1 Stille Polycondensation: a Versatile Synthetic Approach to Functional Polymers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Proquest Dissertations
The synthesis of highly substituted indoles via isonitriles Item Type text; Dissertation-Reproduction (electronic) Authors Kennedy, Abigail Rose Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 26/09/2021 04:52:53 Link to Item http://hdl.handle.net/10150/290368 INFORMATION TO USERS This manuscript has l)een reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be firom any type of computer printer. The quality of this raproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author dkJ not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sectkms with small overiaps. Photographs included in the original manuscript have been reproduced xerographicaliy in this copy. Higher quality 6' x 9* black and white photographk: prints are available for any photographs or illustrations appearing in this copy for an additk)nai charge. -
Pd/C-Catalyzed Suzuki Cross- and Self- Couplings &
PD/C-CATALYZED SUZUKI CROSS- AND SELF- COUPLINGS & THE DEVELOPMENT OF A LAB-SCALE HYDROGENATION SYSTEM by JENG-SHIOU CHEN A Dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Chemical and Biochemical Engineering Written under the direction of Professor Johannes G. Khinast And approved by ________________________ ________________________ ________________________ ________________________ New Brunswick, New Jersey Jan. 2008 ABSTRACT OF THE DISSERTATION PD/C-CATALYZED SUZUKI CROSS- AND SELF- COUPLINGS & THE DEVELOPMENT OF A LAB-SCALE HYDROGENATION SYSTEM By JENG-SHIOU CHEN Dissertation Directors: Professor Johannes G. Khinast Suzuki couplings have become an efficient and clean strategy for the preparation of biologically active functionalized biphenyls, which are important building blocks for pharmaceutical and agricultural compounds. Among all catalysts of choice for Suzuki couplings, palladium on carbon (Pd/C) is most frequently used for industrial applications due to its high catalytic activity, low cost and easy removal from the reaction mixture. Using a model coupling reaction of biphenylacetic acid, we intended to provide a thorough understanding of Pd/C-catalyzed Suzuki couplings for a straightforward industrial implementation. A detailed investigation of the reaction parameters was carried out in Chapter 2. The experimental observations indicate that excess amount of the borate is helpful to accelerate the reaction and 2 moles eq. of a strong base is the best choice for the reaction. Furthermore, our results suggest that transmetalation is the rate-limiting step of the Pd/C-catalyzed Suzuki couplings and also show that [OH-] is a critical factor affecting the reaction rate. -
Advancing Conjugated Polymer Synthesis Through Catalyst Design
Advancing Conjugated Polymer Synthesis Through Catalyst Design by Kendra Delaine Souther A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Chemistry) in the University of Michigan 2018 Doctoral Committee: Professor Anne J. McNeil, Chair Professor Jinsang Kim Professor John P. Wolfe Associate Professor Paul M. Zimmerman Kendra D. Souther [email protected] ORCID iD: 0000-0002-2373-1434 DEDICATION To my mother and father, Idalene and Garrison, for instilling the power of hardwork in me from a very young age and being a constant fountain of encouragement; lifting me up when I forget how. To my sister, Deidre, for making my world a brighter place; always making me laugh and for always having a prayer ready to fill me up with love. I love you all. MBT. ii ACKNOWLEDGEMENTS I must first begin by thanking my advisor and mentor, Professor Anne J. McNeil. Her commitment to pursuing challenging problems with integrity and fervor gave me a role model throughout my grad school experience and was a constant motivator. She encouraged me to be the best version of myself, for myself, and helped shape me into an independent scientist and problem solver. Next, I must thank my labmates past and present who made coming to work every day easy: Dr. Se Ryeon Lee, Dr. Kelsey Carter, Dr. Edmund Palermo, Dr. Fei Cheng, Dr. Zachary Bryan, Dr. Danielle Zurcher, Dr. Gesine Veits, Dr. Mitchell Smith, Dr. Peter Goldberg, Dr. Ariana Hall, Dr. Chen Kong, Amanda Leone, Matthew Hannigan, Justin Harris, Emily Mueller, Han Kim, Takunda Chazovachii, Dr. -
