BC. Continue successively the construction of parallels and antiparallels to complete a hexagon BaCaAcBcCbAb of which BaCa, AcBc and CbAb are antiparallel to sides BC, CA and AB respectively, while BcCb, AcCa and AbBa are parallel to these respective sides. B Cb K Ab B T K Ac Ca KC KA C Bc Ba A Figure 1 This is the well known way to construct a Tucker hexagon. Each Tucker hexagon is circumscribed by a circle, the Tucker circle. The three antiparallel sides are congruent; their midpoints KA, KB and KC lie on the symmedians of ABC in such a way that AKA : AK = BKB : BK = CKC : CK, where K denotes the symmedian point. See [1, 2, 3]. 1.1. Identification by central angles.
    [Show full text]
  • LINEAR ALGEBRA METHODS in COMBINATORICS László Babai
    LINEAR ALGEBRA METHODS IN COMBINATORICS L´aszl´oBabai and P´eterFrankl Version 2.1∗ March 2020 ||||| ∗ Slight update of Version 2, 1992. ||||||||||||||||||||||| 1 c L´aszl´oBabai and P´eterFrankl. 1988, 1992, 2020. Preface Due perhaps to a recognition of the wide applicability of their elementary concepts and techniques, both combinatorics and linear algebra have gained increased representation in college mathematics curricula in recent decades. The combinatorial nature of the determinant expansion (and the related difficulty in teaching it) may hint at the plausibility of some link between the two areas. A more profound connection, the use of determinants in combinatorial enumeration goes back at least to the work of Kirchhoff in the middle of the 19th century on counting spanning trees in an electrical network. It is much less known, however, that quite apart from the theory of determinants, the elements of the theory of linear spaces has found striking applications to the theory of families of finite sets. With a mere knowledge of the concept of linear independence, unexpected connections can be made between algebra and combinatorics, thus greatly enhancing the impact of each subject on the student's perception of beauty and sense of coherence in mathematics. If these adjectives seem inflated, the reader is kindly invited to open the first chapter of the book, read the first page to the point where the first result is stated (\No more than 32 clubs can be formed in Oddtown"), and try to prove it before reading on. (The effect would, of course, be magnified if the title of this volume did not give away where to look for clues.) What we have said so far may suggest that the best place to present this material is a mathematics enhancement program for motivated high school students.
    [Show full text]
  • Activity 19 – Constructing Similar Triangles
    Activity 25 - The Euler Line First, turn on your TI-84 Plus and press the APPS key. Arrow down until you see Cabri Jr and press Í. You should now see this introduction screen. To begin the program, press any key. If a drawing comes up on the screen, press the o key (note the F1 above and to the right of the key – this program uses F1, F2, F3, F4, F5 names instead of the regular key names) and arrow down to NEW. It will ask you if you would like to save the changes. Press the y key and then enter to not save the changes. We are now ready to begin. From last year’s activities, you learned about four triangle centers that can be easily constructed. We will use all four centers in this construction. To review, the points are: • The Circumcenter at the intersection of the perpendicular bisectors of the sides of a triangle – we will call this point D. • The Incenter at the intersection of the angle bisectors – we will call this point E. • The Orthocenter at the intersection of the altitudes – we will call this point F. • The Centroid at the intersection of the medians – we will call this point G. Start with any triangle ABC. In the diagram, sides BC and AC are almost congruent. This will cause a slight problem that will need to be corrected later and provide a hint for one of the quesitons posed later. Construct the perpendicular bisectors of two of the sides. Why is it sufficient to construct only two of these lines? Construct the point of intersection.
