Conceptual Design of a Breed & Burn Molten Salt Reactor

Total Page:16

File Type:pdf, Size:1020Kb

Conceptual Design of a Breed & Burn Molten Salt Reactor Conceptual design of a breed & burn molten salt reactor Alisha Ana Kasam Supervisor: Dr Eugene Shwageraus Department of Engineering University of Cambridge This dissertation is submitted for the degree of Doctor of Philosophy Churchill College November 2018 Declaration This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except as specified in the text. It is not substantially the sameas any that I have submitted, or, is being concurrently submitted for a degree or diploma or other qualification at the University of Cambridge or any other University or similar institution. I further state that no substantial part of my dissertation has already been submitted, or, is being concurrently submitted for any such degree, diploma or other qualification at the University of Cambridge or any other University or similar institution. This dissertation contains fewer than 65,000 words including appendices, bibliography, footnotes, tables and equations and has fewer than 150 figures. Alisha Ana Kasam November 2018 Acknowledgements I am extremely grateful to my supervisor, Dr Eugene Shwageraus, who has been an incredible source of knowledge, enthusiasm, and patient guidance. Many thanks also to Professor Jeong Ik Lee of KAIST, who became like a co-supervisor to me during his time in Cambridge. He has been very generous with his time and expertise, and many sections of this thesis resulted from long and fruitful conversations with him. Mr Tony Roulstone, Professor Epominondas Mastorakos, and Professor Stewart Cant have provided invaluable advice, teaching, and support during my graduate studies at Cambridge. I gratefully acknowledge Dr Ian Scott of Moltex Energy for his support of my research topic and advice on molten salt reactor chemistry. I am also thankful to Dr Andrea Giusti and Xinyu Zhao for their help with OpenFOAM. I thank Professor Dan Kotlyar, now of Georgia Tech, and Dr Ben Lindley of Wood Group for their friendship and advice on many topics. Each of my colleagues in BS3-05 has been a source of help or camaraderie during my PhD, and the kind and wonderful Joanne Boyle is the glue holding all of us together. Looking back to my undergraduate years at Georgia Tech, I cannot adequately express my thanks to Professor Chris Paredis and Dr Karen Adams for teaching me the confidence and skills that carried me all the way to Cambridge and eventually to the end of a PhD. Thank you to my family for encouraging, challenging, and supporting me throughout my life and education. Special thanks also to my in-laws for being on my team from day one and welcoming me into their lovely family. My amazing husband and best friend, Kent, deserves an award for cheerfully supporting me throughout the many highs and lows of my PhD. Above all, I thank him for always seeing the best in me. I gratefully acknowledge financial support from the Winston Churchill Foundation ofthe United States, Cambridge International Trust, and Churchill Pochobradsky Scholarship. Abstract A breed-and-burn molten salt reactor (BBMSR) concept is proposed to address the Generation IV fuel cycle sustainability objective in a once-through cycle with low enrichment and no reprocessing. The BBMSR uses separate fuel and coolant molten salts, with the fuel contained in assemblies of individual tubes that can be shuffled and reclad periodically to enable high burnup. In this dual-salt configuration, the BBMSR may overcome several limitations of previous breed-and-burn (B&B) designs to achieve high uranium utilisation with a simple, passively safe design. A central challenge in design of the BBMSR fuel is balancing the neutronic requirement of large fuel volume fraction for B&B mode with the thermal–hydraulic requirements for safe and economically competitive reactor operation. Natural convection of liquid fuel within the tubes aids heat transfer to the coolant, and a systematic approach is developed to efficiently model this complex effect. Computational fluid dynamics modelling is performed to characterise the unique physics of the system and produce a new heat transfer correlation, which is used alongside established correlations in a numerical model. A design framework is built around this numerical model to iteratively search for the limiting power density of a given fuel and channel geometry, applying several defined temperature and operational constraints. It is found that the trade-offs between power density, core pressure drop, and pumping power are lessened by directing the flow of coolant downwards through the channel. Fuel configurations that satisfy both neutronic and thermal–hydraulic objectives are identified for natural, 