Oxidative Addition & Reductive Elimination
3/1/2021 Oxidative Addition & Reductive Elimination Robert H. Crabtree: Pages 159 – 182 and 235 - 266 1 Oxidative Addition Change in Example Group configuration • Oxidative addition is a key step in many transition-metal catalyzed reactions 10 8 I III • Basic reaction: d d Cu Cu 11 X X Pd0 PdII 10 LnM + LnM Pt0 PtII 10 Y Y d8 d6 PdII PdIV 10 • The new M-X and M-Y bonds are formed using the electron pair of the X-Y PtII PtIV 10 bond and one metal-centered lone pair IrI IrIII 9 RhI RhIII 9 • The metal goes up in oxidation state (+2), X-Y formally gets reduced to X-, Y- d6 d4 ReI ReIII 7 • The ease of addition (or elimination) can be tuned by the electronic and 0 II steric properties of the ancillary ligands Mo Mo 6 • OA favored by strongly e-donating L d4 d2 MoII MoIV 6 • The most common applications involve: a) Late transition metals (platinum metals: Ru, Rh, Pd, Ir, Pt) - not d7 d6 2CoII 2CoIII 9 too sensitive to O2 and H2O; routinely used in organic synthesis b) C-Halogen, H-H or Si-H bonds d4 d3 2CrII 2CrIII 6 • Common for transition metals, rare for main-group metals but: Grignard reagents! 2 1 3/1/2021 Oxidative addition – concerted mechanism Concerted addition - mostly with non-polar X-Y bonds X X X LnM + LnM LnM Y Y Y A Cr(CO)5: • H2, silanes, alkanes, ... coordinatively Cr(PMe3)5: • Arene C-H bonds more reactive than alkane C-H bonds unsaturated, but metal- centered lone pairs not phosphines are better • H-H, C-H strong bond, but M-H and M-C bonds can be very available donors, weaker acceptors full oxidative -
Palladium-Catalysed Coupling Chemistry Palladium-Catalysed Coupling Chemistry
Palladium-Catalysed Coupling Chemistry Palladium-Catalysed Coupling Chemistry Palladium catalysis has gained widespread use in industrial and academic synthetic chemistry laboratories as a powerful methodology for the formation of C-C and C-Heteroatom bonds. Several coupling reactions have been developed with different substrates: 1. SUZUKI-MIYAURA 2. STILLE 3. NEGISHI 4. KUMADA 5. HIYAMA 6. SONOGASHIRA 7. HECK 8. BUCHWALD-HARTWIG 9. CYANATION 10. CARBONYLATION 2 Understanding the catalytic cycle Most palladium catalysed reactions are believed to follow a similar catalytic cycle. The catalytic species can be formed in situ using a palladium source, such as Pd2(dba)3 or Pd(OAc)2 and the necessary ligand, or introduced as a preformed catalyst such as t Pd(PPh3)4 or Pd(P Bu3)2. Careful choice of ligand can facilitate two steps of the catalytic cycle. The use of strong σ-donating ligands, such as trialkylphosphines, increases electron density around the metal, accelerating the oxidative addition of the catalyst to the substrate. This is most commonly believed to be the rate determining step. Choice of ligand also determines the mechanism by which oxidative addition occurs.1 The elimination step is accelerated by the use of bulky ligands, in particular phosphine ligands exhibiting a large cone angle (also known as Tolman angle).2 Ligand Cone Angle (deg) Cat. No. dppm 121 29361 dppe 125 14791 dppp 127 31005 dcpe 142 36385 PPh3 145 14042 P(c-hex)3 170 42161 t P( Bu)3 182 36089 P(C6F5)3 184 31316 P(2,4,6-Me3C6H2)3 212 32113 3 Phosphine ligands have recently been replaced in a number of palladium cataly sed reactions with N-heterocyclic carbenes (NHCs).3 These ligands offer similar electronic properties to phosphines, being strongly σ-donating and weakly π-acidic. -