    [Show full text]
  • Cevians, Symmedians, and Excircles Cevian Cevian Triangle & Circle
    10/5/2011 Cevians, Symmedians, and Excircles MA 341 – Topics in Geometry Lecture 16 Cevian A cevian is a line segment which joins a vertex of a triangle with a point on the opposite side (or its extension). B cevian C A D 05-Oct-2011 MA 341 001 2 Cevian Triangle & Circle • Pick P in the interior of ∆ABC • Draw cevians from each vertex through P to the opposite side • Gives set of three intersecting cevians AA’, BB’, and CC’ with respect to that point. • The triangle ∆A’B’C’ is known as the cevian triangle of ∆ABC with respect to P • Circumcircle of ∆A’B’C’ is known as the evian circle with respect to P. 05-Oct-2011 MA 341 001 3 1 10/5/2011 Cevian circle Cevian triangle 05-Oct-2011 MA 341 001 4 Cevians In ∆ABC examples of cevians are: medians – cevian point = G perpendicular bisectors – cevian point = O angle bisectors – cevian point = I (incenter) altitudes – cevian point = H Ceva’s Theorem deals with concurrence of any set of cevians. 05-Oct-2011 MA 341 001 5 Gergonne Point In ∆ABC find the incircle and points of tangency of incircle with sides of ∆ABC. Known as contact triangle 05-Oct-2011 MA 341 001 6 2 10/5/2011 Gergonne Point These cevians are concurrent! Why? Recall that AE=AF, BD=BF, and CD=CE Ge 05-Oct-2011 MA 341 001 7 Gergonne Point The point is called the Gergonne point, Ge. Ge 05-Oct-2011 MA 341 001 8 Gergonne Point Draw lines parallel to sides of contact triangle through Ge.
    [Show full text]
  • On the Standard Lengths of Angle Bisectors and the Angle Bisector Theorem
    Global Journal of Advanced Research on Classical and Modern Geometries ISSN: 2284-5569, pp.15-27 ON THE STANDARD LENGTHS OF ANGLE BISECTORS AND THE ANGLE BISECTOR THEOREM G.W INDIKA SHAMEERA AMARASINGHE ABSTRACT. In this paper the author unveils several alternative proofs for the standard lengths of Angle Bisectors and Angle Bisector Theorem in any triangle, along with some new useful derivatives of them. 2010 Mathematical Subject Classification: 97G40 Keywords and phrases: Angle Bisector theorem, Parallel lines, Pythagoras Theorem, Similar triangles. 1. INTRODUCTION In this paper the author introduces alternative proofs for the standard length of An- gle Bisectors and the Angle Bisector Theorem in classical Euclidean Plane Geometry, on a concise elementary format while promoting the significance of them by acquainting some prominent generalized side length ratios within any two distinct triangles existed with some certain correlations of their corresponding angles, as new lemmas. Within this paper 8 new alternative proofs are exposed by the author on the angle bisection, 3 new proofs each for the lengths of the Angle Bisectors by various perspectives with also 5 new proofs for the Angle Bisector Theorem. 1.1. The Standard Length of the Angle Bisector Date: 1 February 2012 . 15 G.W Indika Shameera Amarasinghe The length of the angle bisector of a standard triangle such as AD in figure 1.1 is AD2 = AB · AC − BD · DC, or AD2 = bc 1 − (a2/(b + c)2) according to the standard notation of a triangle as it was initially proved by an extension of the angle bisector up to the circumcircle of the triangle.
    [Show full text]
  • Notes on Euclidean Geometry Kiran Kedlaya Based
    Notes on Euclidean Geometry Kiran Kedlaya based on notes for the Math Olympiad Program (MOP) Version 1.0, last revised August 3, 1999 c Kiran S. Kedlaya. This is an unfinished manuscript distributed for personal use only. In particular, any publication of all or part of this manuscript without prior consent of the author is strictly prohibited. Please send all comments and corrections to the author at [email protected]. Thank you! Contents 1 Tricks of the trade 1 1.1 Slicing and dicing . 1 1.2 Angle chasing . 2 1.3 Sign conventions . 3 1.4 Working backward . 6 2 Concurrence and Collinearity 8 2.1 Concurrent lines: Ceva’s theorem . 8 2.2 Collinear points: Menelaos’ theorem . 10 2.3 Concurrent perpendiculars . 12 2.4 Additional problems . 13 3 Transformations 14 3.1 Rigid motions . 14 3.2 Homothety . 16 3.3 Spiral similarity . 17 3.4 Affine transformations . 19 4 Circular reasoning 21 4.1 Power of a point . 21 4.2 Radical axis . 22 4.3 The Pascal-Brianchon theorems . 24 4.4 Simson line . 25 4.5 Circle of Apollonius . 26 4.6 Additional problems . 27 5 Triangle trivia 28 5.1 Centroid . 28 5.2 Incenter and excenters . 28 5.3 Circumcenter and orthocenter . 30 i 5.4 Gergonne and Nagel points . 32 5.5 Isogonal conjugates . 32 5.6 Brocard points . 33 5.7 Miscellaneous . 34 6 Quadrilaterals 36 6.1 General quadrilaterals . 36 6.2 Cyclic quadrilaterals . 36 6.3 Circumscribed quadrilaterals . 38 6.4 Complete quadrilaterals . 39 7 Inversive Geometry 40 7.1 Inversion .