5% enriched, and 20% enriched uranium feed fuel. B&B operationis achievable in the natural and 5% enriched versions, with power densities of 73 W/cm3 and 86 3 W/cm , and theoretical uranium utilisations of 300 MWd=kgUNAT and 25.5 MWd=kgUNAT, respectively. Using 20% enriched feed fuel relaxes neutronic constraints so a wider range of fuel configurations can be considered, but there is a strong inverse correlation between power density and uranium utilisation. The fuel design study demonstrates the flexibility of the BBMSR concept to operate along a spectrum of modes ranging from high fuel utilisation at moderate power density using natural uranium feed fuel, to high power density and moderate utilisation using 20% uranium enrichment. Table of contents List of figures xiii List of tables xv Nomenclature xvii 1 Introduction1 1.1 Fast Reactors.................................2 1.2 Breed-and-burn . .4 1.3 Molten Salt Reactors.............................7 1.3.1 Thorium . .9 1.3.2 Early MSR development . .9 1.3.3 Molten Salt Fast Reactor . 10 1.3.4 Fluoride salt-cooled high-temperature reactor . 11 1.3.5 Flexible conversion ratio salt-cooled reactor . 12 1.3.6 Moltex Stable Salt Reactor . 13 1.4 Thesis Objectives . 15 1.5 Thesis Organisation . 16 2 Concept Description and Feasibility 19 2.1 Conceptual Description of the BBMSR . 19 2.2 Neutronic Feasibility Assessment . 20 2.2.1 Serpent calculation . 21 2.2.2 Initial configuration . 21 2.2.3 Comparison with B&B SFR . 24 2.2.4 Neutron absorption analysis . 24 2.2.5 Spectrum hardening . 27 2.2.6 Thorium . 29 x Table of contents 2.2.7 Low-enriched uranium . 29 2.3 Materials Feasibility Discussion . 32 2.3.1 Ternary chloride coolant salt . 32 2.3.2 Uranium chloride fuel salt . 33 2.3.3 Candidate cladding materials . 37 3 Fuel Convection Analysis 39 3.1 Analytical Convection Model . 39 3.2 Concentric Fuel Concept . 44 3.2.1 Comparison of convection heat transfer correlations . 45 3.2.2 Developing a new heat transfer correlation . 47 3.3 CFD Study . 48 3.3.1 Boundary conditions . 48 3.3.2 Physical properties . 48 3.3.3 Mesh sensitivity & model verification . 50 3.3.4 CFD results . 50 3.4 Conclusions . 55 4 Thermal–Hydraulic Fuel Modelling 57 4.1 Finite-Difference Model for Concentric Fuel . 57 4.1.1 Energy balance . 57 4.1.2 Momentum balance . 60 4.1.3 Iterative numerical schemes . 61 4.1.4 FDM results and parametric study . 61 4.1.5 Concentric fuel flow area parametric study . 63 4.2 Thermal–Hydraulic Design Search Program . 65 4.2.1 Inputs and constraints . 65 4.2.2 Algorithm description . 65 4.3 Fuel Design Trade-Off Analysis . 66 4.3.1 Key performance parameters . 67 4.3.2 Flexible constraints . 69 4.3.3 Coolant direction study . 71 4.4 Discussion and Conclusions . 72 5 Neutronic & Thermal–Hydraulic Fuel Design 75 5.1 Methodology . 75 Table of contents xi 5.1.1 3D pin cell model . 75 5.1.2 Neutron balance analysis . 76 5.1.3 Neutron reflectors . 77 5.1.4 Thermal–hydraulic analysis . 78 5.1.5 Code comparison: deterministic versus Monte Carlo . 79 5.2 Design with Natural Uranium . 84 5.2.1 Effect of cladding material . 84 5.2.2 Effect of fuel diameter . 85 5.2.3 Effect of fuel length . 86 5.2.4 Effect of reflector material . 86 5.2.5 Effect of coolant plenum length . 88 5.3 Design with 5% Enriched Uranium . 88 5.4 Design with 20% Enriched Uranium . 89 5.5 Uranium Utilisation Analysis . 92 5.6 Summary of BBMSR Fuel Cycle Options.................. 95 5.7 Conclusions . 96 6 Summary and Conclusions 99 6.1 Concept Description . 100 6.1.1 Comparison of dual-salt and pool-type MSRs............ 100 6.1.2 Neutronic feasibility . 101 6.2 Fuel Convection Analysis . 101 6.3 Thermal–Hydraulic Fuel Modelling . 102 6.4 Neutronic & Thermal–Hydraulic Fuel Design . 103 6.4.1 Natural uranium........................... 103 6.4.2 5% enriched uranium......................... 103 6.4.3 20% enriched uranium........................ 104 6.5 Recommendations for Future Work . 104 6.5.1 Improved modelling methods . 104 6.5.2 Full-core modelling . 105 6.5.3 Alternative design options . 105 6.5.4 Materials considerations . 106 References 107 Appendix A OpenFOAM input 113 xii Table of contents Appendix B Coolant channel equations 119 List of figures 1.1 Reproduction factor h for fissile isotopes . .3 1.2 Molten salt . .8 1.3 MSFR design . 11 1.4 TRISO fuel pebble . 12 1.5 Moltex SSR with naturally convecting fuel . 14 2.1 Modelled unit cell . 21 2.2 Burnup versus k¥, SSR burner and initial BBMSR . 22 2.3 Burnup versus k¥, varying fuel tube diameter . 23 2.4 Burnup versus k¥, varying UCl3 mole% . 23 2.5 Comparison of BBSFR and BBMSR . 25 2.6 Comparison of BBMSR with natural and low-capture materials . 28 2.7 Comparison of fluoride-, chloride-, and sodium-cooled B&B fuels . 29 2.8 Burnup versus k¥ for UCl3- and ThCl4-fuelled BBMSR .