Palladium-Catalyzed Cross-Couplings in Organic Synthesis
Palladium-Catalyzed Cross-Couplings in Organic Synthesis 2010 Nobel Prize in Chemistry Professor Sambasivarao Kotha Department of Chemistry IIT-Bombay 400 076 http/www.chem.iitb.ac.in/~srk 12/28/10 1 "palladium-catalyzed cross couplings in organic synthesis” Richard F. Heck Ei-ichi Negishi Akira Suzuki University of Delaware Purdue University Hokkaido University USA West Lafayette Sapporo, Japan IN, USA B 1931 B 1935 B 1930 12/28/10 2 Heck, Negishi and Suzuki coupling in synthesis of fine chemicals Heck reaction O Si Si DVS-bis-BCM (electronic resin monomer) N O N Negishi Cl coupling N Cl HN O HN Suzuki coupling Serotonin agonist Boscalid 12/28/10 (fungiside) 3 Facts on the Nobel Prize in Chemistry On 27 November 1895, Alfred Nobel signed his last will and testament, giving the largest share of his fortune to a series of prizes, the Nobel Prizes. As described in Nobel's will one part was dedicated to “ the person who shall have made the most important chemical discovery or improvement”. http://nobelprize.org/nobel_prizes/chemistry/ 4 Number of Nobel Prizes in Chemistry 102 Nobel Prizes in Chemistry have been awarded since 1901. It was not awarded on eight occasions: in 1916, 1917, 1919, 1924, 1933, 1940, 1941 and 1942. Why were the Chemistry Prizes not awarded in those years? In the statutes of the Nobel Foundation it says: "If none of the works under consideration is found to be of the importance indicated in the first paragraph, the prize money shall be reserved until the following year. If, even then, the prize cannot be awarded, the amount shall be added to the Foundation's restricted funds." During World War I and II, fewer Nobel Prizes were awarded. -
2D Porous Polymers with Sp2-Carbon Connections
2D Porous Polymers with sp2-Carbon Connections and Sole sp2-Carbon Skeletons Jialing Kang, Senhe Huang, Kaiyue Jiang, Chenbao Lu, Zhenying Chen, Jinhui Zhu, Chongqing Yang, Artur Ciesielski, Feng Qiu, Xiaodong Zhuang To cite this version: Jialing Kang, Senhe Huang, Kaiyue Jiang, Chenbao Lu, Zhenying Chen, et al.. 2D Porous Polymers with sp2-Carbon Connections and Sole sp2-Carbon Skeletons. Advanced Functional Materials, Wiley, 2020, 30 (27), pp.2000857. 10.1002/adfm.202000857. hal-03117175 HAL Id: hal-03117175 https://hal.archives-ouvertes.fr/hal-03117175 Submitted on 20 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Two-Dimensional Porous Polymers with sp2-Carbon Connections and Sole sp2-Carbon Skeletons Jialing Kang, Senhe Huang, Kaiyue Jiang, Chenbao Lu, Zhenying Chen, Jinhui Zhu, Chongqing Yang,* Artur Ciesielski, Feng Qiu,* and Xiaodong Zhuang* J. Kang, S. Huang, K. Jiang, C. Lu, Z. Chen, Dr. J. Zhu, Dr. C. Yang, Prof. X. Zhuang The Meso-Entropy Matter Lab, SChool of Chemistry and ChemiCal Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China E-mail: [email protected], [email protected] J. Kang, Prof. -
Desperately Seeking for the Catalytic Species in Suzuki-Miyaura Reaction Amine Bourouina
Desperately Seeking For The Catalytic Species In Suzuki-Miyaura Reaction Amine Bourouina To cite this version: Amine Bourouina. Desperately Seeking For The Catalytic Species In Suzuki-Miyaura Reaction. Chemical and Process Engineering. Université de Lyon, 2019. English. NNT : 2019LYSE1258. tel-02482607 HAL Id: tel-02482607 https://tel.archives-ouvertes.fr/tel-02482607 Submitted on 18 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N°d’ordre NNT : 2019LYSE1258 THESE de DOCTORAT DE L’UNIVERSITE DE LYON opérée au sein de l’Université Claude Bernard Lyon 1 Ecole Doctorale ED206 Ecole Doctorale de Chimie de Lyon Spécialité de doctorat : Discipline : Procédés Soutenue publiquement le 28/11/2019, par : Amine BOUROUINA Desperately Seeking For The Catalytic Species In Suzuki-Miyaura Reaction Devant le jury composé de : FERRIGNO Rosaria, Professeure des Universités, Université Lyon Présidente HII King Kuok (Mimi), Professeure, L'Imperial College de Londres Rapporteuse RIANT Olivier, Professeur ordinaire, Université Catholique de Louvain Rapporteur -