    [Show full text]
  • Volume 6 (2006) 1–16
    FORUM GEOMETRICORUM A Journal on Classical Euclidean Geometry and Related Areas published by Department of Mathematical Sciences Florida Atlantic University b bbb FORUM GEOM Volume 6 2006 http://forumgeom.fau.edu ISSN 1534-1178 Editorial Board Advisors: John H. Conway Princeton, New Jersey, USA Julio Gonzalez Cabillon Montevideo, Uruguay Richard Guy Calgary, Alberta, Canada Clark Kimberling Evansville, Indiana, USA Kee Yuen Lam Vancouver, British Columbia, Canada Tsit Yuen Lam Berkeley, California, USA Fred Richman Boca Raton, Florida, USA Editor-in-chief: Paul Yiu Boca Raton, Florida, USA Editors: Clayton Dodge Orono, Maine, USA Roland Eddy St. John’s, Newfoundland, Canada Jean-Pierre Ehrmann Paris, France Chris Fisher Regina, Saskatchewan, Canada Rudolf Fritsch Munich, Germany Bernard Gibert St Etiene, France Antreas P. Hatzipolakis Athens, Greece Michael Lambrou Crete, Greece Floor van Lamoen Goes, Netherlands Fred Pui Fai Leung Singapore, Singapore Daniel B. Shapiro Columbus, Ohio, USA Steve Sigur Atlanta, Georgia, USA Man Keung Siu Hong Kong, China Peter Woo La Mirada, California, USA Technical Editors: Yuandan Lin Boca Raton, Florida, USA Aaron Meyerowitz Boca Raton, Florida, USA Xiao-Dong Zhang Boca Raton, Florida, USA Consultants: Frederick Hoffman Boca Raton, Floirda, USA Stephen Locke Boca Raton, Florida, USA Heinrich Niederhausen Boca Raton, Florida, USA Table of Contents Khoa Lu Nguyen and Juan Carlos Salazar, On the mixtilinear incircles and excircles,1 Juan Rodr´ıguez, Paula Manuel and Paulo Semi˜ao, A conic associated with the Euler line,17 Charles Thas, A note on the Droz-Farny theorem,25 Paris Pamfilos, The cyclic complex of a cyclic quadrilateral,29 Bernard Gibert, Isocubics with concurrent normals,47 Mowaffaq Hajja and Margarita Spirova, A characterization of the centroid using June Lester’s shape function,53 Christopher J.