Recommended publications
  • Molten Salt Reactor: Sustainable and Safe Reactor for the Future?
    WIR SCHAFFEN WISSEN –HEUTE FÜR MORGEN Jiří Křepel :: MSR activity coordinator :: Paul Scherrer Institut Molten Salt Reactor: sustainable and safe reactor for the future? NES colloquium 14.09.2016 [email protected] INTRODUCTION Page 2 History of Molten Salt Reactor (MSR) Illustration, not MSR started at Oak Ridge National Laboratory 1950s • Aircraft Reactor Experiment (ARE)* 1960s • Molten Salt Reactor Experiment (MSRE)* 1970s • Molten Salt Breeder Reactor (MSBR)* 1970s • EIR (PSI) study (report nr. 411, 1975) fast spectrum, chlorides 1980s • Denatured Molten Salt Reactor (DMSR)* * ORNL <= <= <= Page 3 History of MSR: revival 100 90 80 1990s • Accelerator-driven transmutation 70 keff=0.95 [mA] of Nuclear Waste - ATW (LANL) 60 keff=0.97 curent 2000s • Generation IV, Amster, Sphinx, … 50 keff=0.98 40 2010s • MSFR, Mosart, … fast spectrum, fluorides Accelerator 30 keff=0.99 FHR (fluorides cooled HTR) 20 keff=0.995 2015+ • MCFR, Breed & Burn (TerraPower, PSI, …) 10 keff=0.997 WR at PSI 2.3mA 0 keff=1 fast spectrum, chlorides 0 0.5 1 1.5 2 2.5 3 3.5 ADS reactor power [GWth] <= <= <= Page 4 Classification of MSR MSR is a class of reactors with two groups Type of: Molten salt Application Molten salt fueled reactors cooled reactors Reactor Thermal reactors Fast reactors Fission reactors Fusion reactors Salt Fluorides Fluorides or Chlorides Fluorides Fluorides Core Graphite moderated “Empty” cylinder Graphite based fuel Blanket of the core (ZrH, H2O, D2O, Be, … (TRISO particles) (coolant and/or needs barrier) tritium production) Page 5 Anions in the salts Fluorides Chlorides 19 35 37 100% F 76% Cl + 24% Cl ] 1000 ‐ 1 [ 35Cl 37Cl 19F 0.1 100 interaction 0.01 [b] per XS 10 0.001 Total 0.0001 probabilty 1 0.00001 Capture 35Cl 37Cl 19F 0.1 0.000001 0.001 0.1 10 1000 100000 10000000 0.001 0.1 10 1000 100000 10000000 Incident neutron energy [eV] Incident neutron energy [eV] Number of collision to slow-down fast neutron (2MeV->1eV) 19F 35Cl 37Cl 142 (+big inelastic XS) 258 273 For instance: Iodine as the fission product is the next possible anion.