Recent Advances of Modern Protocol for C-C Bonds—The Suzuki Cross-Coupling
Advances in Chemical Engineering and Science, 2013, 3, 19-32 http://dx.doi.org/10.4236/aces.2013.33A1003 Published Online July 2013 (http://www.scirp.org/journal/aces) Recent Advances of Modern Protocol for C-C Bonds—The Suzuki Cross-Coupling Jadwiga Sołoducho*, Kamila Olech, Agnieszka Świst, Dorota Zając, Joanna Cabaj Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland Email: *[email protected] Received April 30, 2013; revised May 30, 2013; accepted June 30, 2013 Copyright © 2013 Jadwiga Sołoducho et al. This is an open access article distributed under the Creative Commons Attribution Li- cense, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Over the past 20 years, small molecule solid phase synthesis has become a powerful tool in the discovery of novel mol- ecular materials. In the development of organic chemistry, the carbon-carbon bond formation has always been one of the most useful and fundamental reaction. The current review summarizes recent developments in metal-catalyzed cou- pling reactions. The following method is discussed in detail—the cross-coupling of aryl halides with aryl boronic acids (the Suzuki coupling), and the others C-C bond formation reactions as the palladium-catalyzed reaction between an aryl and (or) alkyl halide and a vinyl functionality (the Heck reaction); and the palladium-catalyzed cross-coupling reaction of organostannyl reagents with a variety of organic electrophiles (the Stille reaction)—are mentioned. Keywords: C-C Bond Formation; Coupling Reactions; Palladium Catalysts; Suzuki Coupling; Heterocyclic Copolymers 1. Introduction [4] reported that cross-coupling reactions between al- kenylboranes and organic halides were efficiently cata- Recently, small-molecule solid-phase synthesis has beco- lyzed by a catalytic amount of tetrakis (triphenylphoshine) me a powerful tool in the discovery of new drugs or mo- palladium (Pd(PPh ) ) in the presence of a suitable base. -
Efficient Stille Cross-Coupling Reaction Catalyzed by the Pd(Oac
Efficient Stille Cross-Coupling Reaction found that Dabco was a highly efficient ligand for the - Catalyzed by the Pd(OAc)2/Dabco Catalytic palladium-catalyzed Suzuki Miyaura cross-coupling re- System action resulting in high TONs (up to 950 000 TONs for the reaction of PhI and p-chlorophenylboronic acid) (eq 7,8 Jin-Heng Li,* Yun Liang, De-Ping Wang, Wen-Jie Liu, 1). Thus, we expected to extend the use of this type of Ye-Xiang Xie, and Du-Lin Yin ligand to other palladium-catalyzed transformations. Here, we report a stable, inexpensive, and efficient Key Laboratory of Chemical Biology & Traditional Pd(OAc)2/Dabco catalytic system for the Stille reactions Chinese Medicine Research, College of Chemistry and of aryl halides with organotin compounds. Chemical Engineering, Hunan Normal University, Changsha 410081, China [email protected] Received October 31, 2004 To evaluate the efficiency of Pd(OAc)2/Dabco in the Stille cross-coupling reaction, coupling of 4-bromoanisole (1a) with phenyltributyltin (2a) was first tested, and the An efficient Pd(OAc)2/Dabco-catalyzed Stille cross-coupling reaction procedure has been developed. In the presence of (2) For recent representative papers on phosphine-palladium cata- Pd(OAc)2 and Dabco (triethylenediamine), various aryl lysts, see: (a) Litter, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 1999, 38, halides including aryl iodides, aryl bromides, and activated 2411. (b) Grasa, G. A.; Nolan, S. P. Org. Lett. 2001, 3, 119. (c) Litter, aryl chlorides were coupled efficiently with organotin com- A. F.; Schwarz, L.; Fu, G. C. J. -