    [Show full text]
  • Extension of Algorithmic Geometry to Fractal Structures Anton Mishkinis
    Extension of algorithmic geometry to fractal structures Anton Mishkinis To cite this version: Anton Mishkinis. Extension of algorithmic geometry to fractal structures. General Mathematics [math.GM]. Université de Bourgogne, 2013. English. NNT : 2013DIJOS049. tel-00991384 HAL Id: tel-00991384 https://tel.archives-ouvertes.fr/tel-00991384 Submitted on 15 May 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Thèse de Doctorat école doctorale sciences pour l’ingénieur et microtechniques UNIVERSITÉ DE BOURGOGNE Extension des méthodes de géométrie algorithmique aux structures fractales ■ ANTON MISHKINIS Thèse de Doctorat école doctorale sciences pour l’ingénieur et microtechniques UNIVERSITÉ DE BOURGOGNE THÈSE présentée par ANTON MISHKINIS pour obtenir le Grade de Docteur de l’Université de Bourgogne Spécialité : Informatique Extension des méthodes de géométrie algorithmique aux structures fractales Soutenue publiquement le 27 novembre 2013 devant le Jury composé de : MICHAEL BARNSLEY Rapporteur Professeur de l’Université nationale australienne MARC DANIEL Examinateur Professeur de l’école Polytech Marseille CHRISTIAN GENTIL Directeur de thèse HDR, Maître de conférences de l’Université de Bourgogne STEFANIE HAHMANN Examinateur Professeur de l’Université de Grenoble INP SANDRINE LANQUETIN Coencadrant Maître de conférences de l’Université de Bourgogne RONALD GOLDMAN Rapporteur Professeur de l’Université Rice ANDRÉ LIEUTIER Rapporteur “Technology scientific director” chez Dassault Systèmes Contents 1 Introduction 1 1.1 Context .
    [Show full text]
  • Sava Grozdev and Deko Dekov, the Lester Circle Is Orthogonal to The
    Journal of Computer-Generated Mathematics Problem 6 The Lester circle is orthogonal to the Orthocentroidal Circle of the Triangle of the Orthocenters of the Triangulation Triangles of the Tarry Point. Sava Grozdev and Deko Dekov Submitted on May 1, 2014 Publication Date: July 10, 2014 At the present time, there are seven notable circles known to be orthogonal to the Lester circle. See [1]. The below problem introduces a new notable circle which is orthogonal to the Lester circle. Prove the following problem, produced by the computer program “Discoverer”: Problem 6. Given ABC . The Lester circle of ABC is the circle passing through the circumcenter, nine-point center and the outer Fermat point. The Tarry point P is the intersection point of the circumcircle and the line passing through the centroid and the midpoint of the circumcenter and the Lemoine (Symmedian) point. Let D, E and F are the orthocenters of triangles PBC , PCA and PAB , respectively, G is the centroid of DEF and H is the orthocenter of DEF . Prove that the circle having as diameter the segment GH is orthogonal to the Lester circle. Short form of the problem: Problem 6. Prove that the Lester circle is orthogonal to the Orthocentroidal Circle of the Triangle of the Orthocenters of the Triangulation Triangles of the Tarry Point. The reader may find the definitions in [2-5]. Please submit the solution of the problem for publication in this journal to the editor of this journal: [email protected] See the figure: Journal of Computer-Generated Mathematics 2014 Problem no 4 Page 1 of 3 In the figure: c – Lester circle, P – Tarry Point, D – Orthocenter of Triangle PBC, E – Orthocenter of Triangle PCA, F – Orthocenter of Triangle PAB, c1 – Orthocentroidal Circle of Triangle DEF, Circle c1 is orthogonal to the Lester circle.
    [Show full text]
  • Geometry of the Triangle
    Geometry of the Triangle Paul Yiu 2016 Department of Mathematics Florida Atlantic University A b c B a C August 18, 2016 Contents 1 Some basic notions and fundamental theorems 101 1.1 Menelaus and Ceva theorems ........................101 1.2 Harmonic conjugates . ........................103 1.3 Directed angles ...............................103 1.4 The power of a point with respect to a circle ................106 1.4.1 Inversion formulas . ........................107 1.5 The 6 concyclic points theorem . ....................108 2 Barycentric coordinates 113 2.1 Barycentric coordinates on a line . ....................113 2.1.1 Absolute barycentric coordinates with reference to a segment . 113 2.1.2 The circle of Apollonius . ....................114 2.1.3 The centers of similitude of two circles . ............115 2.2 Absolute barycentric coordinates . ....................120 2.2.1 Homotheties . ........................122 2.2.2 Superior and inferior . ........................122 2.3 Homogeneous barycentric coordinates . ................122 2.3.1 Euler line and the nine-point circle . ................124 2.4 Barycentric coordinates as areal coordinates ................126 2.4.1 The circumcenter O ..........................126 2.4.2 The incenter and excenters . ....................127 2.5 The area formula ...............................128 2.5.1 Conway’s notation . ........................129 2.5.2 Conway’s formula . ........................130 2.6 Triangles bounded by lines parallel to the sidelines . ............131 2.6.1 The symmedian point . ........................132 2.6.2 The first Lemoine circle . ....................133 3 Straight lines 135 3.1 The two-point form . ........................135 3.1.1 Cevian and anticevian triangles of a point . ............136 3.2 Infinite points and parallel lines . ....................138 3.2.1 The infinite point of a line .