    [Show full text]
  • The Potential Impact of Molten Salt Reactors on the UK Electricity Grid
    The Potential Impact of Molten Salt Reactors on the UK Electricity Grid Charles Denbowa,b, Niccolo` Le Bruna, Niall Mac Dowella, Nilay Shaha, Christos N. Markidesa aDepartment of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ bDepartment of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ Abstract The UK electricity grid is expected to supply a growing electricity demand and also to cope with electricity generation variability as the country pursues a low-carbon future. Molten Salt Reactors (MSRs) could offer a solution to meet this demand thanks to their estimated low capital costs, low operational risk, and promise of reliably dispatchable low-carbon electricity. In the published literature, there is little emphasis placed on estimating or modelling the future impact of MSRs on electricity grids. Previous modelling efforts were limited to quantifying the value of renewable energy sources, energy storage and carbon capture technologies. To date, no study has assessed or modelled MSRs as a competing power generation source for meeting decarbonization targets. Given this gap, the main objective of this paper is to explore the cost benefits for policy makers, consumers and investors when MSRs are deployed between 2020 and 2050 for electricity generation in the UK. This paper presents results from electricity systems optimization (ESO) modelling of the costs associated with the deployment of 1350 MWe MSRs, from 2025 onwards to 2050, and compares this against a UK grid with no MSR deployment. Results illustrate a minimum economic benefit of £1.25 billion for every reactor installed over this time period. Additionally, an investment benefit occurs for a fleet of these reactors which have a combined net present value (NPV) of £22 billion in 2050 with a payback period of 23 years if electricity is sold competitively to consumers at a price of £60/MWh.
    [Show full text]
  • Economics and Finance of Molten Salt Reactors
    Progress in Nuclear Energy 129 (2020) 103503 Contents lists available at ScienceDirect Progress in Nuclear Energy journal homepage: http://www.elsevier.com/locate/pnucene Economics and finance of Molten Salt Reactors Benito Mignacca, Giorgio Locatelli * University of Leeds, School of Civil Engineering, Leeds, United Kingdom ARTICLE INFO ABSTRACT Keywords: There is a long-standing and growing interest in Molten Salt Reactors (MSRs) mainly because of their potential Molten salt reactor advantages in terms of safety, sustainable fuel cycle, and the high melting and boiling points of salt which allow Economics operations at high temperatures and atmospheric pressure with potential merits in terms of cost. A key objective Finance of MSRs is to have a life-cycle cost advantage over other energy sources. Leveraging a systematic literature LCOE review, this paper firstly provides an overview of “what we know” about MSR economics and finance following Modularisation “ ” GEN IV reactor two main streams: scientific and industrial literature. Secondly, this paper highlights what we should know about the economics and financeof MSRs, suggesting a research agenda. The literature is very scarce and focuses on MSR overnight capital cost estimations and the comparison between MSR cost of electricity and other energy sources. Cost estimations need to be more transparent and independently assessed. Furthermore, there is no peer- reviewed literature on MSR financing, only claims from vendors. 1. Introduction - SCWR (Supercritical-Water-cooled Reactor) is a thermal/fast reactor technology cooled by supercritical water. It is considered as an The evolution of Nuclear Power Plants (NPPs) is usually divided into evolution of the actual boiling water reactor because of its compa­ four generations (GIF, 2014): rable plant layout and size, same coolant and identical main appli­ cation, i.e.
    [Show full text]
  • Stable Salt Reactors