Pharmacomodulation of Positions Two & Four of Nucleus Five
Al Saadi et al (2019): Pharmacomodulation using palladium catalyze November 2019 Vol. 22(7) Pharmacomodulation of positions two & four of nucleus five-nitroimidazole by using palladium catalyze Noor Thamer Abbas Al Saadi 1* Marwah Thamer Abbas Al Saadi1, Zina Tahsin Ali1 1. College of pharmacy, Almuthanna University *Corresponding Author: Dr. Noor Thamer Abbas Al Saadi, College of pharmacy, Almuthanna University Email: [email protected] Abstract: Cross-coupling reactions consist of reactions between an electrophilic organic species such as a halide or a pseudohalide (triflate, tosylate, mesylate) (R1-X) and an organometallic reagent (R2-M; M = Mg, Li, Cu, Zn, Al, B and Si). These reactions are catalyzed by a metal transition complex based on nickel or palladium, and result in the formation of new CClO.sub.2 bonds. Many cross-coupling reactions have thus been developed in about twenty years, by varying the nature of the electrophile, organometallic reagent and transition metal (Scheme 1). The most commonly used coupling reactions involve palladium as a transition metal, and the diversity of these reactions is based on the type of organometallic used, based on aluminum, zinc or zirconium (Negishi coupling), [1] boron (Suzuki coupling), [2] magnesium (Kumada coupling), [3] tin (Stille coupling) , [4] or silicon (coupling of Hiyama) .[5] The development of this type of reaction allowed Richard Heck, Ei-ichi Negishi and Akira Suzuki to be awarded the Nobel Prize for Chemistry in 2010.[1]. Key words: Pharmacomodulation, nitromidazole, palladiumcatalyz, cross-coupling, reactions How to cite this article: Al Saadi NTA, Al Saadi MTA, Ali ZT (2019): Pharmacomodulation of positions two & four of nucleus five-nitroimidazole by using palladiumcatalyz, Ann Trop Med Pub Health; 22: S202. -
Stille and Suzuki-Miyaura Reactions
molecules Article Recoverable Palladium-Catalyzed Carbon-Carbon Bond Forming Reactions under Thermomorphic Mode: Stille and Suzuki-Miyaura Reactions Eskedar Tessema 1,†, Vijayanath Elakkat 1,† , Chiao-Fan Chiu 2,3,*, Zong-Lin Tsai 1, Ka Long Chan 1 , Chia-Rui Shen 4,5, Han-Chang Su 6 and Norman Lu 1,7,* 1 Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106, Taiwan; [email protected] (E.T.); [email protected] (V.E.); [email protected] (Z.-L.T.); [email protected] (K.L.C.) 2 Department of Pediatrics, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan 3 Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan 4 Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; [email protected] 5 Department of Ophthalmology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan 6 Creditable Service Technology Consultants, New Taipei City 235, Taiwan; [email protected] 7 Development Center for Smart Textile, National Taipei University of Technology, Taipei 106, Taiwan * Correspondence: [email protected] (C.-F.C.); [email protected] (N.L.). † These authors contributed equally to this work. Citation: Tessema, E.; Elakkat, V.; 0 0 Chiu, C.-F.; Tsai, Z.-L.; Chan, K.L.; Abstract: The reaction of [PdCl2(CH3CN)2] and bis-4,4 -(RfCH2OCH2)-2,2 -bpy (1a–d), where Rf = n- Shen, C.-R.; Su, H.-C.; Lu, N. C11F23 (a), n-C10F21 (b), n-C9F19 (c) and n-C8F17 (d), respectively, in the presence of dichloromethane 0 0 Recoverable Palladium-Catalyzed (CH2Cl2) resulted in the synthesis of Pd complex, [PdCl2[4,4 -bis-(RfCH2OCH2)-2,2 -bpy] (2a–d).