    [Show full text]
  • Classifying Similar Triangles Inscribed in a Given Triangle Arthur Holshouser 3600 Bullard St
    Classifying Similar Triangles Inscribed in a Given Triangle Arthur Holshouser 3600 Bullard St. Charlotte, NC, USA Harold Reiter Department of Mathematics, University of North Carolina Charlotte, Charlotte, NC 28223, USA [email protected] 1 Abstract Suppose 4ABC and 4A0B0C0 are given triangles whose vertices A; B; C and A0;B0;C0 are given in counterclockwise order. We show how to find and classify all triangles 4ABC inscribed in 4ABC with A; B; C lying on the infinite lines BC; CA; AB respectively and with angle A = A0; B = B0; C = C0 so that 4ABC is directly (or inversely) similar to 4A0B0C0. This seemingly complex problem has a remarkably simple and revealing solution. 2 Introduction Suppose 4ABC and 4A0B0C0 are similar triangles with angle A = A0;B = B0;C = C0. If the rotation determined by the points A; B; C taken in order is counterclockwise and the rotation A0;B0;C0 is counterclockwise, or vice versa, the triangles are said to be directly similar. If one rotation is clockwise and the other rotation is counterclockwise, the triangles are said to be inversely similar. See [1], p.37. If one vertex A of a variable triangle 4ABC is fixed, a second vertex B describes a given straight line l and the triangle remains directly (or inversely) similar to a given triangle, then the third vertex C describes a straight line l: See [1], p.49. Figure 1 makes this easy to understand. 1 •.. .. .. l .. .. .. .. A .. .. .....................................................................................................................................................................................................................................................
    [Show full text]
  • MYSTERIES of the EQUILATERAL TRIANGLE, First Published 2010
    MYSTERIES OF THE EQUILATERAL TRIANGLE Brian J. McCartin Applied Mathematics Kettering University HIKARI LT D HIKARI LTD Hikari Ltd is a publisher of international scientific journals and books. www.m-hikari.com Brian J. McCartin, MYSTERIES OF THE EQUILATERAL TRIANGLE, First published 2010. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission of the publisher Hikari Ltd. ISBN 978-954-91999-5-6 Copyright c 2010 by Brian J. McCartin Typeset using LATEX. Mathematics Subject Classification: 00A08, 00A09, 00A69, 01A05, 01A70, 51M04, 97U40 Keywords: equilateral triangle, history of mathematics, mathematical bi- ography, recreational mathematics, mathematics competitions, applied math- ematics Published by Hikari Ltd Dedicated to our beloved Beta Katzenteufel for completing our equilateral triangle. Euclid and the Equilateral Triangle (Elements: Book I, Proposition 1) Preface v PREFACE Welcome to Mysteries of the Equilateral Triangle (MOTET), my collection of equilateral triangular arcana. While at first sight this might seem an id- iosyncratic choice of subject matter for such a detailed and elaborate study, a moment’s reflection reveals the worthiness of its selection. Human beings, “being as they be”, tend to take for granted some of their greatest discoveries (witness the wheel, fire, language, music,...). In Mathe- matics, the once flourishing topic of Triangle Geometry has turned fallow and fallen out of vogue (although Phil Davis offers us hope that it may be resusci- tated by The Computer [70]). A regrettable casualty of this general decline in prominence has been the Equilateral Triangle. Yet, the facts remain that Mathematics resides at the very core of human civilization, Geometry lies at the structural heart of Mathematics and the Equilateral Triangle provides one of the marble pillars of Geometry.
    [Show full text]