    Stable Salt Reactors A new platform technology in nuclear fission October 15th, 2020 Ian Scott, M.A., Ph.D., Chairman and Chief Scientist Moltex Energy Ltd 13 The Courtyard Timothy’s Bridge Road Stratford-upon-Avon Warwickshire United Kingdom CV37 9NP [email protected] www.moltexenergy.com Moltex mission • To reduce the cost of nuclear fission energy so that it economically beats burning coal and gas and the world is powered with renewables and nuclear 2 Copyright @ 2020 Moltex Energy Ltd www.moltexenergy.com The real challenge for nuclear • Nuclear energy with low enough capital and fixed operating costs to be profitable at 30-50% capacity factor in unsubsidised competition with fossil fuels • Radical innovation needed to slash costs of nuclear • SSR achieves that cost objective, comfortably, through a single minded focus on intrinsic safety and simplicity 3 Copyright @ 2020 Moltex Energy Ltd www.moltexenergy.com Two ways to use molten salt fuel Conventional MSRs Stable Salt Reactor platform Heat exchanger Reaction chamber Emergency dump tank • Intensely radioactive fuel salt pumped at • Fuel salt placed in fuel assemblies pressure round an engineered system which • New concept, patent now granted worldwide can never be approached by a human being 4 Copyright @ 2020 Moltex Energy Ltd www.moltexenergy.com Why is this a new idea? • “Static” molten salts in fuel pins Aircraft reactor experiment which led rejected by ORNL because to molten salt reactor experiment convection of fluids would be unreliable in an aircraft – but convection
    [Show full text]
  • Molten Salt Reactors
    1 Molten Salt Reactors Thomas J. Dolan, Member, IEEE Fig. 1. MSRE core. Liquid fuel flowed upwards through Abstract— Nuclear power is advancing slowly because of public channels in the graphite. [ORNL] concerns about nuclear accidents, radioactive waste, fuel supply, cost, and nuclear proliferation. The development of molten salt reactors could alleviate most of these concerns and prevent water-cooled The MSRE demonstrated that the issues of control, reactor accidents like those at Three Mile Island, Chernobyl, and pumping, heat removal, radioactivity containment, and Fukushima. The purpose of this article is to provide information about corrosion could be managed. Oak Ridge also designed a the potential advantages and problems of molten salt reactors. The coolants could be either fluorides or chlorides, operated above their Molten Salt Breeder Reactor (MSBR) that would produce melting temperatures, to avoid solidification, and well below their more fuel than it burned, using Flibe salt with dissolved ThF4 233 boiling temperatures, to prevent evaporation losses. “Fast” reactors use and UF4. It would have had a breeding ratio (BR) of 1.06 energetic fission neutrons, while “thermal” reactors use graphite to and a fuel doubling time of 22 years but funding was slow the neutrons down to thermal energies. We describe four reactor i types: solid fuel thermal, liquid fuel thermal, liquid fuel fast, and terminated in the 1970s. “stable salt” fast reactors (liquid fuel in tubes). We discuss load following, reactor design projects, and development problems. Liquid II. LIQUID AND SOLID FUEL MSRS fuel reactors will require a chemical processing plant to adjust fissile fuel inventory, fission products, actinides, and corrosivity in a hot, Neutrons emitted by fission start at high energies, called highly-radioactive environment.
    [Show full text]
  • Preliminary Quantitative Feasibility Analysis of Proposed Thorium-Based Nuclear Reactor
    IOP Conference Series: Materials Science and Engineering PAPER • OPEN ACCESS Preliminary quantitative feasibility analysis of proposed Thorium-based nuclear reactor To cite this article: Anas Muhamad Pauzi et al 2019 IOP Conf. Ser.: Mater. Sci. Eng. 555 012006 View the article online for updates and enhancements. This content was downloaded from IP address 43.130.79.121 on 08/10/2021 at 08:30 International Nuclear Science, Technology and Engineering Conference 2018 IOP Publishing IOP Conf. Series: Materials Science and Engineering 555 (2019) 012006 doi:10.1088/1757-899X/555/1/012006 Preliminary quantitative feasibility analysis of proposed Thorium-based nuclear reactor Anas Muhamad Pauzi1,a), Azril Wasim Abdul Wahid1, Juniza Md Saad1 1College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia [email protected] Abstract. In the beginning of the 21st century, several research institutions and also private companies had proposed various design of thorium-based nuclear reactor, ranging from solid fuel to molten fuel, fast and thermal neutron spectrum and also various path of waste management. This paper studies 10 of the proposed reactor designs by 10 different organizations, three key aspects analysed quantitatively namely price per kilowatt, safety features and spent fuel managements. Corresponding factors contributing to the key aspects mentioned above were gathered, weighted based on evidence available and analysed using decision matrix. Based on the information collected, preliminary ranking were constructed based on trends between various factors. 1. Introduction 1.1. Thorium reactor developer of the 21st century Thorium fuel reactor was first developed by the Oak Ridge National Laboratory (ORNL) in 1950s, under the Aircraft Reactor Experimental (ARE) by Alvin Weinberg, then director of ORNL.
    [Show full text]
  • “Advanced” Isn't Always Better
    SERIES TITLE OPTIONAL “Advanced” Isn’t Always Better Assessing the Safety, Security, and Environmental Impacts of Non-Light-Water Nuclear Reactors “Advanced” Isn’t Always Better Assessing the Safety, Security, and Environmental Impacts of Non-Light-Water Nuclear Reactors Edwin Lyman March 2021 © 2021 Union of Concerned Scientists All Rights Reserved Edwin Lyman is the director of nuclear power safety in the UCS Climate and Energy Program. The Union of Concerned Scientists puts rigorous, independent science to work to solve our planet’s most pressing problems. Joining with people across the country, we combine technical analysis and effective advocacy to create innovative, practical solutions for a healthy, safe, and sustainable future. This report is available online (in PDF format) at www.ucsusa.org/resources/ advanced-isnt-always-better and https:// doi.org/10.47923/2021.14000 Designed by: David Gerratt, Acton, MA www.NonprofitDesign.com Cover photo: Argonne National Laboratory/Creative Commons (Flickr) Printed on recycled paper. ii union of concerned scientists [ contents ] vi Figures, Tables, and Boxes vii Acknowledgments executive summary 2 Key Questions for Assessing NLWR Technologies 2 Non-Light Water Reactor Technologies 4 Evaluation Criteria 5 Assessments of NLWR Types 8 Safely Commercializing NLWRs: Timelines and Costs 9 The Future of the LWR 9 Conclusions of the Assessment 11 Recommendations 12 Endnotes chapter 1 13 Nuclear Power: Present and Future 13 Slower Growth, Cost and Safety Concerns 14 Can Non-Light-Water Reactors
    [Show full text]
  • Prospects for Small Modular Reactors in the UK & Worldwide
    Inquiry into the prerequisites for nuclear energy in Australia Submission 277 - Attachment 2 Prospects for Small Modular Reactors in the UK & Worldwide STEVE THOMAS, PAUL DORFMAN, SEAN MORRIS & M.V. RAMANA AUGUST 2019 Inquiry into the prerequisites for nuclear energy in Australia Submission 277 - Attachment 2 Contents Executive Summary ................................................................................................................. 3 1. Introduction ...................................................................................................................... 5 2. The Economic Failure of Large Reactors ...................................................................... 5 3. Small Modular Reactors.................................................................................................. 7 4. Main SMR Designs .......................................................................................................... 9 4.1. A Short History of Small Reactors .......................................................................... 9 4.2. Light Water Reactors (LWRs) ............................................................................... 10 4.2.1. NuScale SMR .................................................................................................... 11 4.2.2. Holtec SMR-160 ............................................................................................... 12 4.2.3. CNNC ACP100 ................................................................................................. 12 4.2.4.
    [Show full text]
  • Molten Salt Reactors History
    Molten Salt Reactors By Thomas J. Dolan The accidents at Three Mile Island (TMI), Chernobyl, and Fukushima Daiichi were caused by evaporation of coolant, steam explosion, and hydrogen generation. They would not have occurred in a molten salt reactor (MSR), which can operate at low pressure without generating steam or hydrogen. MSRs with solid fuels, such as ceramic pebbles developed for HTGRs, could operate safely at high temperature and low pressure. Liquid fueled MSRs could process the fuel online to adjust reactivity and remove some fission products, reducing core radioactivity, avoiding solid fuel clad damage, and extending core life. Either the U-239Pu fuel cycle or the Th-233U fuel cycle could breed additional fissile fuel. MSRs could burn actinides from used light water reactor (LWR) fuel, reducing the need for geological high-level waste disposal. We will discuss MSR history, solid and liquid fuel reactors, tritium, salt processing systems, nonproliferation, reactor design projects, international cooperation, and development issues. 1 History Alvin M. Weinberg, Director of Oak Ridge National Laboratory (ORNL), led the development of liquid fuel MSRs. ORNL built the Aircraft Reactor Experiment (ARE) that used liquid fuel of NaF-ZrF4-UF4 (53-41-6 in mol%), flowing through fuel tubes, with BeO moderator, Inconel structure, and liquid Na coolant. It operated successfully at 860 °C, 2.5 MWth, for 100 hours in 1954. ORNL operated the 8 MWth Molten Salt Reactor Experiment (MSRE) burning liquid 7LiF- BeF2-ZrF4- (65-29-5-1 mol%) fuel at 650 °C from 1965-1969. The molten salt flowed vertically upwards through graphite moderator tubes, Figure 1.
    [Show full text]
  • Preliminary Program
    PRELIMINARY PROGRAM 55th Annual Meeting of the Health Physics Society 22nd Biennial Campus Radiation Safety Officers Meeting (American Conference of Radiological Safety) 27 June - 1 July 2010 Salt Palace Convention Center Salt Lake City, Utah Key Dates Current Events/Works-In-Progress Deadline . .28 May Social/Technical Preregistration Deadline . .31 May HPS Annual Meeting Preregistration Deadline . 31 May PEP Preregistration Deadline . .31 May Hotel Registration Deadline . 5 June AAHP Courses . 26 June Professional Enrichment Program . 27 June - 1 July HPS 55th Annual Meeting . 27 June - 1 July American Board of Health Physics Written Exam . 28 June Registration Hours and Location Registration at the Salt Palace Convention Center - Foyer of Exhibit Hall A Saturday, 26 June . 2:00 - 5:00 pm Sunday, 27 June . 10:00 am - 5:00 pm Monday, 28 June . 8:00 am - 4:00 pm Tuesday, 29 June . 8:00 am - 4:00 pm Wednesday, 30 June . 8:00 am - 4:00 pm Thursday, 1 July . 8:00 - 11:00 am Saturday Saturday AAHP Courses will take place in the Hilton Hotel Sunday - Thursday All PEPs, CELs and Sessions will be at the Salt Palace Convention Center HPS Secretariat 1313 Dolley Madison Blvd. Suite 402 McLean, VA22101 (703) 790-1745; FAX: (703) 790-2672 Email: [email protected]; Website: www.hps.org 1 Table of Contents Important Events . 6 General Information . 7 Hotel Reservation Information . 7 Tours and Events Listing . 9 Scientific Program . 12 Placement Information . 32 AAHP Courses . 33 Professional Enrichment Program . 34 Continuing Education Lecture Abstracts . 46 Annual Meeting Registration Form . 48-49 CURRENT EVENTS/WORKS-IN-PROGRESS The submission form for the Current Events/Works-in-Progress poster session is on the Health Physics Society Website at www .hps .org under the Salt Lake City Annual Meeting section .
    [Show full text]
  • NEWSLETTER Issue No. 10 October 2020
    NEWSLETTER October 2020 Issue no. 10 https://www.iop.org/physics-community/special-interest-groups/nuclear-industry-group Nuclear Industry Group Newsletter October 2020 Contents Notes from the Editor..................................................................................................... 3 New Committee Members ............................................................................................. 4 Committee Elections ...................................................................................................... 5 Nuclear Industry Group Prizes 2020 ............................................................................... 6 Learning from Canada’s Waste Management Organisation ............................................ 8 Event – The Safest Long-Term Solution: The Case for Geological Disposal .................... 14 2020 Webinar Series .................................................................................................... 18 Nuclear Industry Supplement ....................................................................................... 22 Continued Professional Development .......................................................................... 22 Upcoming Events .......................................................................................................... 23 Nuclear Industry Group on Social Media ...................................................................... 23 Letters to the Group ....................................................................................................
    [Show full text]
  • “Advanced” Isn't Always Better
    SERIES TITLE OPTIONAL “Advanced” Isn’t Always Better Assessing the Safety, Security, and Environmental Impacts of Non-Light-Water Nuclear Reactors “Advanced” Isn’t Always Better Assessing the Safety, Security, and Environmental Impacts of Non-Light-Water Nuclear Reactors Edwin Lyman March 2021 © 2021 Union of Concerned Scientists All Rights Reserved Edwin Lyman is the director of nuclear power safety in the UCS Climate and Energy Program. The Union of Concerned Scientists puts rigorous, independent science to work to solve our planet’s most pressing problems. Joining with people across the country, we combine technical analysis and effective advocacy to create innovative, practical solutions for a healthy, safe, and sustainable future. This report is available online (in PDF format) at www.ucsusa.org/resources/ advanced-isnt-always-better and https:// doi.org/10.47923/2021.14000 Designed by: David Gerratt, Acton, MA www.NonprofitDesign.com Cover photo: Argonne National Laboratory/Creative Commons (Flickr) Printed on recycled paper. ii union of concerned scientists [ contents ] vi Figures, Tables, and Boxes vii Acknowledgments executive summary 2 Key Questions for Assessing NLWR Technologies 2 Non-Light Water Reactor Technologies 4 Evaluation Criteria 5 Assessments of NLWR Types 8 Safely Commercializing NLWRs: Timelines and Costs 9 The Future of the LWR 9 Conclusions of the Assessment 11 Recommendations 12 Endnotes chapter 1 13 Nuclear Power: Present and Future 13 Slower Growth, Cost and Safety Concerns 14 Can Non-Light-Water Reactors
    [Show full text]